The Moderating Role of the DYX1C1 Gene in the Effect of Home Supervision on Chinese Children’s Reading Achievements: Evidence from the Diathesis–Stress Model
Abstract
:1. Introduction
1.1. Home Supervision and Children’s Reading Achievements
1.2. The DYX1C1 Gene and Children’s Reading Achievements
1.3. Studies on the Interaction of Genes and Environment
1.4. The Current Study
2. Materials and Methods
2.1. Participants and Procedure
2.2. Measures
2.2.1. Home Supervision
2.2.2. Reading Achievements
2.2.3. Control Variables
2.2.4. DNA Extraction
2.3. Statistical Analyses
3. Results
3.1. Descriptive Results
3.2. Exploratory Analysis
3.3. Confirmatory Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiménez-Pérez, E. Comprensión Lectora vs. Competencia Lectora: Qué Son Y Qué Relación Existe Entre Ellas. Investig. Sobre Lect. 2014, 1, 65–74. [Google Scholar] [CrossRef]
- Eklund, K.; Torppa, M.; Sulkunen, S.; Niemi, P.; Ahonen, T. Early Cognitive Predictors of PISA Reading in Children with and without Family Risk for Dyslexia. Learn. Individ. Differ. 2018, 64, 94–103. [Google Scholar] [CrossRef]
- Smith, M.C.; Mikulecky, L.; Kibby, M.W.; Dreher, M.J.; Dole, J.A. What Will Be the Demands of Literacy in the Workplace in the next Millennium? Read. Res. Q. 2000, 35, 378–383. [Google Scholar] [CrossRef]
- Rogiers, A.; Van Keer, H.; Merchie, E. The Profile of the Skilled Reader: An Investigation into the Role of Reading Enjoyment and Student Characteristics. Int. J. Educ. Res. 2020, 99, 101512. [Google Scholar] [CrossRef]
- Ding, H.; Homer, M. Interpreting Mathematics Performance in PISA: Taking Account of Reading Performance. Int. J. Educ. Res. 2020, 102, 101566. [Google Scholar] [CrossRef]
- Shu, H.; Li, W.; Ku, Y.; Anderson, R.; Wu, X.; Zhang, H.; Xuan, Y. The Role of Home Literacy Environment in Children’s Reading Development. Psychol. Sci. 2002, 25, 136–139. [Google Scholar]
- Farkas, G. Human Capital or Cultural Capital? Ethnicity and Poverty Groups in an Urban School District; Aldine de Gruyter: New York, NY, USA, 1996. [Google Scholar]
- Khine, M.S.; Fraser, B.J.; Afari, E.; Liu, Y. Language Learning Environments and Reading Achievement among Students in China: Evidence from PISA 2018 Data. Learn. Environ. Res. 2022, 26, 31–50. [Google Scholar] [CrossRef]
- Gao, J. A Study on Enhancing the Effectiveness of Extracurricular Reading in Late Primary School through Family-School Collaboration. Contemp. Fam. Educ. 2023, 32–35. [Google Scholar]
- Zhang, S. Exploring the Path of Implementing Family-School Collaboration in Reading Instruction for Upper Primary Grades. Contemp. Fam. Educ. 2023, 46–48. [Google Scholar]
- Marjoribanks, K. Environments, Adolescents’ Aspirations and Young Adults’ Status Attainment. Educ. Stud. 1989, 15, 155–164. [Google Scholar] [CrossRef]
- Mercy, J.A.; Steelman, L.C. Familial Influence on the Intellectual Attainment of Children. Am. Sociol. Rev. 1982, 47, 532. [Google Scholar] [CrossRef]
- Crouter, A.C.; MacDermid, S.M.; McHale, S.M.; Perry-Jenkins, M. Parental Monitoring and Perceptions of Children’s School Performance and Conduct in Dual- and Single-Earner Families. Dev. Psychol. 1990, 26, 649–657. [Google Scholar] [CrossRef]
- Kurdek, L.A.; Fine, M.A.; Sinclair, R.J. School Adjustment in Sixth Graders: Parenting Transitions, Family Climate, and Peer Norm Effects. Child Dev. 1995, 66, 430. [Google Scholar] [CrossRef] [PubMed]
- Kegel, C.A.T.; Bus, A.G.; van IJzendoorn, M.H. Differential Susceptibility in Early Literacy Instruction through Computer Games: The Role of the Dopamine D4 Receptor Gene (DRD4). Mind Brain Educ. 2011, 5, 71–78. [Google Scholar] [CrossRef]
- Mascheretti, S.; Bureau, A.; Battaglia, M.; Simone, D.; Quadrelli, E.; Croteau, J.; Cellino, M.R.; Giorda, R.; Beri, S.; Maziade, M.; et al. An Assessment of Gene-By-Environment Interactions in Developmental Dyslexia-Related Phenotypes. Genes Brain Behav. 2012, 12, 47–55. [Google Scholar] [CrossRef]
- Plak, R.D.; Merkelbach, I.; Kegel, C.A.T.; van IJzendoorn, M.H.; Bus, A.G. Brief Computer Interventions Enhance Emergent Academic Skills in Susceptible Children: A Gene-By-Environment Experiment. Learn. Instr. 2016, 45, 1–8. [Google Scholar] [CrossRef]
- Shi, B. Gene-Environment Interaction in the Etiology of Reading and Phnological Processing Ability. Master’s Thesis, Beijing Normal University, Beijing, China, 2011. [Google Scholar]
- Yu, S.; Chen, B.; Levesque-Bristol, C.; Vansteenkiste, M. Chinese Education Examined via the Lens of Self-Determination. Educ. Psychol. Rev. 2016, 30, 177–214. [Google Scholar] [CrossRef]
- Guo, X.; Li, J.; Niu, Y.; Luo, L. The Relationship between Filial Piety and the Academic Achievement and Subjective Wellbeing of Chinese Early Adolescents: The Moderated Mediation Effect of Educational Expectations. Front. Psychol. 2022, 13, 747296. [Google Scholar] [CrossRef]
- Dishion, T.J.; McMahon, R.J. Parental Monitoring and the Prevention of Child and Adolescent Problem Behavior: A Conceptual and Empirical Formulation. Clin. Child Fam. Psychol. Rev. 1998, 1, 61–75. [Google Scholar] [CrossRef]
- Fan, X.; Chen, M. Parental Involvement and Students’ Academic Achievement: A Meta-Analysis. Educ. Psychol. Rev. 2001, 13, 1–22. [Google Scholar] [CrossRef]
- Top, N. Social-Emotional Skills, Parental Monitoring, and Behavioral and Academic Outcomes in 5th to 8th Grade Students: A Longitudinal Study on Character Development. Doctoral Dissertation, Texas A&M University, College Station, TX, USA, 2015. [Google Scholar]
- Jeynes, W. A Meta-Analysis of the Efficacy of Different Types of Parental Involvement Programs for Urban Students. Urban Educ. 2012, 47, 706–742. [Google Scholar] [CrossRef]
- Guo, X.; Lv, B.; Zhou, H.; Liu, C.; Liu, J.; Jiang, K.; Luo, L. Gender Differences in How Family Income and Parental Education Relate to Reading Achievement in China: The Mediating Role of Parental Expectation and Parental Involvement. Front. Psychol. 2018, 9, 783. [Google Scholar] [CrossRef] [PubMed]
- McNeal, R.B. Differential Effects of Parental Involvement on Cognitive and Behavioral Outcomes by Socioeconomic Status. J. Socio-Econ. 2001, 30, 171–179. [Google Scholar] [CrossRef]
- Graves, S.L.; Brown Wright, L. Parent Involvement at School Entry: A National Examination of Group Differences and Achievement. Sch. Psychol. Int. 2011, 32, 35–48. [Google Scholar] [CrossRef]
- Jeynes, W.H. The Relationship between Parental Involvement and Urban Secondary School Student Academic Achievement. Urban Educ. 2007, 42, 82–110. [Google Scholar] [CrossRef]
- Tan, C.Y.; Lyu, M.; Peng, B. Academic Benefits from Parental Involvement Are Stratified by Parental Socioeconomic Status: A Meta-Analysis. Parenting 2020, 20, 241–287. [Google Scholar] [CrossRef]
- Hart, S.A.; Petrill, S.A.; Kamp Dush, C.M. Genetic Influences on Language, Reading, and Mathematics Skills in a National Sample: An Analysis Using the National Longitudinal Survey of Youth. Lang. Speech Hear. Serv. Sch. 2010, 41, 118–128. [Google Scholar] [CrossRef]
- Xie, X.; Shao, S.; Song, R. Progress in Researches on Effects of Gene, Environment and Gene-Environment Interaction on Developmental Dyslexia. Chin. J. Public Health 2018, 35, 780–785. [Google Scholar] [CrossRef]
- Xie, F. The Effect of Gene and Family Cultural Capital in Children’s Reading Ability and Mathematical Ability. Master’s Thesis, Southwest University, Chongqing, China, 2017. [Google Scholar]
- Taipale, M.; Kaminen, N.; Nopola-Hemmi, J.; Haltia, T.; Myllyluoma, B.; Lyytinen, H.; Muller, K.; Kaaranen, M.; Lindsberg, P.J.; Hannula-Jouppi, K.; et al. A Candidate Gene for Developmental Dyslexia Encodes a Nuclear Tetratricopeptide Repeat Domain Protein Dynamically Regulated in Brain. Proc. Natl. Acad. Sci. USA 2003, 100, 11553–11558. [Google Scholar] [CrossRef]
- Lim, C.K.P.; Ho, C.S.H.; Chou, C.H.N.; Waye, M.M.Y. Association of the Rs3743205 Variant of DYX1C1 with Dyslexia in Chinese Children. Behav. Brain Funct. 2011, 7, 16. [Google Scholar] [CrossRef]
- Paracchini, S.; Ang, Q.W.; Stanley, F.J.; Monaco, A.P.; Pennell, C.E.; Whitehouse, A.J.O. Analysis of Dyslexia Candidate Genes in the Raine Cohort Representing the General Australian Population. Genes Brain Behav. 2010, 10, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Wigg, K.; Couto, J.M.; Feng, Y.; Anderson, B.; Cate-Carter, T.; Macciardi, F.; Tannock, R.; Lovett, M.W.; Humphries, T.; Barr, C.L. Support for EKN1 as the Susceptibility Locus for Dyslexia on 15q21. Mol. Psychiatry 2004, 9, 1111–1121. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, J.; Tardif, T.; Burmeister, M.; Villafuerte, S.M.; McBride-Chang, C.; Li, H.; Shi, B.; Liang, W.; Zhang, Z.; et al. Association of the DYX1C1 Dyslexia Susceptibility Gene with Orthography in the Chinese Population. PLoS ONE 2012, 7, e42969. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cui, G.; Zhao, A.; Liu, D.; Shen, L.; Li, D. Genome-Wide Association Studies on the Developmental Dyslexia Children. J. Hyg. Res. 2015, 44, 768–770. [Google Scholar]
- Rosenthal, D. A Suggested Conceptual Framework. In The Genain Quadruplets: A Case Study and Theoretical Analysis of Heredity and Environment in Schizophrenia; Rosenthal, D., Ed.; Basic Books: New York, NY, USA, 1963; pp. 505–511. [Google Scholar]
- Sigelman, C.K.; Rider, E.A. Developmental psychopathology. In Life-Span Human Development, 6th ed.; Sigelman, C.K., Rider, E.A., Eds.; Wadsworth Publishing: Belmont, CA, USA, 2009; pp. 468–495. [Google Scholar]
- Burmeister, M.; McInnis, M.G.; Zöllner, S. Psychiatric Genetics: Progress amid Controversy. Nat. Rev. Genet. 2008, 9, 527–540. [Google Scholar] [CrossRef] [PubMed]
- Belsky, J. Theory Testing, Effect-Size Evaluation, and Differential Susceptibility to Rearing Influence: The Case of Mothering and Attachment. Child Dev. 1997, 68, 598–600. [Google Scholar] [CrossRef]
- Ellis, B.J.; Boyce, W.T.; Belsky, J.; Bakermans-Kranenburg, M.J.; van Ijzendoorn, M.H. Differential Susceptibility to the Environment: An Evolutionary-Neurodevelopmental Theory. Dev. Psychopathol. 2011, 23, 7–28. [Google Scholar] [CrossRef]
- Sweitzer, M.M.; Halder, I.; Flory, J.D.; Craig, A.E.; Gianaros, P.J.; Ferrell, R.E.; Manuck, S.B. Polymorphic Variation in the Dopamine D4 Receptor Predicts Delay Discounting as a Function of Childhood Socioeconomic Status: Evidence for Differential Susceptibility. Soc. Cogn. Affect. Neurosci. 2012, 8, 499–508. [Google Scholar] [CrossRef]
- Belsky, J.; Pluess, M.; Widaman, K.F. Confirmatory and Competitive Evaluation of Alternative Gene-Environment Interaction Hypotheses. J. Child Psychol. Psychiatry 2013, 54, 1135–1143. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, Q.; Cheng, C.; Wang, Z. Cumulative Genetic Score of KIAA0319 Affects Reading Ability in Chinese Children: Moderation by Parental Education and Mediation by Rapid Automatized Naming. Behav. Brain Funct. 2023, 19, 10. [Google Scholar] [CrossRef]
- Pong, S.; Hao, L.; Gardner, E. The Roles of Parenting Styles and Social Capital in the School Performance of Immigrant Asian and Hispanic Adolescents. Soc. Sci. Q. 2005, 86, 928–950. [Google Scholar] [CrossRef]
- Propper, C.; Willoughby, M.; Halpern, C.T.; Carbone, M.A.; Cox, M. Parenting Quality, DRD4, and the Prediction of Externalizing and Internalizing Behaviors in Early Childhood. Dev. Psychobiol. 2007, 49, 619–632. [Google Scholar] [CrossRef] [PubMed]
- van IJzendoorn, M.H.; Belsky, J.; Bakermans-Kranenburg, M.J. Serotonin Transporter Genotype 5HTTLPR as a Marker of Differential Susceptibility? A Meta-Analysis of Child and Adolescent Gene-By-Environment Studies. Transl. Psychiatry 2012, 2, e147. [Google Scholar] [CrossRef] [PubMed]
- Wang, M. Theory Models on Gene-Environment Interaction. Adv. Psychol. Sci. 2015, 23, 1852. [Google Scholar] [CrossRef]
- Cao, C.; Wang, M.; Ji, L.; Wei, X.; Cao, Y.; Zhang, W. The MAOA Rs6323 Polymorphism Interacts with Maternal Supportive Parenting in Predicting Adolescent Depression: Testing the Diathesis–Stress and Differential Susceptibility Hypotheses. Acta Psychol. Sin. 2016, 48, 22. [Google Scholar] [CrossRef]
- Widaman, K.F.; Helm, J.L.; Castro-Schilo, L.; Pluess, M.; Stallings, M.C.; Belsky, J. Distinguishing Ordinal and Disordinal Interactions. Psychol. Methods 2012, 17, 615–622. [Google Scholar] [CrossRef]
- Amaral, D. Parents of Adolescents: The Relationship between Parent Involvement and Parent Efficacy. Master’s Thesis, University of British Columbia, Vancouver, BC, Canada, 2003. [Google Scholar]
- Dong, Q.; Lin, C. National Children’s Study of China (NCSC) Technical Report (In Chinese); Science Press: Beijing, China, 2011. [Google Scholar]
- Gabriel, S.; Ziaugra, L.; Tabbaa, D. SNP Genotyping Using the Sequenom MassARRAY IPLEX Platform. Curr. Protoc. Hum. Genet. 2009, 60, 212. [Google Scholar] [CrossRef]
- Roisman, G.I.; Newman, D.A.; Fraley, R.C.; Haltigan, J.D.; Groh, A.M.; Haydon, K.C. Distinguishing Differential Susceptibility from Diathesis–Stress: Recommendations for Evaluating Interaction Effects. Dev. Psychopathol. 2012, 24, 389–409. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Belsky, J.; Newman, D.A.; Widaman, K.F.; Rodkin, P.; Pluess, M.; Fraley, R.C.; Berry, D.; Helm, J.L.; Roisman, G.I. Differential Susceptibility to Effects of Maternal Sensitivity? A Study of Candidate Plasticity Genes. Dev. Psychopathol. 2014, 27, 725–746. [Google Scholar] [CrossRef]
- Zhu, Y. Ethical Analysis of the Phenomenon of Excessive Competition of Education. Doctoral Dissertation, Shanghai Normal University, Shanghai, China, 2020. [Google Scholar]
- Mascheretti, S.; Bureau, A.; Trezzi, V.; Giorda, R.; Marino, C. An Assessment of Gene-By-Gene Interactions as a Tool to Unfold Missing Heritability in Dyslexia. Hum. Genet. 2015, 134, 749–760. [Google Scholar] [CrossRef]
- Rapala, M.M.; Brady, S. Reading Ability and Short-Term Memory: The Role of Phonological Processing. Read. Writ. 1990, 2, 1–25. [Google Scholar] [CrossRef]
Variable (s) | M ± SD | N | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Gender | 1.54 ± 0.50 | 745 | 1.00 | |||||||||
2. Age | 9.78 ± 0.69 | 745 | −0.06 | 1.00 | ||||||||
3. Z PE | 0.00 ± 1.00 | 745 | 0.05 | −0.04 | 1.00 | |||||||
4. Z PO | 0.00 ± 1.00 | 745 | −0.11 ** | −0.17 ** | −0.04 | 1.00 | ||||||
5. Z MI | 0.00 ± 1.00 | 745 | 0.03 | −0.02 | −0.36 ** | −0.06 | 1.00 | |||||
6. Z HS | 0.00 ± 1.00 | 745 | 0.04 | −0.01 | 0.11 ** | 0.00 | 0.11 ** | 1.00 | ||||
7. Z rs11629841 | 0.00 ± 1.00 | 745 | 0.01 | 0.08 * | 0.04 | −0.09 * | −0.00 | −0.04 | 1.00 | |||
8. Z rs3743205 | 0.00 ± 1.00 | 745 | 0.06 | 0.05 | 0.05 | −0.03 | 0.03 | −0.02 | 0.08 * | 1.00 | ||
9. Z rs8040756 | 0.00 ± 1.00 | 745 | −0.03 | −0.03 | −0.03 | 0.11 ** | −0.01 | 0.02 | −0.14 ** | −0.46 ** | 1.00 | |
10. Z RA | 0.00 ± 1.00 | 745 | 0.06 | −0.39 ** | 0.13 ** | 0.20 ** | 0.06 | 0.14 ** | −0.10 ** | −0.06 | 0.04 | 1.00 |
Variable(s) | Model 1 | Model 2 | Model 3 | |||
---|---|---|---|---|---|---|
t | t | t | ||||
Gender | 0.04 | 1.32 | 0.04 | 1.28 | 0.04 | 1.28 |
Age | −0.36 *** | −10.59 | −0.35 *** | −10.48 | −0.35 *** | −10.51 |
Z Parental education | 0.11 ** | 3.00 | 0.10 ** | 2.84 | 0.11 ** | 3.02 |
Z Parental occupation | 0.15 *** | 4.30 | 0.14 *** | 4.16 | 0.14 *** | 4.13 |
Z Monthly income | 0.03 | 0.70 | 0.01 | 0.40 | 0.01 | 0.27 |
Z Home supervision | 0.12 *** | 3.71 | 0.12 *** | 3.62 | ||
Z rs11629841 | −0.05 | −1.57 | −0.05 | −1.41 | ||
Z rs3743205 | −0.04 | −1.08 | −0.04 | −1.07 | ||
Z rs8040756 | −0.01 | −0.28 | −0.01 | −0.24 | ||
Z Home supervision × Z rs11629841 | 0.09 ** | 2.85 | ||||
Z Home supervision × Z rs3743205 | 0.01 | 0.17 | ||||
Z Home supervision × Z rs8040756 | −0.02 | −0.60 | ||||
R2 | 0.19 | 0.20 | 0.20 | |||
F | 33.71 *** | 21.14 *** | 16.79 *** | |||
R2 | 0.19 | 0.02 | 0.01 | |||
F | 33.71 *** | 4.61 *** | 3.18 * |
Parameters | Re-Parameterized Regression Model | |||||
---|---|---|---|---|---|---|
Differential Susceptibility Model | Diathesis–Stress Model | Vantage Sensitivity Model | ||||
Strong: Model a | Weak: Model b | Strong: Model c | Weak: Model d | Strong: Model e | Weak: Model f | |
B0 | 4.97 (0.50) *** | 5.01 (0.50) *** | 4.93 (0.50) *** | 5.14 (0.53) *** | 4.97 (0.53) *** | 4.42 (2.68) *** |
C | 0.39 (0.28) | 0.49 (0.39) | 1.85 (–) a | 1.85 (–) a | −4.31 (–) a | −4.31 (–) a |
95% CI of C | [−0.17, 0.94] | [−0.26, 1.25] | – a | – a | – a | – a |
B1 | 0.00 (–) a | 0.07 (0.04) * | 0.00 (–) a | 0.10 (0.04) ** | 0.00 (–) a | 0.13 (0.04) *** |
B3 | 0.31 (0.07) *** | 0.31 (0.07) *** | 0.14 (0.07) | 0.21 (0.07) *** | −0.01 (0.07) | 0.11 (0.07) |
B4 | 0.09 (0.07) | 0.08 (0.07) | 0.09 (0.07) | 0.08 (0.07) | 0.09 (0.07) | 0.08 (0.07) |
B5 | −0.52 (0.05) *** | −0.52 (0.05) *** | −0.51 (0.05) *** | −0.52 (0.05) *** | −0.52 (0.05) *** | −0.52 (0.05) *** |
B6 | 0.11 (0.04) ** | 0.10 (0.04) ** | 0.11 (0.04) ** | 0.10 (0.04) ** | 0.11 (0.04) ** | 0.10 (0.04) ** |
B7 | 0.14 (0.03) *** | 0.14 (0.03) *** | 0.14 (0.03) *** | 0.14 (0.03) *** | 0.15 (0.03) *** | 0.14 (0.03) *** |
B8 | 0.01 (0.04) | 0.01 (0.04) | 0.02 (0.04) | 0.01 (0.04) | 0.03 (0.04) | 0.01 (0.04) |
R2 | 0.210 | 0.214 | 0.201 | 0.210 | 0.186 | 0.202 |
F (df) | 32.60 (6, 738) *** | 33.71 (7, 737) *** | 24.92 (6, 738) *** | 22.33 (7, 737) *** | 23.08 (6, 738) *** | 21.51 (7, 737) *** |
F vs. b (df) | 3.94 (1, 736) * | – | 6.03 (2, 736) ** | 3.50 (1, 736) | 12.97 (2, 736) *** | 10.79 (1, 736) ** |
AIC | −162.157 | −164.268 | −154.163 | −160.730 | −140.467 | −153.428 |
BIC | −129.863 | −127.361 | −121.870 | −123.823 | −108.173 | −116.521 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, Y.; Cai, H.; Zhang, L. The Moderating Role of the DYX1C1 Gene in the Effect of Home Supervision on Chinese Children’s Reading Achievements: Evidence from the Diathesis–Stress Model. Behav. Sci. 2023, 13, 891. https://doi.org/10.3390/bs13110891
Niu Y, Cai H, Zhang L. The Moderating Role of the DYX1C1 Gene in the Effect of Home Supervision on Chinese Children’s Reading Achievements: Evidence from the Diathesis–Stress Model. Behavioral Sciences. 2023; 13(11):891. https://doi.org/10.3390/bs13110891
Chicago/Turabian StyleNiu, Yingnan, He Cai, and Li Zhang. 2023. "The Moderating Role of the DYX1C1 Gene in the Effect of Home Supervision on Chinese Children’s Reading Achievements: Evidence from the Diathesis–Stress Model" Behavioral Sciences 13, no. 11: 891. https://doi.org/10.3390/bs13110891
APA StyleNiu, Y., Cai, H., & Zhang, L. (2023). The Moderating Role of the DYX1C1 Gene in the Effect of Home Supervision on Chinese Children’s Reading Achievements: Evidence from the Diathesis–Stress Model. Behavioral Sciences, 13(11), 891. https://doi.org/10.3390/bs13110891