A Dual-Process Model Applied to Two Health-Promoting Nutrition Behaviours
Abstract
:1. Introduction
1.1. The Role of Non-Consciousness, Automatic Processes in Determining Behaviour
1.2. The Current Study and Hypotheses
2. Materials and Methods
2.1. Participants
2.2. Design and Procedure
2.3. Measures
2.3.1. Target Behaviours
2.3.2. Intention
2.3.3. Habit
2.3.4. Behaviour
2.4. Data-Analysis
3. Results
3.1. Participants and Attrition Analysis
3.2. Preliminary Analyses
3.3. Model Effects
3.4. Eating the Recommended Serves of Fruit and Vegetables
4. Discussion
Strengths, Limitations, and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variable | Item | Scale |
---|---|---|
Intention | It is likely I will [behaviour] I intend to [behaviour] I expect to [behaviour] | 1 = “strongly disagree”, 7 = “strongly agree” 1 = “strongly disagree”, 7 = “strongly agree” 1 = “strongly disagree”, 7 = “strongly agree” |
Behaviour directed habit | [behaviour] is something I do automatically [behaviour] is something I do without having to consciously remember [behaviour] is something I do without thinking [behaviour] is something I start doing before I realise I’m doing it | 1 = “strongly disagree”, 7 = “strongly agree” 1 = “strongly disagree”, 7 = “strongly agree” 1 = “strongly disagree”, 7 = “strongly agree” 1 = “strongly disagree”, 7 = “strongly agree” |
Opposing behaviour habit | [opposing behaviour] is something I do automatically [opposing behaviour] is something I do without having to consciously remember [opposing behaviour] is something I do without thinking [opposing behaviour] is something I start doing before I realise I’m doing it | 1 = “strongly disagree”, 7 = “strongly agree” 1 = “strongly disagree”, 7 = “strongly agree” 1 = “strongly disagree”, 7 = “strongly agree” 1 = “strongly disagree”, 7 = “strongly agree” |
Behaviour (T2) | Think about the last 7 days, in general, how often did you do [behaviour] Think about the last 7 days, in general, on how many days did you do [behaviour] | 1 = “never, 7 = “always” 0 = “0/1 day”, 7 = “7 days” |
Appendix B
Variable | School Sample | University Sample | ||
---|---|---|---|---|
Time 1 | Time 2 | Time 1 | Time 2 | |
Participants, N | 266 | 191 | 340 | 223 |
Age, M years (SD) | 23.05 (7.52) | 23.47 (7.87) | 19.22 (1.88) | 19.33 (1.96) |
Gender (%): | ||||
Male | 53.00 | 54.50 | 26.80 | 25.10 |
Female | 45.90 | 44.00 | 73.20 | 74.90 |
Other identified/non-disclosed | 1.10 | 1.50 | 0.00 | 0.00 |
Ethnicity (%): | ||||
Caucasian | 72.90 | 71.20 | 79.40 | 78.50 |
Other | 22.60 | 24.10 | 20.30 | 21.50 |
Missing | 4.50 | 4.70 | 0.30 | 0.00 |
Variable | School Sample | University Sample | ||||||
---|---|---|---|---|---|---|---|---|
Time 1 | Time 2 | Time 1 | Time 2 | |||||
FV | SSB | FV | SSB | FV | SSB | FV | SSB | |
Intention | 5.79 (1.30) | 5.14 (1.57) | 587 (1.24) | 5.10 (1.57) | 5.38 (1.40) | 5.32 (1.59) | 5.28 (1.44) | 5.43 (1.57) |
Behaviour directed habit | 5.20 (1.62) | 4.48 (1.59) | 5.30 (1.59) | 4.45 (1.61) | 4.36 (1.76) | 4.34 (1.88) | 4.22 (1.76) | 4.39 (1.95) |
Opposing behaviour habit | 2.78 (1.83) | 2.96 (1.65) | 2.72 (1.85) | 2.94 (1.67) | 2.81 (1.68) | 3.50 (1.85) | 2.82 (1.68) | 3.40 (1.89) |
T2 behaviour | – | – | 5.62 (1.50) | 4.73 (1.72) | – | – | 4.41 (1.67) | 4.22 (1.84) |
Past behaviour | 5.45 (1.45) | 4.49 (1.71) | 5.57 (1.40) | 4.42 (1.72) | 4.36 (1.64) | 3.95 (1.75) | 4.26 (1.69) | 4.15 (1.79) |
Appendix C
ρ | AVE | R2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|---|---|---|
1. Intention | 0.962 | 0.895 | 0.516 | 0.946 | |||||||
0.953 | 0.872 | 0.259 | 0.934 | ||||||||
0.967 | 0.908 | 0.517 | 0.953 | ||||||||
0.973 | 0.923 | 0.357 | 0.961 | ||||||||
2. Behaviour directed habit | 0.945 | 0.859 | 0.541 | 0.750 *** | 0.927 | ||||||
0.906 | 0.709 | 0.198 | 0.408 *** | 0.842 | |||||||
0.980 | 0.944 | 0.581 | 0.662 *** | 0.972 | |||||||
0.978 | 0.918 | 0.276 | 0.588 *** | 0.958 | |||||||
3. Opposing behaviour habit | 0.981 | 0.946 | 0.206 | −0.333* ** | −0.428 *** | 0.973 | |||||
0.952 | 0.832 | 0.150 | −0.403 *** | −0.284 *** | 0.912 | ||||||
0.977 | 0.914 | 0.213 | −0.463 *** | −0.463 *** | 0.956 | ||||||
0.984 | 0.941 | 0.212 | −0.582 *** | −0.618 *** | 0.970 | ||||||
4. Past behaviour | 0.947 | 0.900 | – | 0.636 *** | 0.727 *** | −0.443 *** | 0.948 | ||||
0.875 | 0.777 | – | 0.463 *** | 0.402 *** | −0.378 *** | 0.882 | |||||
0.970 | 0.943 | – | 0.694 *** | 0.753 *** | −0.445 *** | 0.971 | |||||
0.907 | 0.830 | – | 0.576 *** | 0.504 *** | −0.417 *** | 0.911 | |||||
5. T2 Behaviour | 0.979 | 0.960 | 0.795 | 0.752 *** | 0.680 *** | −0.287*** | 0.654 *** | 0.980 | |||
0.897 | 0.812 | 0.405 | 0.543 *** | 0.233 ** | −0.378 *** | 0.492 *** | 0.901 | ||||
0.976 | 0.954 | 0.754 | 0.704 *** | 0.713 *** | −0.466*** | 0.826 *** | 0.977 | ||||
0.934 | 0.876 | 0.330 | 0.523 *** | 0.416 *** | −0.347 *** | 0.514 *** | 0.936 | ||||
6. Age | – | – | – | 0.143 * | 0.111 | −0.006 | 0.060 | 0.148 * | 10.000 | ||
– | – | – | 0.103 | −0.032 | 0.047 | −0.001 | 0.153 * | 10.000 | |||
– | – | – | 0.022 | −0.065 | −0.052 | −0.038 | 0.035 | 1.000 | |||
– | – | – | 0.190 ** | 0.179 ** | −0.178 ** | 0.152 * | 0.167 * | 1.000 | |||
7. Gender | – | – | – | 0.145 * | 0.068 | −0.035 | 0.053 | 0.119 | 0.115 | 1.000 | |
– | – | – | 0.117 | 0.104 | −0.039 | 0.091 | 0.063 | 0.115 | 10.000 | ||
– | – | – | 0.096 | 0.061 | −0.061 | 0.011 | 0.056 | −0.081 | 1.000 | ||
– | – | – | −0.008 | −0.013 | 0.055 | −0.008 | 0.042 | −0.081 | 1.000 | ||
8. Ethnicity | – | – | – | −0.128 | −0.039 | −0.066 | −0.009 | −0.022 | −0.039 | 0.032 | 1.000 |
– | – | – | −0.073 | −0.002 | 0.044 | −152 * | −0.110 | −0.039 | 0.032 | 1.000 | |
– | – | – | −0.038 | 0.091 | 0.021 | 0.055 | 0.036 | −0.069 | 0.001 | 1.000 | |
– | – | – | −0.040 | −0.069 | 0.081 | −0.123 | −0.133 * | −0.069 | 0.001 | 1.000 |
Appendix D
References
- WHO. Global Action Plan for the Prevention and Control of Noncommunicable Diseases 2013–2020; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Smithers, L.G.; Golley, R.; Brazionis, L.; Lynch, J.W. Characterizing whole diets of young children from developed countries and the association between diet and health: A systematic review. Nutr. Rev. 2011, 69, 449–467. [Google Scholar] [CrossRef] [Green Version]
- Mikkilä, V.; Räsänen, L.; Raitakari, O.T.; Pietinen, P.; Viikari, J. Consistent dietary patterns identified from childhood to adulthood: The Cardiovascular Risk in Young Finns Study. Br. J. Nutr. 2005, 93, 923–931. [Google Scholar] [CrossRef]
- Ajzen, I. The Theory of Planned Behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Rigby, R.R.; Mitchell, L.J.; Hamilton, K.; Williams, L.T. The Use of Behavior Change Theories in Dietetics Practice in Primary Health Care: A Systematic Review of Randomized Controlled Trials. J. Acad. Nutr. Diet. 2020, 120, 1172–1197. [Google Scholar] [CrossRef]
- Hagger, M.S.; Cameron, L.D.; Hamilton, K.; Hankonen, N.; Lintunen, T. The Handbook of Behavior Change; Cambridge University Press (CUP): New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Brown, D.; Hagger, M.; Morrissey, S.; Hamilton, K. Predicting fruit and vegetable consumption in long-haul heavy goods vehicle drivers: Application of a multi-theory, dual-phase model and the contribution of past behaviour. Appetite 2018, 121, 326–336. [Google Scholar] [CrossRef] [Green Version]
- McKee, M.; Mullan, B.; Mergelsberg, E.; Gardner, B.; Hamilton, K.; Slabbert, A.; Kothe, E. Predicting what mothers feed their preschoolers: Guided by an extended theory of planned behaviour. Appetite 2019, 137, 250–258. [Google Scholar] [CrossRef] [Green Version]
- Mullan, B.; Wong, C.; Kothe, E. Predicting adolescent breakfast consumption in the UK and Australia using an extended theory of planned behaviour. Appetite 2013, 62, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Phipps, D.J.; Hagger, M.S.; Hamilton, K. Predicting limiting ‘free sugar’ consumption using an integrated model of health behavior. Appetite 2020, 150, 104668. [Google Scholar] [CrossRef]
- McEachan, R.R.C.; Conner, M.; Taylor, N.; Lawton, R. Prospective prediction of health-related behaviours with the Theory of Planned Behaviour: A meta-analysis. Health Psychol. Rev. 2011, 5, 97–144. [Google Scholar] [CrossRef]
- Guillaumie, L.; Godin, G.; Vézina-Im, L.-A. Psychosocial determinants of fruit and vegetable intake in adult population: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 12. [Google Scholar] [CrossRef] [Green Version]
- Albani, V.; Butler, L.T.; Traill, W.B.; Kennedy, O.B. Fruit and vegetable intake: Change with age across childhood and adolescence. Br. J. Nutr. 2017, 117, 759–765. [Google Scholar] [CrossRef] [Green Version]
- Brown, D.J.; Hagger, M.S.; Hamilton, K. The mediating role of constructs representing reasoned-action and automatic processes on the past behavior-future behavior relationship. Soc. Sci. Med. 2020, 258, 113085. [Google Scholar] [CrossRef]
- Hagger, M.S.; Trost, N.; Keech, J.J.; Chan, D.K.C.; Hamilton, K. Predicting sugar consumption: Application of an integrated dual-process, dual-phase model. Appetite 2017, 116, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Hannan, T.E.; Moffitt, R.L.; Neumann, D.L.; Kemps, E. Implicit approach–avoidance associations predict leisure-time exercise independently of explicit exercise motivation. Sport Exerc. Perform. Psychol. 2019, 8, 210–222. [Google Scholar] [CrossRef]
- Rothman, A.J.; Sheeran, P.; Wood, W. Reflective and Automatic Processes in the Initiation and Maintenance of Dietary Change. Ann. Behav. Med. 2009, 38, 4–17. [Google Scholar] [CrossRef]
- Strack, F.; Deutsch, R. Reflective and Impulsive Determinants of Social Behavior. Pers. Soc. Psychol. Rev. 2004, 8, 220–247. [Google Scholar] [CrossRef] [Green Version]
- Triandis, H.C. Interpersonal Behavior; Brooks/Cole Pub. Co.: Pacific Grove, CA, USA, 1997. [Google Scholar]
- Kahneman, D. Thinking, Fast and Slow; Macmillan: New York, NY, USA, 2011. [Google Scholar]
- Kahneman, D.; Frederick, S. Representativeness Revisited: Attribute Substitution in Intuitive Judgment. In Heuristics and Biases Psychology of Intuitive Judgment; Cambridge University Press: Cambridge, UK, 2002; Volume 49, pp. 49–81. [Google Scholar] [CrossRef] [Green Version]
- Hagger, M.S. Redefining habits and linking habits with other implicit processes. Psychol. Sport Exerc. 2020, 46, 101606. [Google Scholar] [CrossRef]
- Gardner, B. A review and analysis of the use of ‘habit’ in understanding, predicting and influencing health-related behaviour. Health Psychol. Rev. 2015, 9, 277–295. [Google Scholar] [CrossRef] [Green Version]
- Ouellette, J.A.; Wood, W. Habit and intention in everyday life: The multiple processes by which past behavior predicts future behavior. Psychol. Bull. 1998, 124, 54–74. [Google Scholar] [CrossRef]
- Hamilton, K.; Kothe, E.J.; Mullan, B.; Spinks, T. The mediating and moderating role of planning on mothers’ decisions for early childhood dietary behaviours. Psychol. Health 2017, 32, 1–16. [Google Scholar] [CrossRef]
- Phillips, L.A.; Johnson, M.; More, K.R. Experimental test of a planning intervention for forming a ‘higher order’ health-habit. Psychol. Health 2019, 34, 1328–1346. [Google Scholar] [CrossRef]
- Verplanken, B.; Aarts, H.; Knippenberg, A.; Knippenberg, C. Attitude Versus General Habit: Antecedents of Travel Mode Choice 1. J. Appl. Soc. Psychol. 1994, 24, 285–300. [Google Scholar] [CrossRef]
- Wood, W.; Tam, L.; Witt, M.G. Changing circumstances, disrupting habits. J. Pers. Soc. Psychol. 2005, 88, 918–933. [Google Scholar] [CrossRef] [Green Version]
- Tak, N.I.; Te Velde, S.J.; Oenema, A.; Van der Horst, K.; Timperio, A.; Crawford, D.; Brug, J. The association between home environmental variables and soft drink consumption among adolescents. Exploration of mediation by individual cognitions and habit strength. Appetite 2011, 56, 503–510. [Google Scholar] [CrossRef]
- Verplanken, B.; Wood, W. Interventions to Break and Create Consumer Habits. J. Public Policy Mark. 2006, 25, 90–103. [Google Scholar] [CrossRef] [Green Version]
- Gardner, B.; De Bruijn, G.-J.; Lally, P. A Systematic Review and Meta-analysis of Applications of the Self-Report Habit Index to Nutrition and Physical Activity Behaviours. Ann. Behav. Med. 2011, 42, 174–187. [Google Scholar] [CrossRef]
- de Bruijn, G.-J.; Rhodes, R.E.; van Osch, L. Does action planning moderate the intention-habit interaction in the exercise domain? A three-way interaction analysis investigation. J. Behav. Med. 2012, 35, 509–519. [Google Scholar] [CrossRef] [Green Version]
- Murtagh, S.; Rowe, D.A.; Elliott, M.A.; McMinn, D.; Nelson, N.M. Predicting active school travel: The role of planned behavior and habit strength. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 65. [Google Scholar] [CrossRef] [Green Version]
- Norman, P. The theory of planned behavior and binge drinking among undergraduate students: Assessing the impact of habit strength. Addict. Behav. 2011, 36, 502–507. [Google Scholar] [CrossRef]
- Norman, P.; Cooper, Y. The theory of planned behaviour and breast self-examination: Assessing the impact of past behaviour, context stability and habit strength. Psychol. Health 2011, 26, 1156–1172. [Google Scholar] [CrossRef]
- Gardner, B.; Corbridge, S.; McGowan, L. Do habits always override intentions? Pitting unhealthy snacking habits against snack-avoidance intentions. BMC Psychol. 2015, 3, 8. [Google Scholar] [CrossRef] [Green Version]
- Richetin, J.; Conner, M.; Perugini, M. Not Doing Is Not the Opposite of Doing: Implications for Attitudinal Models of Behavioral Prediction. Pers. Soc. Psychol. Bull. 2011, 37, 40–54. [Google Scholar] [CrossRef]
- Gardner, B.; Tang, V. Reflecting on non-reflective action: An exploratory think-aloud study of self-report habit measures. Br. J. Health Psychol. 2014, 19, 258–273. [Google Scholar] [CrossRef] [Green Version]
- Lally, P.; Gardner, B. Promoting habit formation. Health Psychol. Rev. 2013, 7 (Suppl. S1), S137–S158. [Google Scholar] [CrossRef]
- Martiny-Huenger, T.; Martiny, S.E.; Parks-Stamm, E.J.; Pfeiffer, E.; Gollwitzer, P.M. From conscious thought to automatic action: A simulation account of action planning. J. Exp. Psychol. Gen. 2017, 146, 1513–1525. [Google Scholar] [CrossRef]
- De Vet, E.; Stok, F.M.; De Wit, J.B.; De Ridder, D.T. The habitual nature of unhealthy snacking: How powerful are habits in adolescence? Appetite 2015, 95, 182–187. [Google Scholar] [CrossRef]
- Holland, R.W.; Aarts, H.; Langendam, D. Breaking and creating habits on the working floor: A field-experiment on the power of implementation intentions. J. Exp. Soc. Psychol. 2006, 42, 776–783. [Google Scholar] [CrossRef]
- Verhoeven, A.A.C.; Adriaanse, M.A.; de Ridder, D.T.D.; de Vet, E.; Fennis, B.M. Less is more: The effect of multiple implementation intentions targeting unhealthy snacking habits. Eur. J. Soc. Psychol. 2013, 43, 344–354. [Google Scholar] [CrossRef]
- Hagger, M.S.; Chan, D.K.C.; Protogerou, C.; Chatzisarantis, N. Using meta-analytic path analysis to test theoretical predictions in health behavior: An illustration based on meta-analyses of the theory of planned behavior. Prev. Med. 2016, 89, 154–161. [Google Scholar] [CrossRef] [Green Version]
- Hagger, M.S.; Polet, J.; Lintunen, T. The reasoned action approach applied to health behavior: Role of past behavior and tests of some key moderators using meta-analytic structural equation modeling. Soc. Sci. Med. 2018, 213, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Norman, P.; Conner, M.; Bell, R. The Theory of Planned Behaviour and exercise: Evidence for the moderating role of past behaviour. Br. J. Health Psychol. 2000, 5, 249–261. [Google Scholar] [CrossRef]
- Norman, P.; Conner, M. The theory of planned behaviour and binge drinking: Assessing the moderating role of past behaviour within the theory of planned behaviour. Br. J. Health Psychol. 2006, 11, 55–70. [Google Scholar] [CrossRef]
- Australian Curriculum, Assessment and Reporting Authority. About ICSEA. 2015. Available online: http://docs.acara.edu.au/resources/About_icsea_2014.pdf (accessed on 1 December 2019).
- NHMRC. Australian Dietary Guidelines; National Health and Medical Research Council: Canberra, Australia, 2013.
- Gardner, B.; Abraham, C.; Lally, P.; De Bruijn, G.-J. Towards parsimony in habit measurement: Testing the convergent and predictive validity of an automaticity subscale of the Self-Report Habit Index. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 102. [Google Scholar] [CrossRef] [Green Version]
- Verplanken, B.; Orbell, S. Reflections on Past Behavior: A Self-Report Index of Habit Strength1. J. Appl. Soc. Psychol. 2003, 33, 1313–1330. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sinkovics, R.R. The use of partial least squares path modeling in international marketing. In New Challenges to International Marketing; Emerald Group Publishing Limited: Bradford, UK, 2009; pp. 277–319. [Google Scholar]
- Kock, N. WarpPLS User Manual: Version 6.0; ScriptWarp Systems: Laredo, TX, USA, 2018. [Google Scholar]
- Gollwitzer, P.M. Implementation intentions: Strong effects of simple plans. Am. Psychol. 1999, 54, 493. [Google Scholar] [CrossRef]
- Gardner, B.D.; Phillips, L.A.; Judah, G. Habitual instigation and habitual execution: Definition, measurement, and effects on behaviour frequency. Br. J. Health Psychol. 2016, 21, 613–630. [Google Scholar] [CrossRef]
- Lally, P.; van Jaarsveld, C.H.M.; Potts, H.W.W.; Wardle, J. How are habits formed: Modelling habit formation in the real world. Eur. J. Soc. Psychol. 2010, 40, 998–1009. [Google Scholar] [CrossRef] [Green Version]
- Hagger, M.S.; Gucciardi, D.F.; Turrell, A.S.; Hamilton, K. Self-control and health-related behaviour: The role of implicit self-control, trait self-control, and lay beliefs in self-control. Br. J. Health Psychol. 2019, 24, 764–786. [Google Scholar] [CrossRef]
- Hagger, M.S.; Hankonen, N.; Kangro, E.; Lintunen, T.; Pagaduan, J.; Polet, J.; Ries, F.; Hamilton, K. Trait Self-Control, Social Cognition Constructs, and Intentions: Correlational Evidence for Mediation and Moderation Effects in Diverse Health Behaviours. Appl. Psychol. Health Well Being 2019, 11, 407–437. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, K.; Gibbs, I.; Keech, J.J.; Hagger, M.S. Reasoned and implicit processes in heavy episodic drinking: An integrated dual-process model. Br. J. Health Psychol. 2019, 25, 189–209. [Google Scholar] [CrossRef]
- McDaniel, M.A.; Einstein, G.O. Strategic and automatic processes in prospective memory retrieval: A multiprocess framework. Appl. Cogn. Psychol. 2000, 14, S127–S144. [Google Scholar] [CrossRef]
- Danner, U.N.; Aarts, H.; de Vries, N.K. Habit vs. intention in the prediction of future behaviour: The role of frequency, context stability and mental accessibility of past behaviour. Br. J. Soc. Psychol. 2008, 47, 245–265. [Google Scholar] [CrossRef] [Green Version]
- Webb, T.L.; Sheeran, P.; Luszczynska, A. Planning to break unwanted habits: Habit strength moderates implementation intention effects on behaviour change. Br. J. Soc. Psychol. 2009, 48, 507–523. [Google Scholar] [CrossRef]
- Gardner, B.; Rebar, A.L.; Lally, P.; Hagger, M.S.; Cameron, L.D.; Hamilton, K.; Hankonen, N.; Lintunen, T. Habit Interventions. In The Handbook of Behavior Change; Cambridge University Press (CUP): New York, NY, USA, 2020; pp. 599–616. [Google Scholar]
- Luszczynska, A.; de Wit, J.B.F.; de Vet, E.; Januszewicz, A.; Liszewska, N.; Johnson, F.; Pratt, M.; Gaspar, T.; de Matos, M.G.; Stok, F.M. At-Home Environment, Out-of-Home Environment, Snacks and Sweetened Beverages Intake in Preadolescence, Early and Mid-Adolescence: The Interplay Between Environment and Self-Regulation. J. Youth Adolesc. 2013, 42, 1873–1883. [Google Scholar] [CrossRef]
- Raffaelli, M.; Crockett, L.J.; Shen, Y.-L. Developmental Stability and Change in Self-Regulation From Childhood to Adolescence. J. Genet. Psychol. 2005, 166, 54–75. [Google Scholar] [CrossRef] [Green Version]
- Adriaanse, M.A.; Kroese, F.M.; Gillebaart, M.; De Ridder, D.T.D. Effortless inhibition: Habit mediates the relation between self-control and unhealthy snack consumption. Front. Psychol. 2014, 5, 444. [Google Scholar] [CrossRef] [Green Version]
- Orbell, S.; Verplanken, B. The automatic component of habit in health behavior: Habit as cue-contingent automaticity. Health Psychol. 2010, 29, 374–383. [Google Scholar] [CrossRef]
- Quinn, J.M.; Pascoe, A.; Wood, W.; Neal, D.T. Can’t Control Yourself? Monitor Those Bad Habits. Pers. Soc. Psychol. Bull. 2010, 36, 499–511. [Google Scholar] [CrossRef]
- Evans, J.S.B.T. Dual-Processing Accounts of Reasoning, Judgment, and Social Cognition. Annu. Rev. Psychol. 2008, 59, 255–278. [Google Scholar] [CrossRef] [Green Version]
- Gardner, B.; Arden, M.; Brown, D.; Eves, F.; Green, J.; Hamilton, K.; Lally, P. Developing habit-based health behaviour change interventions: Twenty-one questions to guide future research. Psychol. Health 2021, 1–23. [Google Scholar] [CrossRef]
- Hagger, M.S.; Rebar, A.L.; Mullan, B.; Lipp, O.; Chatzisarantis, N. The subjective experience of habit captured by self-report indexes may lead to inaccuracies in the measurement of habitual action. Health Psychol. Rev. 2015, 9, 296–302. [Google Scholar] [CrossRef] [Green Version]
- Labrecque, J.S.; Wood, W. What measures of habit strength to use? Comment on Gardner (2015). Health Psychol. Rev. 2015, 9, 303–310. [Google Scholar] [CrossRef]
- Rebar, A.L.; Gardner, B.; Rhodes, R.E.; Verplanken, B. The Measurement of Habit. In The Psychology of Habit; Springer: Singapore, 2018; pp. 31–49. [Google Scholar]
- Liska, A.E. A Critical Examination of the Causal Structure of the Fishbein/Ajzen Attitude-Behavior Model. Soc. Psychol. Q. 1984, 47, 61. [Google Scholar] [CrossRef]
- Hebert, J.R.; Clemow, L.; Pbert, L.; Ockene, I.S.; Ockene, J.K. Social Desirability Bias in Dietary Self-Report May Compromise the Validity of Dietary Intake Measures. Int. J. Epidemiol. 1995, 24, 389–398. [Google Scholar] [CrossRef]
Effect | Restriction of Sugar-Sweetened Beverages without Past Behaviour | Restriction of Sugar-Sweetened Beverages with Past Behaviour | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
School Sample | University Sample | School Sample | University Sample | |||||||||
β | CI95 | β | CI95 | β | CI95 | β | CI95 | |||||
LL | UL | LL | UL | LL | UL | LL | UL | |||||
Direct Effects | ||||||||||||
Intention → Behaviour | 0.389 *** | 0.258 | 0.520 | 0.424 *** | 0.302 | 0.546 | 0.321 *** | 0.188 | 0.454 | 0.299 *** | 0.176 | 0.422 |
BDH → Behaviour | −0.054 | −0.195 | 0.087 | 0.145 * | 0.018 | 0.272 | 0.112 | −0.027 | 0.251 | 0.072 | −0.057 | 0.201 |
OBH → Behaviour | −0.223 *** | −0.358 | −0.088 | −0.005 | −0.136 | 0.126 | −0.177 ** | −0.314 | −0.040 | 0.010 | −0.121 | 0.141 |
BDH X Intention → Behaviour | 0.044 | −0.097 | 0.185 | 0.055 | −0.074 | 0.184 | 0.012 | −0.129 | 0.153 | 0.092 | −0.037 | 0.221 |
OBH X Intention → Behaviour | 0.007 | −0.134 | 0.148 | −0.005 | −0.136 | 0.126 | 0.006 | −0.135 | 0.147 | −0.039 | −0.168 | 0.090 |
OBH X BDH → Behaviour | 0.131 * | −0.008 | 0.270 | −0.032 | −0.163 | 0.099 | 0.118 * | −0.021 | 0.257 | 0.049 | −0.080 | 0.178 |
Past behaviour → Intention | – | – | – | – | – | – | 0.464 *** | 0.335 | 0.593 | 0.574 *** | 0.456 | 0.692 |
Past behaviour → BDH | – | – | – | – | – | – | 0.430 *** | 0.301 | 0.559 | 0.500 *** | 0.380 | 0.620 |
Past behaviour → OBH | – | – | – | – | – | – | −0.373 *** | −0.504 | −0.242 | −0.426 *** | −0.548 | −0.304 |
Past behaviour → Behaviour | – | – | – | – | – | – | 0.273 *** | 0.138 | 0.408 | 0.283 *** | 0.158 | 0.408 |
Indirect Effects | ||||||||||||
Past behaviour → Intention → Behaviour | – | – | – | – | – | – | 0.149 ** | 0.051 | 0.247 | 0.171 *** | 0.081 | 0.261 |
Past behaviour → BDH → Behaviour | – | – | – | – | – | – | 0.048 | −0.052 | 0.148 | 0.036 | −0.056 | 0.128 |
Past behaviour → OBH → Behaviour | – | – | – | – | – | – | 0.066 | −0.034 | 0.166 | −0.004 | −0.096 | 0.088 |
Effect | Eating the Recommended Serves of Fruit and Vegetables without Past Behaviour | Eating the Recommended Serves of Fruit and Vegetables with Past Behaviour | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
School Sample | University Sample | School Sample | University Sample | |||||||||
β | CI95 | β | CI95 | β | CI95 | β | CI95 | |||||
LL | UL | LL | UL | LL | UL | LL | UL | |||||
Intention → Behaviour | 0.558 *** | 0.431 | 0.685 | 0.392 *** | 0.062 | 0.270 | 0.460 *** | 0.388 | 0.620 | 0.226 *** | 0.101 | 0.351 |
BDH → Behaviour | 0.289 *** | 0.156 | 0.422 | 0.404 ***1 | 0.062 | 0.282 | 0.195 ** | 0.019 | 0.251 | 0.1021 | −0.027 | 0.231 |
OBH → Behaviour | −0.044 | −0.185 | 0.097 | −0.081 | 0.066 | −0.210 | −0.095 | −0.059 | 0.173 | −0.036 | −0.167 | 0.095 |
BDH X Intention → Behaviour | −0.003 | −0.144 | 0.138 | −0.088 | −0.217 | 0.041 | −0.033 | −0.174 | 0.108 | 0.004 | −0.127 | 0.135 |
OBH X Intention → Behaviour | 0.065 | −0.074 | 0.204 | 0.091 | −0.038 | 0.220 | 0.109 | −0.030 | 0.248 | 0.056 | −0.073 | 0.185 |
OBH X BDH → Behaviour | 0.051 | −0.090 | 0.192 | 0.035 | −0.096 | 0.166 | 0.045 | −0.096 | 0.186 | −0.050 | −0.179 | 0.079 |
Past behaviour → Intention | – | – | – | – | – | – | 0.671 *** | 0.508 | 0.740 | 0.711 *** | 0.595 | 0.827 |
Past behaviour → BDH | – | – | – | – | – | – | 0.714 *** | 0.605 | 0.837 | 0.755 *** | 0.641 | 0.869 |
Past behaviour → OBH | – | – | – | – | – | – | −0.439 *** | −0.560 | −0.328 | −0.450 *** | −0.572 | −0.328 |
Past behaviour → Behaviour | – | – | – | – | – | – | 0.297 ***a | 0.142 | 0.374 | 0.590 ***a | 0.472 | 0.708 |
Past behaviour → Intention → Behaviour | – | – | – | – | – | – | 0.308 *** | 0.214 | 0.402 | 0.161 *** | 0.071 | 0.251 |
Past behaviour → BDH → Behaviour | – | – | – | – | – | – | 0.139 ** | 0.041 | 0.237 | 0.077 | −0.015 | 0.169 |
Past behaviour → OBH → Behaviour | – | – | – | – | – | – | 0.042 | −0.058 | 0.142 | 0.016 | −0.076 | 0.108 |
Behaviour | Restricting Sugar-Sweetened Beverages without Past Behaviour | Restricting Sugar-Sweetened Beverages with Past Behaviour | ||
---|---|---|---|---|
Index | School | University | School | University |
GoF | 0.278 | 0.311 | 0.457 | 0.520 |
AR2 | 0.093 * | 0.104 * | 0.253 *** | 0.294 *** |
APC | 0.107 * | 0.090 * | 0.142 * | 0.133 * |
AVIF | 1.334 | 1.655 | 1.229 | 1.603 |
Behaviour | Fruit and Vegetable Consumption without Past Behaviour | Fruit and Vegetable Consumption with Past Behaviour | ||
---|---|---|---|---|
Index | School | University | School | University |
GoF | 0.434 | 0.423 | 0.684 | 0.695 |
AR2 | 0.207 *** | 0.191 *** | 0.514 *** | 0.5156 ** |
APC | 0.126 * | 0.099 * | 0.177 ** | 0.166 ** |
AVIF | 2.182 | 2.227 | 1.496 | 2.531 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brown, D.J.; Charlesworth, J.; Hagger, M.S.; Hamilton, K. A Dual-Process Model Applied to Two Health-Promoting Nutrition Behaviours. Behav. Sci. 2021, 11, 170. https://doi.org/10.3390/bs11120170
Brown DJ, Charlesworth J, Hagger MS, Hamilton K. A Dual-Process Model Applied to Two Health-Promoting Nutrition Behaviours. Behavioral Sciences. 2021; 11(12):170. https://doi.org/10.3390/bs11120170
Chicago/Turabian StyleBrown, Daniel J., Jessica Charlesworth, Martin S. Hagger, and Kyra Hamilton. 2021. "A Dual-Process Model Applied to Two Health-Promoting Nutrition Behaviours" Behavioral Sciences 11, no. 12: 170. https://doi.org/10.3390/bs11120170
APA StyleBrown, D. J., Charlesworth, J., Hagger, M. S., & Hamilton, K. (2021). A Dual-Process Model Applied to Two Health-Promoting Nutrition Behaviours. Behavioral Sciences, 11(12), 170. https://doi.org/10.3390/bs11120170