Magnetic Properties of Iron Sand from the Tor River Estuary, Sarmi, Papua
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Rochani, S.; Pramusanto, P.; Sariman, S.; Anugrah, R.I. The current status of iron minerals in Indonesia. Indones. Min. J. 2008, 11, 1–17. [Google Scholar]
- Skornyakova, I.S. Dispersed iron and manganese in Pacific Ocean sediments. Int. Geol. Rev. 1965, 7, 2161–2174. [Google Scholar] [CrossRef]
- Huliselan, E.K.; Bijaksana, S.; Srigutomo, W.; Kardena, E. Scanning electron microscopy and magnetic characterization of iron oxides in solid waste landfill leachate. J. Hazard. Mater. 2010, 179, 701–708. [Google Scholar] [CrossRef] [PubMed]
- Sudarningsih, S.; Bijaksana, S.; Ramdani, R.; Hafidz, A.; Pratama, A.; Widodo, W.; Iskandar, I.; Dahrin, D.; Fajar, S.J.; Santoso, N.A. Variations in the concentration of magnetic minerals and heavy metals in suspended sediments from Citarum river and its tributaries, West Java, Indonesia. Geosciences 2017, 7, 66. [Google Scholar] [CrossRef]
- Mariyanto; Bijaksana, S. Magnetic properties of Surabaya river sediments, East Java, Indonesia. AIP Conf. Proc. 2017, 1861. [Google Scholar] [CrossRef]
- Jamieson, E.; Jones, A.; Cooling, D.; Stockton, N. Magnetic separation of Red Sand to produce value. Miner. Eng. 2006, 19, 1603–1605. [Google Scholar] [CrossRef]
- Abdel-Karim, A.-A.M.; Barakat, M.G. Separation, upgrading, and mineralogy of placer magnetite in the black sands, northern coast of Egypt. Arab. J. Geosci. 2017, 10. [Google Scholar] [CrossRef]
- Tanii, H.; Inazumi, T.; Terashima, K. Mineralogical Study of Iron Sand with Different Metallurgical Characteristic to Smelting with Use of Japanese Classic Ironmaking Furnace “Tatara”. ISIJ Int. 2014, 54, 1044–1050. [Google Scholar] [CrossRef]
- Alkadasi, N.A.N. Synthesis of Fe3O4 nano particles from Ironstone from The Republic of Yemen. Orient. J. Chem. 2014, 30. [Google Scholar] [CrossRef]
- Yulianto, A.; Bijaksana, S.; Loeksmanto, W. Comparative Study on Magnetic Characterization of Iron Sand from Several Locations in Central Java. KFI 2003, 14, 63–168. [Google Scholar]
- Rusianto, T.; Wildan, M.W.; Abraha, K.; Kusmono. The potential of iron sand from the coast south of Bantul Yogyakarta as raw ceramic magnet materials. J. Teknol. 2012, 5, 62–69. [Google Scholar]
- Rusianto, T.; Wildan, M.W.; Abraha, K.; Kusmono, K. Iron sand as renewable resource for production magnetic nano particles materials. In Proceedings of the Engineering International Conference 2013, Semarang, Indonesia, 21 November 2013; Fathur, R., Ed.; Faculty of Engineering, Semarang State University: Semarang, Indonesia, 2013. [Google Scholar]
- Mufti, N.; Atma, T.; Fuad, A.; Sutadji, E. Synthesis and characterization of black, red and yellow nanoparticles pigments from the iron sand. AIP Conf. Proc. 2014, 1617. [Google Scholar] [CrossRef]
- Sunaryono, S.; Taufiq, A.; Mashuri, M.; Pratapa, S.; Zainuri, M. Various magnetic properties of magnetite nanoparticles synthesized from iron-sands by co-precipitation method at room temperature. Mater. Sci. Forum. 2015, 827, 229–234. [Google Scholar] [CrossRef]
- Rahmawati, R.; Taufiq, A.; Sunaryono, S.; Fuad, A.; Yuliarto, B.; Suyatman, S.; Kurniadi, D. Synthesis of magnetite (Fe3O4) nanoparticles from iron sands by coprecipitation-ultrasonic irradiation methods. J. Mater. Environ. Sci. 2018, 9, 155–160. [Google Scholar]
- Geological Agency of Indonesia—Information of Strategic Minerals Balance in Sarmi Regency. (In Bahasa: Pusat Sumber Daya Geologi: Informasi Neraca Komoditi Logam di Kabupaten/Kota Sarmi). Available online: http://webmap.psdg.bgl.esdm.go.id/geosain/neraca-content.php?kabupaten=Sarmi (accessed on 13 April 2016).
- Togibasa, O.; Akbar, M.; Pratama, A.; Bijaksana, S. Distribution of magnetic susceptibility of natural iron sand in Sarmi Coast area. IOP J. Phys. Conf. Ser. 2018, in press. [Google Scholar]
- Novala, G.C.; Sudarningsih; Kirana, K.H.; Fajar, S.J.; Mariyanto; Bijaksana, S. Testing the effectiveness of mechanical magnetic extraction in riverine and lacustrine sediments. IOP J. Phys. Conf. Ser. 2018, in press. [Google Scholar]
- Kanu, M.O.; Meludu, O.C.; Oniku, S.A. Measurement of Magnetic Susceptibility of Soils in Jalingo, N-E Nigeria: A Case Study of the Jalingo Mechanic Village. World Appl. Sci. J. 2013, 24, 178–187. [Google Scholar]
- Eisma, D. Dissolved iron in the Rhine estuary and the adjacent North Sea. Neth. J. Sea Res. 1975, 9, 222–230. [Google Scholar] [CrossRef]
- Meade, R.H. Transport and Deposition of Sediments. In Estuaries Environmental Framework of Coastal Plain Estuaries; Nelson, B.W., Ed.; Geological Society of America: Boulder, CO, USA, 1972; Volume 133, pp. 91–120. [Google Scholar]
- Chen, D.; Zhang, Y.; Tu, C. Preparation of high saturation magnetic MgFe2O4 nanoparticles by microwave-assisted ball milling. Mater. Lett. 2012, 82, 10–12. [Google Scholar] [CrossRef]
- Šepelák, V.; Baabe, D.; Mienert, D.; Litterst, F.J.; Becker, K.D. Enhanced magnetization in nanocrystalline high-energy milled MgFe2O4. Scr. Mater. 2003, 48, 961–966. [Google Scholar] [CrossRef]
- Setiadi, E.A.; Simbolon, S.; Saputra, A.S.P.; Marlianto, E.; Djuhana; Kurniawan, C.; Yunus, M.; Sebayang, P. Synthesized of PEG-6000 coated MgFe2O4 nanoparticles based on natural iron sand by co-precipitation method. IOP Conf. Ser. Mater. Sci. Eng. 2018, 309. [Google Scholar] [CrossRef]
- Franco, A., Jr.; Silva, M.S. High temperature magnetic properties of magnesium ferrite nanoparticles. J. Appl. Phys. 2011, 109. [Google Scholar] [CrossRef]
- Silva, F.D.; Costa Couceiro, P.R.; Fabris, J.D.; Goulart, A.T.; Ker, J.C. Magnesioferrite and pedogenetic transformation pathway of magnetic iron oxides in two soil profiles developing on tuffite of the Alto Paranaíba Region, State of Minas Gerais, Brazil. Rev. Bras. Cienc. Solo 2005, 29, 763–775. [Google Scholar] [CrossRef]
- Silva, F.D.; Goulart, A.T.; Costa Couceiro, P.R.; Fabris, J.D. Chemical and mineralogical mechanisms related to the transformation of magnesioferrite, in a soil forming on tuffite in Alto Paranaíba, MG. Quim. Nova 2009, 32, 1850–1855. [Google Scholar] [CrossRef]
- Choo, T.K.; Cashion, J.; Selomulya, C.; Zhang, L. Reductive leaching of iron and magnesium out of magnesioferrite from Victorian Brown Coal fly ash. Energy Fuels 2016, 30, 1162–1170. [Google Scholar] [CrossRef]
Samples | Average χLF (×10−5 m3/kg) | Average χHF (×10−5 m3/kg) | χFD (%) |
---|---|---|---|
(a) extracted samples | 27.496 ± 0.003 | 27.199 ± 0.003 | 0.7 ± 0.2 |
(b) raw samples | 3.083 ± 0.001 | 3.082 ± 0.002 | 0.6 ± 0.4 |
Oxide | Composition |
---|---|
Fe2O3 | 54.4% |
SiO2 | 21.6% |
Al2O3 | 6.34% |
CaO | 6.10% |
TiO2 | 4.27% |
MgO | 2.79% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Togibasa, O.; Bijaksana, S.; Novala, G.C. Magnetic Properties of Iron Sand from the Tor River Estuary, Sarmi, Papua. Geosciences 2018, 8, 113. https://doi.org/10.3390/geosciences8040113
Togibasa O, Bijaksana S, Novala GC. Magnetic Properties of Iron Sand from the Tor River Estuary, Sarmi, Papua. Geosciences. 2018; 8(4):113. https://doi.org/10.3390/geosciences8040113
Chicago/Turabian StyleTogibasa, Octolia, Satria Bijaksana, and Gesti Cita Novala. 2018. "Magnetic Properties of Iron Sand from the Tor River Estuary, Sarmi, Papua" Geosciences 8, no. 4: 113. https://doi.org/10.3390/geosciences8040113
APA StyleTogibasa, O., Bijaksana, S., & Novala, G. C. (2018). Magnetic Properties of Iron Sand from the Tor River Estuary, Sarmi, Papua. Geosciences, 8(4), 113. https://doi.org/10.3390/geosciences8040113