A Validation of ERA5 Reanalysis Data in the Southern Antarctic Peninsula—Ellsworth Land Region, and Its Implications for Ice Core Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reanalysis Data
2.2. Observations from AWS
2.3. Method to Evaluate Reanalysis Data
3. Results
3.1. Surface Air Temperature
3.2. Snow Accumulation
3.3. Winds
4. Discussion
4.1. Climate Reanalyses Performance
4.2. Implications for Ice Core Proxy Calibration
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Turner, J.; Barrand, N.E.; Bracegirdle, T.J.; Convey, P.; Hodgson, D.A.; Jarvis, M.; Jenkins, A.; Marshall, G.; Meredith, M.P.; Roscoe, H. Antarctic climate change and the environment: An update. Polar Rec. 2014, 50, 237–259. [Google Scholar] [CrossRef]
- Bromwich, D.H.; Nicolas, J.P.; Monaghan, A.J.; Lazzara, M.A.; Keller, L.M.; Weidner, G.A.; Wilson, A.B. Central West Antarctica among the most rapidly warming regions on Earth. Nat. Geosci. 2013, 6, 139. [Google Scholar] [CrossRef]
- Pritchard, H.D.; Arthern, R.J.; Vaughan, D.G.; Edwards, L.A. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 2009, 461, 971. [Google Scholar] [CrossRef] [PubMed]
- Lenaerts, J.; Van den Broeke, M.; Van de Berg, W.; Van Meijgaard, E.; Kuipers Munneke, P. A new, high-resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Van den Broeke, M.; van de Berg, W.J.; van Meijgaard, E. Snowfall in coastal West Antarctica much greater than previously assumed. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Davis, C.H.; Li, Y.; McConnell, J.R.; Frey, M.M.; Hanna, E. Snowfall-driven growth in East Antarctic ice sheet mitigates recent sea-level rise. Science 2005, 308, 1898–1901. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, A.; Ivins, E.R.; Geruo, A.; Barletta, V.R.; Bentley, M.J.; Bettadpur, S.; Briggs, K.H.; Bromwich, D.H.; Forsberg, R.; Galin, N. A reconciled estimate of ice-sheet mass balance. Science 2012, 338, 1183–1189. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, D.G. Recent trends in melting conditions on the Antarctic Peninsula and their implications for ice-sheet mass balance and sea level. Arct. Antarct. Alp. Res. 2006, 38, 147–152. [Google Scholar] [CrossRef]
- King, J.C.; Turner, J. Antarctic Meteorology and Climatology; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Thomas, E.R.; Bracegirdle, T.J. Precipitation pathways for five new ice core sites in Ellsworth Land, West Antarctica. Clim. Dyn. 2015, 44, 2067–2078. [Google Scholar] [CrossRef]
- Bracegirdle, T.J. Climatology and recent increase of westerly winds over the Amundsen Sea derived from six reanalyses. Int. J. Climatol. 2013, 33, 843–851. [Google Scholar] [CrossRef]
- Mosley-Thompson, E.; Thompson, L.G.; Grootes, P.M.; Gundestrup, N. Little ice age (neoglacial) paleoenvironmental conditions at siple station, Antarctica. Ann. Glaciol. 1990, 14, 199–204. [Google Scholar] [CrossRef]
- Thompson, L.G.; Peel, D.; Mosley-Thompson, E.; Mulvaney, R.; Dal, J.; Lin, P.; Davis, M.; Raymond, C. Climate since AD 1510 on Dyer Plateau, Antarctic Peninsula: Evidence for recent climate change. Ann. Glaciol. 1994, 20, 420–426. [Google Scholar] [CrossRef]
- Thomas, E.; Dennis, P.; Bracegirdle, T.J.; Franzke, C. Ice core evidence for significant 100-year regional warming on the Antarctic Peninsula. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Thomas, E.R.; Bracegirdle, T.J.; Turner, J.; Wolff, E.W. A 308 year record of climate variability in West Antarctica. Geophys. Res. Lett. 2013, 40, 5492–5496. [Google Scholar] [CrossRef] [Green Version]
- Thomas, E.R.; Hosking, J.S.; Tuckwell, R.R.; Warren, R.; Ludlow, E. Twentieth century increase in snowfall in coastal West Antarctica. Geophys. Res. Lett. 2015, 42, 9387–9393. [Google Scholar] [CrossRef] [Green Version]
- Xie, A.; Allison, I.; Xiao, C.; Wang, S.; Ren, J.; Qin, D. Assessment of air temperatures from different meteorological reanalyses for the East Antarctic region between Zhonshan and Dome, A. Sci. China Earth Sci. 2014, 57, 1538–1550. [Google Scholar] [CrossRef]
- Boccara, G.; Hertzog, A.; Basdevant, C.; Vial, F. Accuracy of NCEP/NCAR reanalyses and ECMWF analyses in the lower stratosphere over Antarctica in 2005. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Bromwich, D.H.; Fogt, R.L.; Hodges, K.I.; Walsh, J.E. A tropospheric assessment of the ERA-40, NCEP, and JRA-25 global reanalyses in the polar regions. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Thomas, E.; Bracegirdle, T. Improving ice core interpretation using in situ and reanalysis data. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Rodrigo, J.S.; Buchlin, J.-M.; van Beeck, J.; Lenaerts, J.T.; van den Broeke, M.R. Evaluation of the antarctic surface wind climate from ERA reanalyses and RACMO2/ANT simulations based on automatic weather stations. Clim. Dyn. 2013, 40, 353–376. [Google Scholar] [CrossRef]
- Bracegirdle, T.J.; Marshall, G.J. The reliability of Antarctic tropospheric pressure and temperature in the latest global reanalyses. J. Clim. 2012, 25, 7138–7146. [Google Scholar] [CrossRef]
- Jones, P.; Lister, D. Antarctic near-surface air temperatures compared with ERA-Interim values since 1979. Int. J. Clim. 2015, 35, 1354–1366. [Google Scholar] [CrossRef]
- Jones, R.; Renfrew, I.; Orr, A.; Webber, B.; Holland, D.; Lazzara, M. Evaluation of four global reanalysis products using in situ observations in the Amundsen Sea Embayment, Antarctica. J. Geophys. Res. Atmos. 2016, 121, 6240–6257. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Ding, M.; Van Wessem, J.; Schlosser, E.; Altnau, S.; van den Broeke, M.R.; Lenaerts, J.T.; Thomas, E.R.; Isaksson, E.; Wang, J. A comparison of Antarctic Ice Sheet surface mass balance from atmospheric climate models and in situ observations. J. Clim. 2016, 29, 5317–5337. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.; Simmons, A.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.; Balsamo, G.; Bauer, D.P. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Hersbach, H.; Dee, D. ERA5 reanalysis is in production. ECMWF Newsl. 2016, 147, 7. [Google Scholar]
- Genthon, C.; Six, D.; Favier, V.; Lazzara, M.; Keller, L. Atmospheric temperature measurement biases on the Antarctic plateau. J. Atmos. Ocean. Technol. 2011, 28, 1598–1605. [Google Scholar] [CrossRef]
- Madsen, H.; Pinson, P.; Kariniotakis, G.; Nielsen, H.A.; Nielsen, T.S. Standardizing the performance evaluation of short-term wind power prediction models. Wind Eng. 2005, 29, 475–489. [Google Scholar] [CrossRef]
- Bromwich, D.H.; Fogt, R.L. Strong trends in the skill of the ERA-40 and NCEP–NCAR reanalyses in the high and midlatitudes of the Southern Hemisphere, 1958–2001. J. Clim. 2004, 17, 4603–4619. [Google Scholar] [CrossRef]
- Massom, R.A.; Eicken, H.; Hass, C.; Jeffries, M.O.; Drinkwater, M.R.; Sturm, M.; Worby, A.P.; Wu, X.; Lytle, V.I.; Ushio, S.; et al. Snow on Antarctic sea ice. Rev. Geophys. 2001, 39, 413–445. [Google Scholar] [CrossRef] [Green Version]
- Andreas, E.L.; Jordan, R.; Guest, P.; Persson, O.; Grachev, A.; Fairall, C. (Eds.) Roughness lengths over snow. In Proceedings of the 18th Conference on Hydrology of the American Meteorological Society, Seattle, WA, USA, 11–15 January 2004. [Google Scholar]
- Bromwich, D.H.; Otieno, F.O.; Hines, K.M.; Manning, K.W.; Shilo, E. Comprehensive evaluation of polar weather research and forecasting model performance in the Antarctic. J. Geophys. Res. Atmos. 2013, 118, 274–292. [Google Scholar] [CrossRef] [Green Version]
- Phillpot, H.; Zillman, J. The surface temperature inversion over the Antarctic continent. J. Geophys. Res. 1970, 75, 4161–4169. [Google Scholar] [CrossRef]
- Martin, P.; Peel, D. The spatial distribution of 10 m temperatures in the Antarctic Peninsula. J. Glaciol. 1978, 20, 311–317. [Google Scholar] [CrossRef]
- Allison, I. Surface climate of the interior of the Lambert Glacier basin, Antarctica, from automatic weather station data. Ann. Glaciol. 1998, 27, 515–520. [Google Scholar] [CrossRef] [Green Version]
- Pomeroy, J.; Jones, H. Wind-blown snow: Sublimation, transport and changes to polar snow. In Chemical Exchange between the Atmosphere and Polar Snow; Springer: Berlin/Heidelberg, Germany, 1996; pp. 453–489. [Google Scholar]
- Nishimura, K.; Nemoto, M. Blowing snow at Mizuho station, Antarctica. Philos. Trans. R. Soc. A Mathemath. Phys. Eng. Sci. 2005, 363, 1647–1662. [Google Scholar] [CrossRef] [PubMed]
- Gallée, H.; Guyomarc’h, G.; Brun, E. Impact of snow drift on the Antarctic ice sheet surface mass balance: Possible sensitivity to snow-surface properties. Bound.-Layer Meteorol. 2001, 99, 1–19. [Google Scholar] [CrossRef]
- Gallée, H.; Trouvilliez, A.; Agosta, C.; Genthon, C.; Favier, V.; Naaim-Bouvet, F. Transport of snow by the wind: A comparison between observations in Adélie Land, Antarctica, and simulations made with the regional climate model MAR. Bound.-Layer Meteorol. 2013, 146, 133–147. [Google Scholar] [CrossRef]
- Parish, T.R.; Cassano, J.J. The role of katabatic winds on the Antarctic surface wind regime. Mon. Weather Rev. 2003, 131, 317–333. [Google Scholar] [CrossRef]
- Lenaerts, J.T.; Ligtenberg, S.R.; Medley, B.; Van de Berg, W.J.; Konrad, H.; Nicolas, J.P.; van Wessem, J.M.; Trusel, L.D.; Mulvaney, R.; Rebecca, J.T.; et al. Climate and surface mass balance of coastal West Antarctica resolved by regional climate modelling. Ann. Glaciol. 2018, 59 76 Pt 1, 29–41. [Google Scholar] [CrossRef]
- Colwell, S.; (British Antarctic Survey, Cambridge, UK). Personal communication, 2018.
- Thomas, E.; Tetzner, D. The climate of the Antarctic Peninsula during the twentieth century: Evidence from Ice Cores. In Antarctica-A Key To Global Change; IntechOpen: London, UK, 2018. [Google Scholar]
Site | Acronym | Data Source (Online Database) | Lat (°S) | Long (°W) | Elevation (m a.s.l) | Data Interval (from–to) (mm/yy)(AD) | Number of Valid Months | Temporal Resolution (Minutes) | Distance to the Nearest Grid Point (km) | |
---|---|---|---|---|---|---|---|---|---|---|
Costal | ERA-Int | ERA5 | ||||||||
Backer Island | BACK | POLENET | 74.43 | 102.48 | 38 | 01/12–12/16 | 48 | 30 | 34.76 | 11.4 |
Fossil Bluff | FOS | BAS | 71.32 | 68.28 | 66 | 01/07–12/17 | 129 | 10 | 10.91 | 11.65 |
Latady Island | LAT | BAS | 72.69 | 78.03 | 200 | 01/05–01/06 | 13 | 60 | 0.6 | 14.6 |
Lepley Nunatak | LPLY | POLENET | 73.11 | 90.3 | 156 | 01/12–05/17 | 38 | 30 | 27.57 | 10.9 |
Pine Island | PINE | U. of Wisconsin | 75.18 | 101.73 | 70 | 01/08–12/11 | 33 | 10 | 31.67 | 2.23 |
Thurston Island | THUR | POLENET | 72.53 | 97.56 | 180 | 02/11–05/17 | 71 | 30 | 12.49 | 13.3 |
Escarpment | ||||||||||
Ferrigno | FER | BAS | 74.57 | 86.9 | 1376 | 01/10–12/10 | 12 | 10 | 20.7 | 4.56 |
Gomez | GOM | BAS | 73.98 | 70.61 | 1400 | 02/05–06/06 | 17 | 60 | 10.64 | 7.69 |
Howard Nunatak | HOWN | POLENET | 77.53 | 86.77 | 1478 | 01/10–05/17 | 89 | 30 | 7.17 | 12.3 |
Jurassic | JUR | BAS | 74.3 | 73.05 | 1139 | 03/05–03/06 02/12-08/12 | 20 | 60 | 30.03 | 3.96 |
Siple Station | SIPLE | U. of Wisconsin | 75.9 | 83.92 | 1054 | 01/82–04/92 | 89 | 180 | 28.89 | 13.4 |
Sky-BLU | SKYBLU | BAS | 74.78 | 71.48 | 1556 | 01/00–12/17 | 142 | 10 | 8.43 | 11.8 |
Ski-Hi | SKIHI | U. of Wisconsin | 74.98 | 70.77 | 1395 | 03/94–11/98 | 52 | 180 | 27.58 | 10.4 |
Site | AWS | ERA-Interim | ERA5 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Temp | Sdev | Wspd | Sdev | Acc | Sdev | Temp | Sdev | Wspd | Sdev | Acc | Sdev | Temp | Sdev | Wspd | Sdev | Acc | Sdev | |
Coast | −11.82 | 3.27 | 6.8 | 2.1 | −13.02 | 1.77 | 5.92 | 1.36 | −12.33 | 2.13 | 5.33 | 1.72 | ||||||
BACK | −10.91 | 6.78 | 6.95 | 1.61 | −11.99 | 6.62 | 6.04 | 1.2 | −10.81 | 6.78 | 5.12 | 1.02 | ||||||
FOS | −8.91 | 6.1 | 3.6 | 0.85 | −10.62 | 5.23 | 4.3 | 0.89 | −10.38 | 5.63 | 3.03 | 0.61 | ||||||
LAT | 6.16 | 1.61 | 98.91 | 60.12 | 4.96 | 1.15 | 62.03 | 23.17 | 4.12 | 0.55 | 91.5 | 48.66 | ||||||
LPLY | −11.23 | 6.18 | 7.7 | 1.4 | −13.26 | 6.74 | 6.7 | 1.18 | −11.45 | 5.88 | 6.45 | 1.3 | ||||||
PINE | −17.44 | 6.39 | 10 | 2.14 | −15.09 | 5.62 | 8.1 | 1.55 | −15.43 | 5.28 | 7.93 | 1.47 | ||||||
THUR | −10.63 | 5.31 | 6.39 | 1.27 | −14.16 | 8.02 | 5.44 | 1.08 | −13.60 | 6 | 5.3 | 0.99 | ||||||
Escarpment | −21.16 | 2.79 | 6.81 | 0.93 | −20.88 | 2.64 | 5.72 | 1.37 | −21.02 | 3.43 | 5.89 | 1.37 | ||||||
FER | −24.83 | 6.51 | 8.53 | 1.9 | −23.34 | 6.02 | 8.53 | 1.57 | −23.98 | 6.22 | 8.57 | 1.55 | ||||||
GOM | −17.18 | 5.04 | 6.13 | 0.81 | 71.08 | 45.46 | −19.6 | 5.43 | 5.45 | 0.69 | 72.61 | 29.90 | −18.54 | 4.91 | 5.94 | 0.76 | 91.17 | 46.18 |
HOWN | −22.59 | 5.25 | 6.23 | 1.37 | −23.54 | 7.22 | 4.23 | 0.91 | −24.74 | 5.72 | 3.97 | 0.98 | ||||||
JUR | −20.10 | 5.53 | 6.95 | 1.31 | 54.86 | 61.71 | −18.75 | 5.49 | 5.4 | 0.78 | 77.04 | 34.95 | −15.96 | 4.63 | 6.06 | 0.93 | 92.07 | 41.16 |
SIPLE | −24.21 | 7.63 | 5.72 | 1.12 | −24.04 | 7.61 | 6.2 | 1.03 | −24.47 | 7.23 | 5.36 | 0.89 | ||||||
SKYBLU | −19.71 | 5.73 | 7.3 | 2.03 | −19.09 | 5.77 | 5.15 | 0.94 | −20.46 | 5.39 | 5.66 | 1.62 | ||||||
SKIHI | −19.50 | 6.48 | 6.79 | 1.97 | −17.81 | 6.05 | 5.1 | 0.9 | −18.98 | 5.71 | 5.65 | 1.39 |
Site | ERA-Interim-AWS | ERA5-AWS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | DJF | MAM | JJA | SON | Mean | DJF | MAM | JJA | SON | |
Coast | −1.20 | −1.16 | −1.69 | −1.64 | −1.57 | −0.51 | −1.4 | −0.98 | −0.62 | −0.78 |
BACK | −1.08 | −1.47 | −1.95 | −0.76 | −1.47 | 0.1 | −0.23 | −0.61 | −0.1 | −0.11 |
FOS | −1.71 | −3.84 | −1.73 | −1.59 | −1.89 | −1.47 | −3.00 | −1.78 | −1.65 | −1.64 |
LPLY | −2.03 | −1.43 | −2.61 | −1.87 | −2.64 | −0.22 | −0.84 | −0.13 | 0.87 | −0.07 |
PINE | 2.35 | 2.72 | 3.33 | 4.08 | 2.74 | 2.01 | 0.95 | 2.25 | 2.89 | 1.99 |
THUR | −3.53 | −1.79 | −5.51 | −8.05 | 4.59 | −2.97 | 3.90 | −4.63 | −5.11 | −4.05 |
Escarpment | 0.28 | 0.67 | −0.1 | −0.09 | 0.38 | 0.14 | −0.4 | −0.03 | 0.11 | −0.14 |
FER | 1.49 | 0.53 | −0.09 | 1.93 | 1.39 | 0.85 | 0.52 | 0.16 | 1.17 | 0.74 |
GOM | −2.42 | −3.73 | −4.64 | −5.04 | −4.47 | −1.36 | −3.32 | −3.28 | −3.28 | −3.44 |
HOWN | −0.95 | 5.31 | −0.31 | −0.19 | 1.75 | −2.15 | −1.2 | −3.26 | −3.23 | −2.55 |
JUR | 1.35 | −1.81 | −0.76 | −2.58 | −0.9 | 4.14 | 4.63 | 6.59 | 5.9 | 5.99 |
SIPLE | 0.17 | −0.13 | −0.29 | 0.01 | −0.06 | −0.26 | −1.33 | −0.73 | −0.35 | −0.85 |
SKYBLU | 0.62 | 0.97 | 0.91 | 0.8 | 0.95 | −0.75 | −2.34 | −1.78 | −1.36 | −1.89 |
SKIHI | 1.69 | 3.52 | 4.46 | 4.45 | 4.00 | 0.52 | 0.24 | 2.07 | 1.91 | 1.05 |
Total | −0.34 | −0.1 | −0.77 | −0.73 | −0.43 | −0.13 | −0.82 | −0.43 | −0.2 | −0.4 |
Site | Temperature | Wind Speed | Zonal Wind (U) | Meridional Wind (V) | Snow Accumulation ** | |||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | A | B | A | B | A | B | A | B | |
Coast | ||||||||||
BACK | 0.99 | 0.99 | 0.87 | 0.94 | 0.81 | 0.71 | 0.78 | 0.81 | ||
FOS | 0.99 | 0.99 | 0.75 | 0.70 | * | 0.48 | 0.74 | 0.85 | 0.75 | 0.76 |
LAT | 0.94 | 0.94 | * | * | 0.85 | 0.85 | ||||
LPLY | 0.98 | 0.97 | 0.74 | 0.77 | 0.70 | 0.7 | 0.66 | 0.57 | ||
PINE | 0.97 | 0.98 | 0.9 | 0.95 | 0.79 | 0.77 | 0.52 | 0.72 | ||
THUR | 0.95 | 0.98 | 0.76 | 0.89 | 0.74 | 0.75 | 0.65 | * | ||
Escarpment | ||||||||||
FER | 0.98 | 0.99 | 0.74 | 0.70 | 0.86 | 0.86 | 0.99 | 0.99 | ||
GOM | 0.98 | 0.98 | 0.80 | 0.81 | 0.90 | 0.90 | 0.91 | 0.91 | 0.75 | 0.84 |
HOWN | 0.95 | 0.98 | 0.79 | 0.84 | 0.72 | 0.73 | 0.69 | 0.62 | ||
JUR | 0.97 | 0.96 | 0.55 | 0.61 | 0.81 | 0.82 | 0.78 | 0.84 | 0.8 | 0.81 |
SIPLE | 0.99 | 0.99 | 0.80 | 0.84 | 0.94 | 0.94 | 0.93 | 0.92 | ||
SKIHI | 0.99 | 0.99 | 0.78 | 0.95 | 0.66 | 0.66 | 0.89 | 0.96 | ||
SKYBLU | 0.98 | 0.99 | 0.74 | 0.92 | 0.9 | 0.94 | 0.82 | 0.93 |
Site | NBIAS (%) | NMAE (%) | NRSME (%) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ERA-Interim vs. AWS | ERA5 vs. AWS | ERA-Interim vs. AWS | ERA5 vs. AWS | ERA-Interim vs. AWS | ERA5 vs. AWS | |||||||||||||
Temp | Wspd | Acc | Temp | Wspd | Acc | Temp | Wspd | Acc | Temp | Wspd | Acc | Temp | Wspd | Acc | Temp | Wspd | Acc | |
Coast | 0.14 | −0.1 | 0.07 | −0.21 | 0.2 | 0.17 | 0.15 | 0.22 | 0.26 | 0.21 | 0.18 | 0.25 | ||||||
BACK | 0.11 | −0.13 | −0.01 | −0.26 | 0.14 | 0.14 | 0.08 | 0.26 | 0.22 | 0.17 | 0.12 | 0.28 | ||||||
FOS | 0.19 | 0.2 | 0.17 | −0.16 | 0.2 | 0.22 | 0.17 | 0.18 | 0.24 | 0.27 | 0.19 | 0.22 | ||||||
LAT | −0.19 | −0.37 | −0.33 | −0.07 | 0.19 | 0.46 | 0.33 | 0.2 | 0.22 | 0.58 | 0.37 | 0.26 | ||||||
LPLY | 0.18 | −0.13 | 0.02 | −0.16 | 0.2 | 0.14 | 0.11 | 0.17 | 0.23 | 0.18 | 0.12 | 0.2 | ||||||
PINE | −0.12 | −0.19 | −0.1 | −0.2 | 0.13 | 0.19 | 0.13 | 0.2 | 0.18 | 0.21 | 0.16 | 0.22 | ||||||
THUR | 0.33 | −0.14 | 0.28 | −0.17 | 0.33 | 0.16 | 0.28 | 0.17 | 0.44 | 0.2 | 0.3 | 0.19 | ||||||
Escarpment | −0.01 | −0.16 | 0 | −0.14 | 0.09 | 0.2 | 0.08 | 0.27 | 0.1 | 0.24 | 0.09 | 0.19 | ||||||
FER | −0.06 | 0 | −0.03 | 0 | 0.07 | 0.09 | 0.04 | 0.1 | 0.08 | 0.1 | 0.05 | 0.12 | ||||||
GOM | 0.14 | −0.11 | 0.04 | 0.08 | −0.03 | 0.19 | 0.14 | 0.12 | 0.32 | 0.08 | 0.8 | 0.32 | 0.15 | 0.14 | 0.41 | 0.09 | 0.1 | 0.41 |
HOWN | 0.04 | −0.32 | 0.1 | −0.36 | 0.12 | 0.32 | 0.12 | 0.36 | 0.15 | 0.34 | 0.13 | 0.38 | ||||||
JUR | −0.07 | −0.22 | 0.41 | −0.2 | −0.13 | 0.69 | 0.12 | 0.23 | 0.63 | 0.2 | 0.16 | 0.85 | 0.14 | 0.27 | 0.81 | 0.24 | 0.19 | 0.95 |
SIPLE | −0.01 | 0.09 | 0.01 | −0.06 | 0.02 | 0.12 | 0.02 | 0.09 | 0.02 | 0.15 | 0.03 | 0.12 | ||||||
SKYBLU | −0.03 | −0.29 | 0.04 | −0.22 | 0.04 | 0.3 | 0.04 | 0.22 | 0.04 | 0.35 | 0.05 | 0.24 | ||||||
SKIHI | −0.09 | −0.25 | −0.03 | −0.17 | 0.09 | 0.25 | 0.06 | 0.17 | 0.11 | 0.33 | 0.07 | 0.21 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tetzner, D.; Thomas, E.; Allen, C. A Validation of ERA5 Reanalysis Data in the Southern Antarctic Peninsula—Ellsworth Land Region, and Its Implications for Ice Core Studies. Geosciences 2019, 9, 289. https://doi.org/10.3390/geosciences9070289
Tetzner D, Thomas E, Allen C. A Validation of ERA5 Reanalysis Data in the Southern Antarctic Peninsula—Ellsworth Land Region, and Its Implications for Ice Core Studies. Geosciences. 2019; 9(7):289. https://doi.org/10.3390/geosciences9070289
Chicago/Turabian StyleTetzner, Dieter, Elizabeth Thomas, and Claire Allen. 2019. "A Validation of ERA5 Reanalysis Data in the Southern Antarctic Peninsula—Ellsworth Land Region, and Its Implications for Ice Core Studies" Geosciences 9, no. 7: 289. https://doi.org/10.3390/geosciences9070289
APA StyleTetzner, D., Thomas, E., & Allen, C. (2019). A Validation of ERA5 Reanalysis Data in the Southern Antarctic Peninsula—Ellsworth Land Region, and Its Implications for Ice Core Studies. Geosciences, 9(7), 289. https://doi.org/10.3390/geosciences9070289