Relationships between Math Skills, Motor Skills, Physical Activity, and Obesity in Typically Developing Preschool Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Instruments
2.2.1. Diagnosis of Math Skills
2.2.2. Diagnosis of Fine Motor Skills
- Adapted Threading Beads Test (TBT-AD)
- Adapted Visuomotor Integration Test (VMI-AD)
- Scoring and Classification of Fine Motor Skills
2.2.3. Diagnosis of Gross Motor Skills
- Manual Ball Skills (Aiming and Catching)
- Bean Bag Catch (Aiming and Catching 1)
- Throwing the Bean Bag (Aiming and Catching 2)
- Balance Skills (Balance)
- Unipedal Balance (Static)
- Tiptoe Walking (Dynamic)
- Jumping on Mats (Dynamic)
2.2.4. Obesity Diagnosis
2.2.5. Physical Activity Assessment
2.3. Procedures
2.4. Data Analysis
3. Results
3.1. Included Variables’ Prevalence
3.2. Association between All Variables and Their Influence on Mathematical Skills
4. Discussion
4.1. Prevalence Analysis
4.2. Associations between Study Variables and Their Influence on Mathematical Performance
5. Conclusions
Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Australian Research Alliance for Children and Youth. Early Childhood and Long Term Development: The Importance of the Early Years; Australian Research Alliance for Children and Youth: Perth, Australia, 2006. [Google Scholar]
- Anderson, L.M.; Shinn, C.; Fullilove, M.T.; Scrimshaw, S.C.; Fielding, J.E.; Normand, J.; Carande-Kulis, V.G.; Task Force on Community Preventive Services. The effectiveness of early childhood development programs: A systematic review. Am. J. Prev. Med. 2003, 24, 32–46. [Google Scholar] [CrossRef] [PubMed]
- Johnston, M.V. Plasticity in the developing brain: Implications for rehabilitation. Dev. Disabil. Res. Rev. 2009, 15, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Dean, D.C., III; O’Muircheartaigh, J.; Dirks, H.; Waskiewicz, N.; Walker, L.; Doernberg, E.; Piryatinsky, I.; Deoni, S.C. Characterizing longitudinal white matter development during early childhood. Brain Struct. Funct. 2015, 220, 1921–1933. [Google Scholar] [CrossRef] [PubMed]
- Falbo, B.C.P.; Andrade, R.D.; Furtado, M.C.C.; Mello, D.F. Estímulo ao desenvolvimento infantil: Produção do conhecimento em enfermagem. Rev. Bras. Enferm. 2012, 65, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Stich, H.L.; Baune, B.T.; Caniato, R.N.; Mikolajczyk, R.T.; Krämer, A. Individual development of preschool children-prevalences and determinants of delays in Germany: A cross-sectional study in Southern Bavaria. BMC Pediatr. 2012, 12, 188. [Google Scholar] [CrossRef] [PubMed]
- Bernal, R.; Fernández, C. Subsidized childcare and child development in Colombia: Effects of Hogares Comunitarios de Bien estar as a function of timing and length of exposure. Soc. Sci. Med. 2013, 97, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Bronfenbrenner, U. A Ecologia do Desenvolvimento Humano: Experimentos Naturais e Planejados; Artes Médicas: Porto Alegre, Brazil, 1996. [Google Scholar]
- Sigurdsson, E.; Van Os, J.; Fombonne, E. Are impaired childhood motor skills a risk factor for adolescent anxiety? Results from the 1958 UK birth cohort and the National Child Development Study. Am. J. Psychiatr. 2002, 159, 1044–1046. [Google Scholar] [CrossRef]
- Murray, G.K.; Veijola, J.; Moilanen, K.; Miettunen, J.; Glahn, D.C.; Cannon, T.D.; Jones, P.B.; Isohanni, M. Infant motor development is associated with adult cognitive categorisation in a longitudinal birth cohort study. J. Child Psychol. Psychiatry 2006, 47, 25–29. [Google Scholar] [CrossRef]
- Piek, J.P.; Dawson, L.; Smith, L.M.; Gasson, N. The role of early fine and gross motor development on later motor and cognitive ability. Hum. Mov. Sci. 2008, 27, 668–681. [Google Scholar] [CrossRef]
- Gallahue, D.L.; Ozmun, J.C. Understanding Motor Development: Infants, Children, Adolescents, Adults; McGraw-Hill: New York, NY, USA, 2002. [Google Scholar]
- Gerber, R.J.; Wilks, T.; Erdie-Lalena, C. Developmental milestones: Motordevelopment. Pediatr. Rev. 2010, 31, 267–276. [Google Scholar] [CrossRef]
- Caçola, P.M.; Gabbard, C.; Montebelo, M.I.; Santos, D.C. Further development and validation of the affordances in the home environment for motor development–infant scale (AHEMD-IS). Phys. Ther. 2015, 95, 901–923. [Google Scholar] [CrossRef] [PubMed]
- Valadi, S.; Gabbard, C. The effect of affordances in the home environment on children’s fine-and gross motor skills. Early Child Dev. Care 2020, 190, 1225–1232. [Google Scholar] [CrossRef]
- Frick, A.; Möhring, W. A matter of balance: Motor control is related to children’s spatial and proportional reasoning skills. Front. Psychol. 2016, 6, 2049. [Google Scholar] [CrossRef] [PubMed]
- Diamond, A. Interrelated and interdependent. Dev. Sci. 2007, 10, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Leisman, G.; Moustafa, A.A.; Shafir, T. Thinking, walking, talking: Integratory motor and cognitive brain function. Front. Public Health 2016, 4, 94. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.Y.; Cloutman, L.L.; Binney, R.J.; Lambon-Ralph, M.A. The structural connectivity of higher order association cortices reflects human functional brain networks. Cortex 2017, 97, 221–239. [Google Scholar] [CrossRef] [PubMed]
- Ahnert, J.; Schneider, W.; Bös, K. Developmental changes and individual stability of motor abilities from the preschool period to young adulthood. In Human Development from Early Childhood to Early Adulthood: Findings from a 20-Year Longitudinal Study; Schneider, W., Bullock, M., Eds.; Psychology Press: New York, NY, USA, 2009; pp. 35–62. [Google Scholar]
- Haartsen, R.; Jones, E.J.H.; Johnson, M.H. Human brain development over the early years. Curr. Opin. Behav. Sci. 2016, 10, 149–154. [Google Scholar] [CrossRef]
- Son, S.H.; Meisels, S.J. The relationship of young children’s motor skills to later reading and math achievement. Merrill-Palmer Q. 2006, 52, 755–778. [Google Scholar] [CrossRef]
- Kuh, D.; Hardy, R.; Butterworth, S.; Okell, L.; Richards, M.; Wadsworth, M.; Cooper, C.; Sayer, A.A. Developmental origins of midlife physical performance: Evidence from a British birth cohort. Am. J. Epidemiol. 2006, 164, 110–121. [Google Scholar] [CrossRef]
- Alvarez-Bueno, C.; Pesce, C.; Cavero-Redondo, I.; Sánchez-López, M.; Garrido Miguel, M.; Martínez-Vizcaíno, V. Academic achievement and physical activity: A meta-analysis. Pediatrics 2017, 140, e20171498. [Google Scholar] [CrossRef]
- Carson, V.; Hunter, S.; Kuzik, N.; Wiebe, S.A.; Spence, J.C.; Friedman, A.; Tremblay, M.S.; Slater, L.; Hinkley, T. Systematic review of physical activity and cognitive development in early childhood. J. Sci. Med. Sport 2016, 19, 573–578. [Google Scholar] [CrossRef] [PubMed]
- de Waal, E. Fundamental movement skills and academic performance of 5- to 6-year-old Preschoolers. Early Child. Educ. J. 2019, 47, 455–464. [Google Scholar] [CrossRef]
- Duncan, M.; Cunningham, A.; Eyre, E. A combined movement and story-telling intervention enhances motor competence and language ability in pre-schoolers to a greater extent than movement or story-telling alone. Eur. Phys. Educ. Rev. 2019, 25, 221–235. [Google Scholar] [CrossRef]
- Haapala, E.A.; Lintu, N.; Väistö, J.; Tompuri, T.; Soininen, S.; Viitasalo, A.; Eloranta, A.M.; Venäläinen, T.; Sääkslahti, A.; Laitinen, T.; et al. Longitudinal associations of fitness, motor competence, and adiposity with cognition. Med. Sci. Sports Exerc. 2019, 51, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, K.; Milne, N.; Orr, R.; Pope, R. Relationships between motor proficiency and academic performance in mathematics and reading in school-aged children and adolescents: A systematic review. Int. J. Environ. Res. Public. Health 2018, 15, 1603. [Google Scholar] [CrossRef]
- Malambo, C.; Nová, A.; Clark, C.; Musálek, M. Associations between fundamental movement skills, physical fitness, motor competency, physical activity, and executive functions in pre-school age children: A systematic review. Children 2022, 9, 1059. [Google Scholar] [CrossRef] [PubMed]
- Zeng, N.; Ayyub, M.; Sun, H.; Wen, X.; Xiang, P.; Gao, Z. Effects of physical activity on motor skills and cognitive development in early childhood: A systematic review. BioMed Res. Int. 2017, 2017, 2760716. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.; Innerd, A.; Giles, E.L.; Azevedo, L.B.D. The association between physical activity, motor skills and school readiness in 4–5-year-old children in the northeast of England. Int. J. Environ. Res. Public Health 2021, 18, 11931. [Google Scholar] [CrossRef]
- Logan, S.W.; Robinson, L.E.; Wilson, A.E.; Lucas, W.A. Getting the fundamentals of movement: A meta-analysis of the effectiveness of motor skill interventions in children. Child Care Health Dev. 2012, 38, 305–315. [Google Scholar] [CrossRef]
- Pic, M.; Navarro-Adelantado, V.; Jonsson, G.K. Detection of ludic patterns in two triadic motor games and differences in decision complexity. Front. Psychol. 2018, 8, 2259. [Google Scholar] [CrossRef]
- Pic, M.; Navarro-Adelantado, V.; Jonsson, G.K. Gender differences in strategic behavior in a triadic persecution motor game identified through an observational methodology. Front. Psychol. 2020, 11, 109. [Google Scholar] [CrossRef] [PubMed]
- Stodden, D.F.; Goodway, J.D.; Langendorfer, S.J.; Roberton, M.A.; Rudisill, M.E.; Garcia, C.; Garcia, L.E. A Developmental Perspective on the Role of Motor Skill Competence in Physical Activity: An Emergent Relationship. Quest 2008, 60, 290–306. [Google Scholar] [CrossRef]
- Jones, D.; Innerd, A.; Giles, E.L.; Azevedo, L.B.D. Association between fundamental motor skills and physical activity in the early years: A systematic review and meta-analysis. J. Sport Health Sci. 2020, 9, 542–552. [Google Scholar] [CrossRef] [PubMed]
- Goodway, J.D.; Branta, C.F. Influence of a motor skill intervention on fundamental motor skill development of disadvantaged preschool children. Res. Q. Exerc. Sport 2003, 74, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Wrotniak, B.H.; Epstein, L.H.; Dorn, J.M.; Jones, K.E.; Kondilis, V.A. The relationship between motor proficiency and physical activity in children. Pediatrics 2006, 118, e1758–e1765. [Google Scholar] [CrossRef] [PubMed]
- Williams, H.G.; Pfeiffer, K.A.; O’Neill, J.R.; Dowda, M.; McIver, K.L.; Brown, W.H.; Pate, R.R. Motor skill performance and physical activity in preschool children. Obesity 2008, 16, 1421–1426. [Google Scholar] [CrossRef]
- Metcalf, B.S.; Hosking, J.; Jeffer, A.N.; Voss, L.D.; Henley, W.; Wilkin, T.J. Fatness leads to inactivity, but inactivity does not lead to fatness: A longitudinal study in children (EarlyBird 45). Arch. Dis. Child. 2011, 96, 942–947. [Google Scholar] [CrossRef]
- Song, H.Q.; Lau, P.W.C.; Wang, J.J. Investigation of the motor skills assessments of typically developing preschool children in China. BMC Pediatr. 2022, 22, 84. [Google Scholar] [CrossRef]
- Hume, C.; Okely, A.; Bagley, S.; Telford, A.; Booth, M.; Crawford, D.; Salmon, J. Does weight status influence associations between children’s fundamental movement skills and physical activity? Res. Q. Exerc. Sport 2008, 79, 158–165. [Google Scholar] [CrossRef]
- D’Hondt, E.; Deforche, B.; De Bourdeaudhuij, I.; Lenoir, M. Relationship between motor skill and body mass index in 5- to 10-year old children. Adapt. Phys. Activ. Q. 2009, 26, 21–37. [Google Scholar] [CrossRef]
- Barnett, L.M.; van Beurden, E.; Morgan, P.J.; Brooks, L.O.; Beard, J.R. Childhood motor skill proficiency as a predictor of adolescent physical activity. J. Adolesc. Health 2009, 44, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Lopes, V.P.; Rodrigues, L.P.; Maia, J.A.R.; Malina, R.M. Motor coordination as predictor of physical activity in childhood. Scand. J. Med. Sci. Sports 2011, 21, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Li, Y.; Song, H.; Yong, L.; Luo, L.; Zhang, Z.; Song, N. Assessment of Validity of children’s movement skill quotient (CMSQ) based on the physical education classroom environment. BioMed Res. Int. 2020, 2020, 8938763. [Google Scholar] [CrossRef] [PubMed]
- De Niet, M.; Platvoet, S.W.J.; Hoeboer, J.J.A.A.M.; DeWitte, A.M.H.; De Vries, S.I.; Pion, J. Agreement between the KTK3+ test and the athletic skills track for classifying the fundamental movement skills proficiency of 6- to 12-year-old children. Front. Educ. 2021, 6, 571018. [Google Scholar] [CrossRef]
- Moghaddaszadeh, A.; Belcastro, A.N. Guided active play promotes physical activity and improves fundamental motor skills for school-aged children. J. Sports Sci. Med. 2021, 20, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Burton, A.W.; Rodgerson, R.W. New Perspectives on the Assessment of Movement Skills and Motor Abilities. Adapt. Phys. Activ. Q. 2001, 18, 347–365. [Google Scholar] [CrossRef]
- Matheis, M.; Estabillo, J.A. Assessment of fine and gross motor skills in children. In Handbook of Childhood Psychopathology and Developmental Disabilities Assessment; Matson, J.L., Ed.; Autism and Child Psychopathology Series; Springer: Cham, Switzerland, 2018; pp. 467–484. [Google Scholar] [CrossRef]
- Grissmer, D.; Grimm, K.J.; Aiyer, S.M.; Murrah, W.M.; Steele, J.S. Fine motor skills and early comprehension of the world: Two new school readiness indicators. Dev. Psychol. 2010, 46, 1008–1017. [Google Scholar] [CrossRef]
- Oberer, N.; Gashaj, V.; Roebers, C.M. Motor skills in kindergarten: Internal structure, cognitive correlates and relationships to background variables. Hum. Mov. Sci. 2017, 52, 170–180. [Google Scholar] [CrossRef]
- Gonzalez, S.L.; Alvarez, V.; Nelson, E.L. Do gross and fine motor skills differentially contribute to language outcomes? A systematic review. Front. Psychol. 2019, 10, 2670. [Google Scholar] [CrossRef]
- Goodway, J.; Ozmun, J.; Gallahue, D. Understanding Motor Development: Infants, Children, Adolescents, Adults, 8th ed.; Jones & Bartlett Learning: Burlington, MA, USA, 2019. [Google Scholar]
- Meylia, K.N.; Siswati, T.; Paramashanti, B.A.; Hati, F.S. Fine motor, gross motor, and social independence skills among stunted and non-stunted children. Early Child Dev. Care 2020, 192, 95–102. [Google Scholar] [CrossRef]
- Lopes, L.; Santos, R.; Pereira, B.; Lopes, V.P. Associations between gross motor coordination and academic achievement in elementary school children. Hum. Mov. Sci. 2013, 32, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Magistro, D.; Bardaglio, G.; Rabaglietti, E. Gross motor skills and academic achievement in typically developing children: The mediating effect of ADHD related behaviours. Cogn. Brain Behav. 2015, 19, 149–163. [Google Scholar]
- Kokstejn, J.; Musálek, M.; Tufano, J.J. Are sex differences in fundamental motor skills uniform throughout the entire preschool period? PLoS ONE 2017, 12, e0176556. [Google Scholar] [CrossRef] [PubMed]
- Haywood, K.M.; Getchell, N. Life Span Motor Development, 7th ed.; Human Kinetics: Champaign, IL, USA, 2019. [Google Scholar]
- Bolger, L.E.; Bolger, L.A.; O’Neill, C.; Coughlan, E.; O’Brien, W.; Lacey, S.; Burns, C.; Bardid, F. Global levels of fundamental motor skills in children: A systematic review. J. Sports Sci. 2020, 39, 717–753. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.L.; Matthews, R.N. Review of NEPSY-second edition (NEPSY-II). J. Psychoeduc. Assess. 2010, 28, 175–182. [Google Scholar] [CrossRef]
- Suggate, S.; Pufke, E.; Stoeger, H. Do fine motor skills contribute to early reading development? J. Res. Read. 2018, 41, 1–19. [Google Scholar] [CrossRef]
- Flores, P.; Coelho, E.; Mourão-Carvalhal, M.I.; Forte, P. Association between motor and math skills in preschool children with typical development: Systematic review. Front. Psychol. 2023, 14, 1105391. [Google Scholar] [CrossRef]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126–131. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1424733/ (accessed on 25 September 2023).
- Coutinho, P.; Mesquita, I.; Davids, K.; Fonseca, A.M.; Côté, J. How structured and unstructured sport activities aid the development of expertise in volleyball players. Psychol. Sport Exerc. 2016, 25, 51–59. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines on Physical Activity, Sedentary Behaviour and Sleep for Children under 5 Years of Age; World Health Organization: Geneva, Switzerland, 2019; Available online: https://www.who.int/publications/i/item/9789241550536 (accessed on 25 September 2023).
- Timmons, B.W.; LeBlanc, A.G.; Carson, V.; Connor Gorber, S.; Dillman, C.; Janssen, I.; Kho, M.E.; Spence, J.C.; Stearns, J.A.; Tremblay, M.S. Systematic review of physical activity and health in the early years (aged 0–4 years). Appl. Physiol. Nutr. Metab. 2012, 37, 773–792. [Google Scholar] [CrossRef]
- Graf, C.; Beneke, R.; Bloch, W.; Bucksch, J.; Dordel, S.; Eiser, S.; Ferrari, N.; Koch, B.; Krug, S.; Lawrenz, W.; et al. Vorschläge zur Förderung der körperlichen Aktivität von Kindern und Jugendlichen in Deutschland. Monatsschr. Kinderheilkd. 2013, 161, 439–446. [Google Scholar] [CrossRef]
- Huber, G. Generation S. Mod. Ernähr. Heute 2013, 1, 1–6. [Google Scholar]
- World Health Organization. Obesity. 2017. Available online: https://www.who.int/health-topics/obesity (accessed on 25 September 2023).
- Schwartz, M.; Seeley, R.; Zeltser, L.; Drewnowski, A.; Ravussin, E.; Redman, L.; Leibel, R.A. Obesity Pathogenesis: An Endocrine Society Scientific Statement. Endocr. Rev. 2017, 38, 267–296. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.; Swartz, A.M.; Strath, S.J.; O’Brien, W.L.; Bassett, D.R.; Schmitz, K.H.; Emplaincourt, P.O.; et al. Compendium of physical activities: An update of activity codes and MET intensities. Med. Sci. Sports Exerc. 2000, 32, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Bucksch, J.; Dreger, S. Sitzendes Verhalten als Risikofaktor im Kindes-und Jugendalter. Prävention Und Gesundheitsförderung 2014, 9, 39–46. [Google Scholar] [CrossRef]
- Pate, R.; O’Neill, J.R.; Liese, A.D.; Janz, K.F.; Granberg, E.M.; Colabianchi, N.; Harsha, D.W.; Condrasky, M.M.; O’Neil, P.M.; Lau, E.Y.; et al. Factors associated with development of excessive fatness in children and adolescents: A review of prospective studies. Obes. Rev. 2013, 14, 645–658. [Google Scholar] [CrossRef] [PubMed]
- Planinšec, J. Relations between motor and cognitive dimensions of preschool girls and boys. Percept. Mot. Skills 2002, 94, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Burger, K. How does early childhood care and education affect cognitive development? An international review of the effects of early interventions for children from different social backgrounds. Early Child Res. Q. 2010, 25, 140–165. [Google Scholar] [CrossRef]
- Carson, V.; Lee, E.Y.; Hewitt, L.; Jennings, C.; Hunter, S.; Kuzik, N.; Stearns, J.A.; Unrau, S.P.; Poitras, V.J.; Gray, C.; et al. Systematic review of the relationships between physical activity and health indicators in the early years (0–4 years). BMC Public Health 2017, 17, 854. [Google Scholar] [CrossRef]
- Rasmussen, M.; Laumann, K. The academic and psychological benefits of exercise in healthy children and adolescents. Eur. J. Psychol. Educ. 2013, 28, 945–962. [Google Scholar] [CrossRef]
- Tonge, K.L.; Jones, R.A.; Okely, A.D. Correlates of children’s objectively measured physical activity and sedentary behavior in early childhood education and care services: A systematic review. Prev. Med. 2016, 89, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, R.; An, R. Motor skill competence and physical activity in preschoolers: A review. Matern. Child Health J. 2017, 21, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Lopes, V.P.; Stodden, D.F.; Bianchi, M.M.; Maia, J.A.; Rodrigues, L.P. Correlation between BMI and motor coordination in children. J. Sci. Med. Sport 2012, 15, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Lubans, D.R.; Morgan, P.J.; Cliff, D.P.; Barnett, L.M.; Okely, A.D. Fundamental movement skills in children and adolescents. Sports Med. 2010, 40, 1019–1035. [Google Scholar] [CrossRef] [PubMed]
- Robinson, L.E.; Stodden, D.F.; Barnett, L.M.; Lopes, V.P.; Logan, S.W.; Rodrigues, L.P.; D’Hondt, E. Motor competence and its effect on positive developmental trajectories of health. Sports Med. 2015, 45, 1273–1284. [Google Scholar] [CrossRef] [PubMed]
- Fisher, A.; Reilly, J.J.; Kelly, L.A.; Montgomery, C.; Williamson, A.; Paton, J.Y.; Grant, S. Fundamental movement skills and habitual physical activity in young children. Med. Sci. Sports Exerc. 2005, 37, 684–688. [Google Scholar] [CrossRef] [PubMed]
- Biddle, S.J.; Asare, M. Physical activity and mental health in children and adolescents: A review of reviews. Br. J. Sports Med. 2011, 45, 886–895. [Google Scholar] [CrossRef]
- Janssen, I.; LeBlanc, A.G. Systematic Review of the Health Benefits of Physical Activity and Fitness in School-Aged Children and Youth. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 40. Available online: http://www.ijbnpa.org/content/7/1/40 (accessed on 25 September 2023). [CrossRef]
- Ahn, J.V.; Sera, F.; Cummins, S.; Flouri, E. Associations between objectively measured physical activity and later mental health outcomes in children: Findings from the UK Millennium Cohort Study. J. Epidemiol. Community Health 2018, 72, 94–100. [Google Scholar] [CrossRef]
- Donnelly, J.E.; Hillman, C.H.; Castelli, D.; Etnier, J.L.; Lee, S.; Tomporowski, P.; Lambourne, K.; Szabo-Reed, A.N. Physical activity, fitness, cognitive function, and academic achievement in children: A systematic review. Med. Sci. Sports Exerc. 2016, 48, 1197–1222. [Google Scholar] [CrossRef]
- McNeill, J.; Howard, S.J.; Vella, S.A.; Santos, R.; Cliff, D.P. Physical activity and modified organized sport among preschool children: Associations with cognitive and psychosocial health. Ment. Health Phys. Act. 2018, 15, 45–52. [Google Scholar] [CrossRef]
- Ribner, A.D.; Willoughby, M.T.; Blair, C.B.; The Family Life Project Key Investigators. Executive function buffers the association between early math and later academic skills. Front. Psychol. 2017, 8, 869. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, V.R.; Ribeiro, M.L.S.; Melo, T.; de Tarso Maciel-Pinheiro, P.; Guimarães, T.T.; Araújo, N.B.; Ribeiro, S.; Deslandes, A.C. Motor coordination correlates with academic achievement and cognitive function in children. Front. Psychol. 2016, 7, 318. [Google Scholar] [CrossRef] [PubMed]
- Organization for Economic Cooperation and Development (OECD). Preliminary Reflections and Research on Knowledge, Skills, Attitudes and Values Necessary for 2030; Organization for Economic Cooperation and Development (OECD): Paris, France, 2016. [Google Scholar]
- Duncan, G.J.; Dowsett, C.J.; Claessens, A.; Magnuson, K.; Huston, A.C.; Klebanov, P.; Pagani, L.S.; Feinstein, L.; Engel, M.; Brooks-Gunn, J.; et al. School readiness sand later achievement. Dev. Psychol. 2007, 43, 1428–1446. [Google Scholar] [CrossRef] [PubMed]
- Parsons, S.; Bynner, J. Does Numeracy Matter More? National Research and Development Centre for Adult Literacy and Numeracy: London, UK, 2005. [Google Scholar]
- van der Fels, I.M.; Te Wierike, S.C.; Hartman, E.; Elferink-Gemser, M.T.; Smith, J.; Visscher, C. The relationship between motor skills and cognitive skills in 4–16 year old typically developing children: A systematic review. J. Sci. Med. Sport 2015, 18, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Pagani, L.S.; Fitzpatrick, C.; Archambault, I.; Janosz, M. School readiness and later achievement: A French-Canadian replication and extension. Dev. Psychol. 2010, 46, 984–994. [Google Scholar] [CrossRef] [PubMed]
- Sibley, B.A.; Etnier, J.L. The relationship between physical activity and cognition in children: A meta-analysis. Pediatr. Exerc. Sci. 2003, 15, 243–256. [Google Scholar] [CrossRef]
- Fedewa, A.L.; Ahn, S. The effects of physical activity and physical fitness on children’s achievement and cognitive outcomes. Res. Q. Exerc. Sport 2011, 82, 521–535. [Google Scholar] [CrossRef]
- Singh, A.S.; Saliasi, E.; van den Berg, V.; Uijtdewilligen, L.; de Groot, R.H.M.; Jolles, J.; Andersen, L.B.; Bailey, R.; Chang, Y.-K.; Diamond, A.; et al. Effects of physical activity interventions on cognitive and academic performance in children and adolescents: A novel combination of a systematic review and recommendations from an expert panel. Br. J. Sports Med. 2019, 53, 640–647. [Google Scholar] [CrossRef]
- Cliff, D.P.; Okely, A.D.; Morgan, P.J.; Jones, R.A.; Steele, J.R.; Baur, L.A. Proficiency Deficiency: Mastery of Fundamental Movement Skills and Skill Components in Overweight and Obese Children. Obesity 2012, 20, 1024–1033. [Google Scholar] [CrossRef]
- Poulsen, A.A.; Desha, L.; Ziviani, J.; Griffiths, L.; Heaslop, A.; Khan, A.; Leong, G.M. Fundamental movement skills and self-concept of children who are overweight. Int. J. Pediatr. Obes. 2011, 6, e464–e471. [Google Scholar] [CrossRef] [PubMed]
- de Kieviet, J.F.; Piek, J.P.; Aarnoudse-Moens, C.S.; Oosterlaan, J. Motor Development in Very Preterm and Very Low-Birth-Weight Children from Birth to Adolescence: A Meta-analysis. JAMA J. Am. Med. Assoc. 2009, 302, 2235–2242. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.; Lee, K.J.; Anderson, P.J. Prevalence of motor-skill impairment in preterm children who do not develop cerebral palsy: A systematic review . Dev. Med. Child Neurol. 2010, 52, 232–237. [Google Scholar] [CrossRef]
- Feder, K.P.; Majnemer, A. Handwriting development, competency, and intervention. Dev. Med. Child Neurol. 2007, 49, 312–317. [Google Scholar] [CrossRef]
- Edwards, J.; Berube, M.; Erlandson, K.; Haug, S.; Johnstone, H.; Meagher, M.; Sarkodee-Adoo, S.; Zwicker, J. Developmental Coordination Disorder in scholl-aged children born very preterm and/or at very low birth weight: A systematic review. J. Dev. Behav. Pediatr. 2011, 32, 678–687. [Google Scholar] [CrossRef]
- Weschler, D. WPPSI-R Manual; The Psychological Corporation: San Antonio, TX, USA, 1989. [Google Scholar]
- Wechsler, D. Escala de Inteligência de Weschler para a Idade Pré-Escolar e Primária—Edição Revista; Seabra-Santos, M.J.; Simões, M.R.; Ferreira, A.M.R.E.C., Translators; CEGOC-TEA: Lisbon, Portugal, 2003. [Google Scholar]
- Flores, P.; Coelho, E.; Mourão-Carvalhal, M.I.; Forte, P.M. Preliminary Adaptation of Motor Tests to Evaluate Fine Motor Skills Associated with Mathematical Skills in Preschoolers. Eur. J. Investig. Health Psychol. Educ. 2023, 13, 1330–1361. [Google Scholar] [CrossRef]
- Henderson, S.; Sugden, E.; Barnett, A. Movement Evaluation Battery for Children, 2nd ed.; Pearson: London, UK, 2007. [Google Scholar]
- Beery, K.E.; Beery, N.A. The Beery-Buktenica Developmental Test of Visual-Motor Integration, 6th ed.; Pearson: London, UK, 2010. [Google Scholar]
- Polit, D.; Beck, C. The content validity index: Are you know what’s being reported? Critique and recommendations. Res. Nurs. Health 2006, 29, 489–497. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef]
- Jaikaew, R.; Satiansukpong, N. Movement Assessment Battery for Children-Second Edition (MABC2): Cross-cultural validity, content validity, and interrater reliability Fin Thai children. Occup. Ther. Int. 2019, 2019, 4086594. [Google Scholar] [CrossRef]
- Caçola, P.; Lage, G. Developmental Coordination Disorder (DCD): An overview of the condition and research evidence. Motriz Rev. Educ. Fís. 2019, 25, e101923. [Google Scholar] [CrossRef]
- Caçola, P. Movement difficulties affect children’s learning: Na overview of Developmental Coordination Disorder (DCD). Learn. Disabil. 2014, 2, 98–106. [Google Scholar] [CrossRef]
- Kirby, A.; Sugden, D.A. Children with developmental coordination disorders. J. R. Soc. Med. 2007, 100, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Smits-Engelsman, B.; Niemeijer, A.; Waelvelde, H. Is the movement assessment battery for children-2nd edition a reliable instrument to measure motor performance in 3 year old children? Res. Dev. Disabil. 2011, 32, 1370–1377. [Google Scholar] [CrossRef] [PubMed]
- Rolland-Cachera, M.F. Childhood obesity: Current definitions and recommendations for their use. Int. J. Pediatr. Obes. 2011, 6, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Lohman, T.G.; Roche, A.E.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics Books: Champaign, IL, USA, 1988. [Google Scholar]
- European Childhood Obesity Group. Endorsement of the New WHO Growth Standards for Infants and Young Children; European Childhood Obesity Group (ECOG): Brussels, Belgium, 2009. [Google Scholar]
- International Pediatric Association. International Pediatric Association Endorsement: The New WHO Growth Standards for Infants and Young Children; International Pediatric Association (IPA): Geneva, Switzerland, 2006. [Google Scholar]
- WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards based on length/height, weight and age. Acta Paediatr. 2006, 95, 76–85. [Google Scholar] [CrossRef] [PubMed]
- de Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Cole, T.J.; Lobstein, T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr. Obes. 2012, 7, 284–294. [Google Scholar] [CrossRef] [PubMed]
- de Onis, M.; Lobstein, T. Defining obesity risk status in the general childhood population: Which cut-offs should we use? Int. J. Pediatr. Obes. 2010, 5, 458–460. [Google Scholar] [CrossRef]
- Sylvia, L.G.; Bernstein, E.E.; Hubbard, J.L.; Keating, L.; Anderson, E.J. A practical guide to measuring physical activity. J. Acad. Nutr. Diet. 2014, 114, 199–208. [Google Scholar] [CrossRef]
- Ainsworth, B.; Cahalin, L.; Buman, M.; Ross, R. The current state of physical activity assessment tools. Prog. Cardiovasc. Dis. 2015, 57, 387–395. [Google Scholar] [CrossRef]
- Tudor-Locke, C.E.; Myers, A.M. Challenges and opportunities for measuring physical activity in sedentary adults. Sports Med. 2001, 31, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, G.M.; Hardy, L.L.; Peat, J.K.; Louise, A.; Baur, L.A. The validity and reliability of a home environment preschool-age physical activity questionnaire (Pre-PAQ). Int. J. Behav. Nutr. Phys. Act. 2011, 8, 86. Available online: http://www.ijbnpa.org/content/8/1/86 (accessed on 14 September 2023). [CrossRef] [PubMed]
- Sancho, T.S.d.J. Healthy Eating and Physical Activity Intervention in Preschool Children to Prevent Obesity: A Randomized Controlled Trial. Ph.D. Thesis, Faculdade de Desporto da Universidade do Porto, Porto, Portugal, 2014. [Google Scholar]
- Burdette, H.L.; Whitaker, R.C. A national study of neighborhood safety, outdoor play, television viewing, and obesity in preschool children. Pediatrics 2005, 116, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Tucker, P.; Gilliland, J. The effect of season and weather on physical activity: A systematic review. Public Health 2007, 121, 909–922. [Google Scholar] [CrossRef] [PubMed]
- Vollmer, R.L.; Adamsons, K.; Gorin, A.; Foster, J.S.; Mobley, A.R. Investigating the Relationship of Body Mass Index, Diet Quality, and Physical Activity Level between Fathers and Their Preschool-Aged Children. J. Acad. Nutr. Diet. 2015, 115, 919–926. [Google Scholar] [CrossRef]
- Skouteris, H.; Hill, B.; McCabe, M.; Swinburn, B.; Busija, L. A parent-based intervention to promote healthy eating and active behaviours in pre-school children: Evaluation of the MEND 2-4 randomized controlled trial. Pediatr. Obes. 2016, 11, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Cox, R.; Skouterls, H.; Rutherford, l.; Fuller-Tyszklewlcz, M. Television viewing, television content, food intake, physical activity and body mass index: A cross-sectional study of preschool children aged 2-6 years. Health Promot. J. Aust. 2012, 23, 58–62. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guidelines on Physical Activity and Sedentary Behaviour. Geneva. 2020. Available online: https://www.who.int/publications/i/item/9789240015111 (accessed on 14 September 2023).
- Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to Linear Regression Analysis, 5th ed.; JohnWiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Holmes, W.H.; Rinaman, W.C. Multiple linear regression. In Statistical Literacy for Clinical Practitioners; Springer International Publishing: New York, NY, USA, 2015; pp. 367–396. [Google Scholar]
- Fariña, P.; San Martín, E.; Preiss, D.D.; Claro, M.; Jara, I. Measuring the relation between computer use and reading literacy in the presence of endogeneity. Comput. Educ. 2015, 80, 176–186. [Google Scholar] [CrossRef]
- Morgan, P.; Farkas, G.; Wu, Q. Five-Year Growth Trajectories of Kindergarten Children with Learning Difficulties in Mathematics. J. Learn. Disabil. 2009, 42, 306–321. [Google Scholar] [CrossRef]
- Chong, S.L.; Siegel, L. Stability of computational deficits in math learning disability from second through fifth grades. Dev. Neuropsychol. 2008, 33, 300–317. [Google Scholar] [CrossRef]
- Fuchs, L.S.; Fuchs, D.; Prentice, K. Responsiveness to mathematical problem-solving instruction: Comparing students at risk of mathematics disability with and without risk of reading disability. J. Learn. Disabil. 2004, 37, 293–306. [Google Scholar] [CrossRef] [PubMed]
- Claesens, A.; Engel, M. How important is where you start? Early mathematics knowledge and later school success. Teach. Coll. Rec. 2013, 115, 1–29. [Google Scholar] [CrossRef]
- Pitchford, N.J.; Papini, C.; Outhwaite, L.A.; Guillford, A. Fine motor skills predict maths ability better than they predict reading ability in the early primary school years. Front. Psychol. 2016, 7, 783. [Google Scholar] [CrossRef] [PubMed]
- Handel, A.J.; Lozoff, B.; Breiilh, J.; Harlow, S.D. Sociodemographic and nutritional correlates of neurobehavioral development- A study of young children in a rural region of Ecuador. Rev. Panam. Salud Publica 2007, 21, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Strooband, K.; de Rosnay, M.; Okely, A. Prevalence and risk factors of pre-schoolers’ fine motor delay within vulnerable Australian communities. J. Paediatr. Child Health 2020, 57, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Bello, A.I.; Quartey, J.N.; Appiah, L.A. Screening for developmental delay among children attending a rural community welfare clinic in Ghana. BMC Pediatr. 2013, 13, 119. [Google Scholar] [CrossRef] [PubMed]
- Troude, P.; Squires, J.; L’Helias, L.F.; Bouyer, J.; de La Rochebrochard, E. Ages and Stages Questionnaires: Feasibility of postal surveys for child follow-up. Early Hum. Dev. 2011, 87, 671–676. [Google Scholar] [CrossRef] [PubMed]
- Goyen, T.; Lui, K. Longitudinal motor development of apparently normal high-risk infants at 18 months, 3 and 5 years. Early Hum. Dev. 2002, 70, 103–115. [Google Scholar] [CrossRef]
- Coetzee, D.; Gerber, B. Difference between visual-motor integration status of typically developed learners and learners with learning-related problems. S. Afr. J. Res. Sport Phys. Educ. Recreat. 2018, 40, 41–52. [Google Scholar]
- Cook, C.J.; Howard, S.J.; Scerif, G.; Twine, R.; Kahn, K.; Norris, S.A.; Draper, C.E. Associations of physical activity and gross motor skills with executive function in preschool children from low-income South African settings. Dev. Sci. 2019, 22, e12820. [Google Scholar] [CrossRef]
- Draper, C.E.; Achmat, M.; Forbes, J.; Lambert, E.V. Impact of a community-based programme for motor development on gross motor skills and cognitive function in preschool children from disadvantaged settings. Early Child Dev. Care 2012, 182, 137–152. [Google Scholar] [CrossRef]
- Draper, C.E.; Tomaz, S.A.; Stone, M.; Hinkley, T.; Jones, R.A.; Louw, J.; Twine, R.; Kahn, K.; Norris, S.A. Developing intervention strategies to optimise body composition in early childhood in South Africa. BioMed Res. Int. 2017, 2017, 5283457. [Google Scholar] [CrossRef] [PubMed]
- Cameron, C.E.; Cottone, E.; Murrah, W.M.; Grissmer, D. How ae motor skills linked to Children’s school performance and academic achievement? Child Dev. Perspect. 2016, 10, 93–98. [Google Scholar] [CrossRef]
- Ommundsen, Y.; Gundersen, K.A.; Mjaavatn, P.E. Fourth graders’ social standing with peers: A prospective study on the role of first grade physical activity, weight status, and motor proficiency. Scand. J. Educ. Res. 2010, 54, 377–394. [Google Scholar] [CrossRef]
- Hamilton, M.; Liu, T. The effects of an intervention on the gross and fine motor skills of Hispanic Pre-K children from low ses backgrounds. Early Child. Educ. J. 2018, 46, 223–230. [Google Scholar] [CrossRef]
- Logan, S.W.; Webster, E.K.; Getchell, N.; Pfeiffer, K.A.; Robinson, L.E. Relationship between fundamental motor skill competence and physical activity during childhood and adolescence: A systematic review. Kinesiol. Rev. 2015, 4, 416–426. [Google Scholar] [CrossRef]
- Rito, A.; Mendes, S.; Faria, M.C.; Carvalho, R.; Santos, T.; Cardoso, S.; Feliciano, E.; Silvério, R.; Sancho, T.S.; Dinis, A.; et al. Childhood Obesity Surveillance Initiative: COSI Portugal; Instituto Nacional de Saúde Doutor Ricardo Jorge IP: Lisbon, Portugal, 2022; ISBN 978-989-8794-92-5. [Google Scholar]
- Li, W.; Rukavina, P. A review on coping mechanisms against obesity bias in physical activity/education settings. Obes. Rev. 2009, 10, 87–95. [Google Scholar] [CrossRef]
- Gale, C.R.; Batty, G.D.; Cooper, C.; Deary, I.J. Psychomotor coordination and intelligence in childhood and health in adulthood-testing the system integrity hypothesis. Psychosom. Med. 2009, 71, 675–681. [Google Scholar] [CrossRef]
- Osika, W.; Montgomery, S.M. Physical control and coordination in childhood and adult obesity: Longitudinal Birth Cohort Study. BMJ 2008, 337, a699. [Google Scholar] [CrossRef]
- Avila, C.; Holloway, A.C.; Hahn, M.K.; Morrison, K.M.; Restivo, M.; Anglin, R.; Taylor, V.H. An overview of links between obesity and mental health. Curr. Obes. Rep. 2015, 4, 303–310. [Google Scholar] [CrossRef]
- Gmeiner, M.S.; Warschburger, P. Psychotherapie bei juvenile Adipositas: Gerechtfertigt und sinnvoll? Psychotherapeut 2021, 66, 16–22. [Google Scholar] [CrossRef]
- Lanigan, J.; Barber, S.; Singhal, A. Prevention of obesity in preschool children. Proc. Nutr. Soc. 2010, 69, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Carlson, A.G.; Rowe, E.W.; Curby, T.W. Disentangling fine motor skills’ relation to academic achievement: The differential impact of visual-spatial integration and visual motor coordination. J. Genet. Psychol. 2013, 174, 514–533. [Google Scholar] [CrossRef] [PubMed]
- Maurer, M.N.; Roebers, C.M. New insights into visual-motor integration exploring process measures during copying shapes. Psychol. Sport Exerc. 2021, 55, 101954. [Google Scholar] [CrossRef]
- Kim, H.; Murrah, W.M.; Cameron, C.E.; Brock, L.L.; Cottone, E.A.; Grissmer, D. Psychometric properties of the teacher-reported Motor Skills Rating Scale. J. Psychoeduc. Assess. 2015, 33, 640–651. [Google Scholar] [CrossRef]
- Webster, E.K.; Martin, C.K.; Staiano, A.E. Fundamental Motor Skills, Screen-Time, and Physical Activity in Preschoolers. J. Sport Health Sci. 2019, 8, 114–121. [Google Scholar] [CrossRef]
- Lipkin, P.H. Motor Development and Dysfunction. In Developmental-Behavioral Pediatrics, 4th ed.; Saunders: Philadelphia, PA, USA, 2009; pp. 643–652. [Google Scholar] [CrossRef]
- Cameron, C.E.; Brock, L.L.; Murrah, W.M.; Bell, L.H.; Worzalla, S.L.; Grissmer, D.; Morrison, F.J. Fine Motor Skills and Executive Function Both Contribute to Kindergarten Achievement. Child Dev. 2012, 83, 1229–1244. [Google Scholar] [CrossRef]
- Dayem, T.S.A.E.; Salem, E.E.; Hadidy, E.I.E. Correlation between Gross Motor Activities and Hand Writing Skills in Elementary School Children. Trends Appl. Sci. Res. 2015, 10, 259–269. [Google Scholar] [CrossRef]
- Maurer, M.N.; Roebers, C.M. Towards a better understanding of the association between motor skills and executive functions in 5-to 6-year-olds: The impact of motor task difficulty. Hum. Mov. Sci. 2019, 66, 607–620. [Google Scholar] [CrossRef]
- Tortella, P.; Haga, M.; Loras, H.; Sigmundsson, H.; Fumagalli, G. Motor Skill Development in Italian Pre-School Children Induced by Structured Activities in a Specific Playground. PLoS ONE 2016, 11, e0160244. [Google Scholar] [CrossRef]
- Amaro, N.; Coelho, L.; Cruz, J.; Matos, R.; Morouço, P. Correlation between Fine and Gross Motor Coordination in Children. Rev. Saúde Públ. Leiria 2014, 48, 273. [Google Scholar]
- Suggate, S.; Stoeger, H.; Fischer, U. Finger-based numerical skills link fine motor skills to numerical development in preschoolers. Percept. Mot. Ski. 2017, 124, 1085–1106. [Google Scholar] [CrossRef] [PubMed]
- Sorgente, V.; Cohen, E.J.; Bravi, R.; Minciacchi, D. Crosstalk between Gross and Fine Motor Domains during Late Childhood: The Influence of Gross Motor Training on Fine Motor Performances in Primary School Children. Int. J. Environ. Res. Public Health 2021, 18, 11387. [Google Scholar] [CrossRef] [PubMed]
- Flatters, I.; Mushtaq, F.; Hill, L.J.B.; Rossiter, A.; Jarrett-Peet, K.; Culmer, P.; Holt, R.; Wilkie, R.M.; Mon-Williams, M. Children’s Head Movements and Postural Stability as a Function of Task. Exp. Brain Res. 2014, 232, 1953–1970. [Google Scholar] [CrossRef] [PubMed]
- Payne, V.G.; Isaacs, L.D. Human Motor Development: A Lifespan Approach; McGraw-Hill: New York, NY, USA, 2012. [Google Scholar]
- Wang, X.Q.; Chen, H.X.; Ma, H.J.; Guo, X.R.; Cui, X.H. Investigation on gross motor development of preschool children and analysis of influencing factors. Chin. J. Child Health Care 2015, 23, 188–191. [Google Scholar]
- Zhang, Y.; Cai, G.L.; Zhao, C.Q.; Wang, C.X.; Wang, D.D. Research progress of children’s motor development from the perspective of human motor development. Sichuan Sports Sci. 2019, 38, 37–39. [Google Scholar] [CrossRef]
- Fang, Y.; Wang, J.; Zhang, Y.; Qin, J. The relationship of motor coordination, visual perception, and executive function to the development of 4-6-year-old Chinese preschoolers’ visual motor integration skills. BioMed Res. Int. 2017, 62, 42–54. [Google Scholar] [CrossRef]
- Wassenberg, R.; Feron, F.J.; Kessels, A.G.; Hendriksen, J.G.; Kalff, A.C.; Kroes, M.; Hurks, P.P.; Beeren, M.; Jolles, J.; Vles, J.S. Relation between cognitive and motor performance in 5- to 6-year-old children- results from a large-scale cross-sectional study. Child. Dev. 2005, 76, 1092–1103. [Google Scholar] [CrossRef]
- Roth, K.; Ruf, K.; Obinger, M.; Mauer, S.; Ahnert, J.; Schneider, W.; Graf, C.; Hebestreit, H. Is there a secular decline in motor skills in preschool children? Scand. J. Med. Sci. Sports 2010, 20, 670–678. [Google Scholar] [CrossRef]
- Hinkley, T.; Salmon, J.; Okely, A.D.; Crawford, D.; Hesketh, K. Preschoolers’ physical activity, screen time, and compliance with recommendations. Med. Sci. Sports Exerc. 2012, 44, 458–465. [Google Scholar] [CrossRef]
- Jylänki, P.; Mbay, T.; Hakkarainen, A.; Arja Sääkslahti, A.; Aunio, P. The effects of motor skill and physical activity interventions on preschoolers’ cognitive and academic skills: A systematic review. Prev. Med. 2022, 155, 106948. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.Y. Differences between Preschool Children Using Tablets and Non-Tablets in Visual Perception and Fine Motor Skills. Hong Kong J. Occup. Ther. 2019, 32, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.Y.; Cherng, R.J.; Chen, Y.J. Effect of Touch Screen Tablet Use on Fine Motor Development of Young Children. Phys. Occup. Ther. Pediatr. 2017, 37, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Morris, T.H.; Rohs, M. The Potential for Digital Technology to Support Self-Directed Learning in Formal Education of Children: A Scoping Review. Interact. Learn. Environ. 2023, 31, 1974–1987. [Google Scholar] [CrossRef]
- Stevens, J.; Murray, D.M.; Baggett, C.D.; Elder, J.P.; Lohman, T.G.; Lytle, L.A.; Pate, R.R.; Pratt, C.A.; Treuth, M.S.; Webber, L.S.; et al. Objectively assessed associations between physical activity and body composition in middle-school girls: The Trial of Activity for Adolescent Girls. Am. J. Epidemiol. 2007, 166, 1298–1305. [Google Scholar] [CrossRef] [PubMed]
- Ward, D.S.; Vaughn, A.; McWilliams, C.; Hales, D. Interventions for increasing physical activity at child care. Med. Sci. Sports Exerc. 2010, 42, 526–534. [Google Scholar] [CrossRef]
- Clark, J.E. From the beginning: A developmental perspective on movement and mobility. Quest 2005, 57, 37–45. [Google Scholar] [CrossRef]
- Macdonald, K.; Milne, N.; Orr, R.; Pope, R. Associations between motor proficiency and academic performance in mathematics and reading in year 1 school children: A cross-sectional study. BMC Pediatr. 2020, 20, 69. [Google Scholar] [CrossRef]
- Gagen, L.M.; Getchell, N. Using ‘constraints’ to design developmentally appropriate movement activities for early childhood education. Early Child. Educ. J. 2006, 34, 227–232. [Google Scholar] [CrossRef]
- Dapp, L.C.; Roebers, C.M. The mediating role of self-concept between sports-related physical activity and mathematical achievement in fourth graders. Int. J. Environ. Res. Public Health 2019, 16, 2658. [Google Scholar] [CrossRef]
- Dapp, L.C.; Gashaj, V.; Roebers, C.M. Physical activity and motor skills in children: A differentiated approach. Psychol. Sport Exerc. 2021, 54, 101916. [Google Scholar] [CrossRef]
- Cueto, S.; Prieto, J.; Nistal, P.; Abelairas-Gómez, C.; Barcala, R.; López, S. Teachers’ perceptions of preschool children’s psychomotor development in Spain. Percept. Mot. Skills 2017, 124, 725–739. [Google Scholar] [CrossRef] [PubMed]
- Geertsen, S.S.; Thomas, R.; Larsen, M.N.; Dahn, I.M.; Andersen, J.K.; Krause-Jensen, M.; Korup, V.; Nielsen, C.M.; Wienecke, J.; Ritz, C.; et al. Motor skills and exercise capacity are associated with objective measures of cognitive functions and academic performance in preadolescent children. PLoS ONE 2016, 11, e0161960. [Google Scholar] [CrossRef] [PubMed]
- Tsangaridou, N. Early childhood teachers’ views about teaching physical education: Challenges and recommendations. Phys. Educ. Sport Pedagogy 2017, 22, 283–300. [Google Scholar] [CrossRef]
- Bar-Haim, Y.; Bart, O. Motor function and social participation in kindergarten children. Soc. Dev. 2006, 15, 296–310. [Google Scholar] [CrossRef]
- Øksendal, E.; Brandlistuen, R.E.; Wolke, D.; Helland, S.S.; Holte, A.; Wang, M.V. Associations between language difficulties, peer victimization, and bully perpetration from 3 through 8 years of age: Results from a population-based study. J. Speech Lang. Hear. Res. 2021, 64, 2698–2714. [Google Scholar] [CrossRef] [PubMed]
- Escolano-Pérez, E.; Sánchez-López, C.R.; Herrero-Nivela, M.L. Early Environmental and Biological Influences on Preschool Motor Skills: Implications for Early Childhood Care and Education. Front. Psychol. 2021, 12, 725832. [Google Scholar] [CrossRef]
- Honrubia-Montesinos, C.; Gil-Madrona, P.; Losada-Puente, L. Motor development among spanish preschool children. Children 2021, 8, 41. [Google Scholar] [CrossRef]
- Draper, C.E.; Tomaz, S.A.; Jones, R.A.; Hinkley, T.; Twine, R.; Kahn, K.; Norris, S.A. Cross-sectional associations of physical activity and gross motor proficiency with adiposity in South African children of pre-school age. Public Health Nutr. 2018, 22, 614–623. [Google Scholar] [CrossRef]
- Jones, S.; Hendricks, S.; Draper, C.E. Assessment of physical activity and sedentary behavior at preschools in Cape Town, South Africa. Child Obes. 2014, 10, 501–510. [Google Scholar] [CrossRef]
- te Velde, S.J.; van Nassau, F.; Uijtdewilligen, L.; van Stralen, M.M.; Cardon, G.; De Craemer, M.; Manios, Y.; Brug, J.; Chinapaw, M.J.; ToyBox-Study Group. Energy balance-related behaviours associated with overweight and obesity in preschool children: A systematic review of prospective studies. Obes. Rev. 2012, 13, 56–74. [Google Scholar] [CrossRef] [PubMed]
- Kuhl, E.S.; Clifford, L.M.; Stark, L.J. Obesity in preschoolers: Behavioral correlates and directions for treatment. Obesity 2012, 20, 3–29. [Google Scholar] [CrossRef] [PubMed]
- Kakebeeke, T.; Lanzi, S.; Zysset, A.; Arhab, A.; Messerli-Bürgy, N.; Stuelb, K.; Leeger-Aschmann, C.S.; Schmutz, E.A.; Meyer, A.H.; Kriemler, S.; et al. Association between Body Composition and Motor Performance in Preschool Children. Obes. Facts. 2017, 10, 420–431. [Google Scholar] [CrossRef] [PubMed]
- Castetbon, K.; Andreyeva, T. Obesity and motor skills among 4 to 6-year-old children in the United States: Nationally-representative surveys. BMC Pediatr. 2012, 12, 28. [Google Scholar] [CrossRef] [PubMed]
- Okely, A.D.; Booth, M.L.; Chey, T. Relationships between body composition and fundamental movement skills among children and adolescents. Res. Q. Exerc. Sport 2004, 75, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Prskalo, I.; Badric, M.; Kunjesic, M. The percentage of body fat in children and the level of their motor skills. Coll. Antropol. 2015, 1, 21–28. [Google Scholar]
- Barnett, L.M.; Lai, S.K.; Veldman, S.L.C.; Hardy, L.L.; Cliff, D.P.; Morgan, P.J.; Zask, A.; Lubans, D.R.; Shultz, S.P.; Ridgers, N.D.; et al. Correlates of gross motor competence in children and adolescents: A systematic review and meta-analysis. Sports Med. 2016, 46, 1663–1688. [Google Scholar] [CrossRef]
- Morano, M.; Colella, D.; Caroli, M. Gross motor skill performance in a sample of overweight and non-overweight preschool children. Int. J. Pediatr. Obes. 2011, 6, 42–46. [Google Scholar] [CrossRef]
- Spessato, B.; Gabbard, C.; Robinson, L.; Valentini, N. Body mass index, perceived and actual physical competence: The relationship among young children. Child Care Health Dev. 2013, 39, 845–850. [Google Scholar] [CrossRef]
- D’Hondt, E.; Gentier, I.; Deforche, B.; Tanghe, A.; De, B.I.; Lenoir, M. Weight loss and improved gross motor coordination in children as a result of multidisciplinary residential obesity treatment. Obesity 2011, 19, 1999–2005. [Google Scholar] [CrossRef]
- St Laurent, C.W.; Burkart, S.; Andre, C.; Spencer, R.M. Physical Activity, Fitness, School Readiness, and Cognition in Early Childhood: A Systematic Review. J. Phys. Act. Health 2021, 18, 1004–1013. [Google Scholar] [CrossRef] [PubMed]
- Moreau, D.; Morrison, A.B.; Conway, A.R. An ecological approach to cognitive enhancement: Complex motor training. Acta Psychol. 2015, 157, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Tomporowski, P.D.; Davis, C.L.; Miller, P.H.; Naglieri, J.A. Exercise and children’s intelligence, cognition, and academic achievement. Educ. Psychol. Rev. 2008, 20, 111–131. [Google Scholar] [CrossRef] [PubMed]
- Koutsandréou, F.; Wegner, M.; Niemann, C.; Budde, H. Effects of motor vs. cardiovascular exercise training on children’s working memory. Med. Sci. Sports Exerc. 2016, 48, 1144–1152. [Google Scholar] [CrossRef] [PubMed]
- Pesce, C.; Crova, C.; Marchetti, M.; Struzzolino, I.; Masci, I.; Vannozzi, G.; Forte, R. Searching for cognitively optimal challenge point in physical activity for children with typical and atypical motor development. Ment. Health Phys. Act. 2013, 6, 172–180. [Google Scholar] [CrossRef]
- Schmidt, M.; Egger, F.; Benzing, V.; Jäger, K.; Conzelmann, A.; Roebers, C.M.; Pesce, C. Disentangling the relationship between children’s motor ability, executive function and academic achievement. PLoS ONE 2017, 12, e0182845. [Google Scholar] [CrossRef] [PubMed]
- Escolano-Pérez, E.; Herrero-Nivela, M.L.; Losada, J.L. Association Between Preschoolers’ Specific Fine (But Not Gross) Motor Skills and Later Academic Competencies: Educational Implications. Front. Psychol. 2020, 11, 1044. [Google Scholar] [CrossRef] [PubMed]
- Hudson, K.N.; Ballou, H.M.; Willoughby, M.T. Short report: Improving motor competence skills in early childhood has corollary benefits for executive function and numeracy skills. Dev. Sci. 2021, 24, e13071. [Google Scholar] [CrossRef]
- Kim, H.; Duran, C.A.K.; Cameron, C.E.; Grissmer, D. Developmental relations among motor and cognitive processes and mathematics skills. Child Dev. 2018, 89, 476–494. [Google Scholar] [CrossRef]
- Cameron, C.E.; Brock, L.; Hatfield, B.; Cottone, E.; Rubinstein, E.; LoCasale-Crouch, J.; Grissmer, D. Visuomotor integration and inhibitory control compensate for each other in school readiness. Dev. Psychol. 2015, 51, 1529–1543. [Google Scholar] [CrossRef]
- Luo, Z.; Jose, P.; Huntsinger, C.; Pigott, T. Fine motor skills and mathematics achievement in East Asian American and European American kindergartners and first graders. Br. J. Dev. Psychol. 2007, 25, 595–614. [Google Scholar] [CrossRef]
Age Group | Male | Female | Total | Mean | Standard Deviation |
---|---|---|---|---|---|
3 years | 3 | 5 | 8 | 3.08 | 0.03 |
4 years | 12 | 4 | 16 | 4.08 | 0.14 |
5 years | 14 | 19 | 33 | 5.06 | 0.03 |
6 years | 3 | 2 | 5 | 6.02 | 0.01 |
Total | 32 | 30 | 62 | 4.63 | 0.81 |
Math Skills | ||
---|---|---|
WPPSI-R | N | % |
Much lower | 2 | 3.2 |
Lower | 13 | 21 |
Medium | 36 | 58.1 |
Higher | 9 | 14.5 |
Much higher | 2 | 3.2 |
FMS | ||||||||
---|---|---|---|---|---|---|---|---|
FMC: TBT-AD | VMI: VMI-AD | Total | ||||||
Classification | N | % | Classification | N | % | N | % | |
Severe disorder | 0 | 0 | Very low | 3 | 4.8 | Lots of difficulties | 0 | 0 |
Moderate disorder | 21 | 33.9 | Low | 15 | 24.2 | Some difficulties | 7 | 11.3 |
Medium | 23 | 37.1 | Medium | 41 | 66.1 | Medium | 24 | 67.7 |
Good | 18 | 29 | High | 3 | 4.8 | Good | 13 | 21 |
Very good | 0 | 0 | Very high | 0 | 0 | Very good | 0 | 0 |
GMS (MABC-2) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Balance | HMG | |||||||||
Classification | Aiming and Catching | Static | Dynamic | Total | ||||||
N | % | N | % | N | % | N | % | N | % | |
Motor disorder | 6 | 9.7 | 1 | 1.6 | 1 | 1.6 | 1 | 1.6 | 0 | 0 |
Risk of motor disorder | 2 | 3.2 | 6 | 9.7 | 4 | 6.5 | 4 | 6.5 | 6 | 9.7 |
Without risk | 54 | 87.1 | 55 | 88.7 | 57 | 91.9 | 57 | 91.9 | 56 | 91.9 |
PA | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Weekly Structured PA | Fulfilment of Recommendations | Time Spent per Intensity | |||||||||
Result | N | % | Days | N | % | Days | N | % | Intensities | M | Dp |
No | 17 | 27.4 | 0 | 17 | 27.4 | 0 days | 8 | 12.9 | Sedentary | 328.95 | 155.23 |
1 | 29 | 46.8 | 1 day | 11 | 17.7 | Slight | 131.93 | 96.39 | |||
Yes | 45 | 72.6 | 2 | 14 | 22.6 | 2 days | 16 | 25.8 | Moderate to vigorous | 292.66 | 197.89 |
3 | 2 | 3.2 | 3 days | 27 | 43.5 |
BMI | |||||||
---|---|---|---|---|---|---|---|
M | Dp | Maximum | Minimum | Classification | N | % | |
Percentile | 59.62 | 32.16 | 99.80 | 0.10 | Low weight | 5 | 8.1 |
Normal weight | 39 | 62.9 | |||||
BMI | 16.37 | 2.22 | 24.50 | 11.12 | Pre-obesity | 9 | 14.5 |
Obesity | 9 | 14.5 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. WPPSI-R | 1 | −0.014 | 0.464 ** | 0.454 ** | 0.084 | −0.041 | −0.134 | −0.092 | −0.001 | 0.018 | 0.038 | −0.104 | 0.052 | −0.009 | −0.134 | −0.032 |
2. TBT-AD | 1 | −0.045 | 0.177 | −0.199 | 0.057 | −0.108 | −0.072 | −0.186 | −0.137 | −0.064 | −0.124 | -0.267 * | −0.027 | −0.018 | 0.096 | |
3. VMI-AD | 1 | 0.975 ** | 0.187 | 0.121 | 0.160 | 0.213 | 0.269 * | 0.139 | 0.177 | −0.084 | 0.217 | 0.096 | −0.135 | 0.029 | ||
4. FMS | 1 | 0.140 | 0.132 | 0.133 | 0.194 | 0.224 | 0.106 | 0.160 | −0.110 | 0.154 | 0.089 | −0.137 | 0.050 | |||
5. Aiming and catching | 1 | −0.059 | 0.189 | 0.099 | 0.765 ** | −0.039 | −0.195 | −0.100 | 0.194 | 0.147 | −0.104 | −0.188 | ||||
6. Static balance | 1 | 0.156 | 0.759 ** | 0.450 ** | −0.115 | −0.137 | −0.140 | 0.122 | 0.144 | −0.116 | −0.050 | |||||
7. Dynamic balance | 1 | 0.689 ** | 0.579 ** | −0.049 | −0.138 | 0.162 | 0.154 | 0.120 | 0.049 | −0.022 | ||||||
8. Total balance | 1 | 0.716 ** | −0.118 | −0.153 | 0.025 | 0.180 | 0.156 | −0.057 | −0.130 | |||||||
9. GMS | 1 | −0.103 | −0.235 | −0.054 | 0.252 * | 0.204 | −0.110 | −0.216 | ||||||||
10. Do structured PA | 1 | 0.655 ** | 0.272 * | 0.259 * | −0.171 | 0.193 | −0.030 | |||||||||
11. Time Structured PA | 1 | 0.215 | 0.026 | −0.161 | 0.153 | 0.040 | ||||||||||
12. Days that fulfil the recommendations | 1 | 0.181 | 0.068 | 0.764 ** | 0.049 | |||||||||||
13. Time SPA | 1 | 0.008 | 0.029 | 0.054 | ||||||||||||
14. Time LPA | 1 | 0.005 | 0.015 | |||||||||||||
15. Time MVPA | 1 | 0.003 | ||||||||||||||
16. BMI | 1 |
MRL | R | R2 | R2 (Aj) | R2-R2 (Aj) | F | p |
---|---|---|---|---|---|---|
1 | 0.464 | 0.215 | 0.202 | 0.013 | 16.447 | 0.000 * |
Model | β | Sd | Beta | T | p |
---|---|---|---|---|---|
Constant | −0.409 | 2.548 | −0.161 | 0.873 | |
VMI-AD | 0.115 | 0.028 | 0.464 | 4.055 | 0.000 * |
Testes | Beta in | T | p | r |
---|---|---|---|---|
TBT-AD | 0.007 | 0.063 | 0.950 | 0.008 |
FMS | 0.033 | 0.063 | 0.950 | 0.008 |
Aiming and catching | −0.003 | −0.024 | 0.981 | −0.003 |
Static balance | −0.098 | −0.852 | 0.398 | −0.110 |
Dynamic balance | −0.213 | −1.878 | 0.065 | −0.238 |
Total balance | −0.200 | −1.736 | 0.088 | −0.220 |
GMS | −0.200 | −1.142 | 0.258 | −0.147 |
Do structured PA | −0.047 | −0.404 | 0.688 | −0.052 |
Number of structured PA performed | −0.058 | −0.500 | 0.619 | −0.065 |
Number of days fulfilling recommendations | −0.065 | −0.566 | 0.573 | −0.074 |
Compliance with weekly recommendations | −0.066 | −0.568 | 0.572 | −0.074 |
Total time spent in SPA | −0.05 | −0.428 | 0.671 | −0.056 |
Total time spent on LPA | −0.054 | −0.468 | 0.642 | −0.061 |
Total time spent on MVPA | −0.072 | −0.625 | 0.535 | −0.081 |
BMI classification | −0.046 | −0.395 | 0.694 | −0.051 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores, P.; Coelho, E.; Mourão-Carvalhal, I.; Forte, P. Relationships between Math Skills, Motor Skills, Physical Activity, and Obesity in Typically Developing Preschool Children. Behav. Sci. 2023, 13, 1000. https://doi.org/10.3390/bs13121000
Flores P, Coelho E, Mourão-Carvalhal I, Forte P. Relationships between Math Skills, Motor Skills, Physical Activity, and Obesity in Typically Developing Preschool Children. Behavioral Sciences. 2023; 13(12):1000. https://doi.org/10.3390/bs13121000
Chicago/Turabian StyleFlores, Pedro, Eduarda Coelho, Isabel Mourão-Carvalhal, and Pedro Forte. 2023. "Relationships between Math Skills, Motor Skills, Physical Activity, and Obesity in Typically Developing Preschool Children" Behavioral Sciences 13, no. 12: 1000. https://doi.org/10.3390/bs13121000
APA StyleFlores, P., Coelho, E., Mourão-Carvalhal, I., & Forte, P. (2023). Relationships between Math Skills, Motor Skills, Physical Activity, and Obesity in Typically Developing Preschool Children. Behavioral Sciences, 13(12), 1000. https://doi.org/10.3390/bs13121000