Geochemical Feed Zone Analysis Based on the Mineral–Solution Equilibrium Hypothesis
Abstract
:1. Introduction
2. Methods
+ 9.700676 ⋅ 10−2 · T2 − 2.928824 · T + 211.0268,
− 0.2373024 · T2 + 17.53198 · T − 511.5682.
− 0.1622219 · T2 + 13.68471 · T + 2149.589,
+ 23.26751.
3. Results
3.1. General Features of the Krafla Geothermal Field
3.2. Hydrothermal Alteration Minerals at Krafla
3.3. Well K-28 of the Krafla Geothermal Field
3.4. General Features of the Hellisheiði Geothermal Field
3.5. Hydrothermal Alteration Minerals at Hellisheiði
3.6. Well HE-12 of the Hellisheiði Geothermal Field
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bjornsson, G. A Multi-Feedzone Geothermal Wellbore Simulator. Master’s Thesis, LBL-23546. Lawrence Berkeley National Laboratory, University of California, Earth Sciences Division, California, CA, USA, 1987; 102p. [Google Scholar]
- Marini, L.; Vespasiano, G.; De Rosa, R.; Viccaro, M.; Principe, C.; Bloise, A.; Fuoco, I.; Lelli, M.; La Russa, M.; Caruso, C.G.; et al. The geothermal resources of Vulcano Island (Aeolian Archipelago, Italy). Earth Sci. Rev. 2025. [Google Scholar]
- Grant, M.A.; Bixley, P.F. Geothermal Reservoir Engineering, 2nd ed.; Academic Press-Elsevier: Amsterdam, The Netherlands, 2011; 378p. [Google Scholar]
- Arnórsson, S.; Sigurdsson, S.; Svavarsson, H. The chemistry of geothermal waters in Iceland. I. Calculation of aqueous speciation from 0 to 370 °C. Geochim. Cosmochim. Acta 1982, 46, 1513–1532. [Google Scholar] [CrossRef]
- Morey, G.W.; Fournier, R.O.; Rowe, J.J. The solubility of quartz in water in the temperature interval from 25° to 300 °C. Geochim. Cosmochim. Acta 1962, 26, 1029–1043. [Google Scholar] [CrossRef]
- Wagner, W.; Kretzschmar, H.J. International Steam Tables—Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Fournier, R.O.; Potter, R.W., II. An equation correlating the solubility of quartz in water from 25 to 900 C at pressures up to 10,000 bars. Geochim. Cosmochim. Acta 1982, 46, 1969–1973. [Google Scholar] [CrossRef]
- James, R. Measurement of steam-water mixtures discharging at the speed of sound to the atmosphere. N. Z. Eng. 1966, 21, 437–441. [Google Scholar]
- Hirtz, P.N.; Kunzman, R.J.; Broaddus, M.L.; Barbitta, J.A. Developments in tracer flow testing for geothermal production engineering. Geothermics 2001, 30, 727–745. [Google Scholar] [CrossRef]
- Mahon, W.A.J. A method for determining the enthalpy of a steam/water mixture discharged from a geothermal drillhole. N. Z. J. Sci. 1966, 9, 791–800. [Google Scholar]
- Marini, L.; Cioni, R. A chloride method for the determination of the enthalpy of steam/water mixtures discharged from geothermal wells. Geothermics 1985, 14, 29–34. [Google Scholar] [CrossRef]
- Arnórsson, S.; Gunnlaugsson, E. New gas geothermometers for geothermal exploration—Calibration and application. Geochim. Cosmochim. Ac. 1985, 49, 1307–1325. [Google Scholar] [CrossRef]
- Giggenbach, W.F. Geothermal gas equilibria. Geochim. Cosmochim. Ac. 1980, 44, 2021–2032. [Google Scholar] [CrossRef]
- Chiodini, G.; Cioni, R.; Guidi, M.; Marini, L. Chemical geothermometry and geobarometry in hydrothermal aqueous solutions: A theoretical investigation based on a mineral-solution equilibrium model. Geochim. Cosmochim. Acta 1991, 55, 2709–2727. [Google Scholar] [CrossRef]
- Rooyakkers, S.M.; Stix, J.; Berlo, K.; Barker, S.J. Emplacement of unusual rhyolitic to basaltic ignimbrites during collapse of a basalt-dominated caldera: The Halarauður eruption, Krafla (Iceland). GSA Bull. 2020, 132, 1881–1902. [Google Scholar] [CrossRef]
- Einarsson, P. Plate boundaries, rifts and transforms in Iceland. Jökull 2008, 58, 35–58. [Google Scholar] [CrossRef]
- Mortensen, A.K.; Gudmundsson, Á.; Steingrímsson, B.; Sigmundsson, F.; Axelsson, G.; Ármannsson, H.; Hauksson, T. The Krafla Geothermal System: Research Summary and Conceptual Model Revision (Tech. Rep. No. LV-2015-098); Landsvirkjun: Reykjavík, Iceland, 2015. [Google Scholar]
- Scott, S.W.; O’Sullivan, J.P.; Maclaren, O.J.; Nicholson, R.; Covell, C.; Newson, J.; Guðjónsdóttir, M.S. Bayesian calibration of a natural state geothermal reservoir model, Krafla, North Iceland. Water Resour. Res. 2022, 58, e2021WR031254. [Google Scholar] [CrossRef]
- Ármannsson, H. The fluid geochemistry of Icelandic high temperature geothermal areas. Appl. Geochem. 2016, 66, 14–64. [Google Scholar] [CrossRef]
- Gudmundsson, B.T.; Arnórsson, S. Secondary mineral–fluid equilibria in the Krafla and Námafjall geothermal systems, Iceland. Appl. Geochem. 2005, 20, 1607–1625. [Google Scholar] [CrossRef]
- Gudmundsson, B.T.; Arnórsson, S. Geochemical monitoring of the Krafla and Námafjall geothermal areas, N-Iceland. Geothermics 2002, 31, 195–243. [Google Scholar] [CrossRef]
- Cioni, R.; Marini, L. A Thermodynamic Approach to Water Geothermometry; Springer Geochemistry Series; Springer Nature: Cham, Switzerland, 2020; 415p. [Google Scholar] [CrossRef]
- Arnórsson, S.; Gunnlaugsson, E.; Svavarsson, H. The chemistry of geothermal waters in Iceland. II. Mineral equilibria and independent variables controlling water compositions. Geochim. Cosmochim. Acta 1983, 47, 547–566. [Google Scholar] [CrossRef]
- Ping, Z. Gas Geothermometry and Chemical Equilibria of Fluids from Selected Geothermal Fields; UNU-GTP Report 1991-14; United Nations University, Geothermal Training Programme: Reykjavik, Iceland, 1991; 46p. [Google Scholar]
- Giroud, N. A chemical Study of Arsenic, Boron and Gases in High-Temperature Geothermal Fluids in Iceland. Ph.D. Thesis, Faculty of Science, University of Iceland, Reykjavik, Iceland, 2008; 110p. [Google Scholar]
- Heřmanská, M.; Stefánsson, A.; Scott, S. Supercritical fluids around magmatic intrusions: IDDP-1 at Krafla, Iceland. Geothermics 2019, 78, 101–110. [Google Scholar] [CrossRef]
- Scott, S.W. Gas Chemistry of the Hellisheidi Geothermal Field. Master’s Thesis, REYST/Faculty of Science, University of Iceland, Reykjavik, Iceland, 2011; p. 81. [Google Scholar]
- Mutonga, M.W.; Sveinbjornsdottir, A.; Gislason, G.; Amannsson, H. The isotopic and chemical characteristics of geothermal fluids in Hengill Area, SW-Iceland (Hellisheiði, Hveragerdi and Nesjavellir Fields). In Proceedings of the World Geothermal Congress, Bali, Indonesia, 25–30 April 2010; pp. 1–13. [Google Scholar]
- Helgadóttir, H.M.; Snaebjörnsdottir, S.O.; Níelsson, S.; Gunnarsdóttir, S.H.; Matthíasdóttir, T.; Hardarson, B.S.; Einarsson, G.M.; Franzson, H. Geology and hydrothermal alteration in the reservoir of the Hellisheiði high temperature system, SW-Iceland. In Proceedings of the World Geothermal Congress, Bali, Indonesia, 25–30 April 2010; pp. 25–29. [Google Scholar]
- Hartanto, D.B. Borehole Geology and Alteration Mineralogy of Well HE-11, Hellisheidi Geothermal Field, SW-Iceland; The United Nations University, Geothermal Training Programme: Reykjavík, Iceland, 2005; Reports 2005, Number 8; pp. 83–109. [Google Scholar]
- Scott, S.; Gunnarsson, I.; Arnórsson, S.; Stefánsson, A. Gas chemistry, boiling and phase segregation in a geothermal system, Hellisheidi, Iceland. Geochim. Cosmochim. Acta 2014, 124, 170–189. [Google Scholar] [CrossRef]
- Nicholson, K. Geothermal Fluids—Chemistry and Exploration Techniques; Springer: Berlin/Heidelberg, Germany, 1993; 263p. [Google Scholar]
log = −0.527 + 0.982 · + 78.9/T + 0.0119 · | (1.1) |
log = +0.458 + 0.944 · − 1014/T + 0.0346 · | (1.2) |
log = −1.116 + 1.302 · − 0.390 · − 443/T | (1.3) |
log = −8.188 + 0.912 · + 2156/T + 0.356 · | (1.4) |
log = −10.004 + 0.904 · + 3223/T − 0.489 · | (1.5) |
log = −12.503 + 4604/T + 0.501 · − 0.626 · | (1.6) |
log = −5.069 + 798/T + 0.127 · − 0.0886 · | (1.7) |
pH = +1.757 − 0.822 · + 1846/T − 0.0171 · | (1.8) |
Depth | T | yFZ | H | SiO2 | CO2 | log PCO2 | log ∑eq,in | log ∑eq,fin | pH | |
---|---|---|---|---|---|---|---|---|---|---|
(m) | °C | kJ/kg | mg/kg | mg/kg | ||||||
500 | 230 | 0 | 990.2 | 376.6 | 0.5238 | 340.6 | −0.1377 | −1.766 | −1.738 | 7.251 |
800 | 240 | 0 | 1037.6 | 418.2 | 0.4762 | 506.7 | 0.016 | −1.784 | −1.754 | 7.186 |
Depth | T | Na | K | Ca | Mg | HCO3 | SO4 | F | Cl | |
(m) | °C | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | |
500 | 230 | 192.6 | 21.27 | 3.64 | 0.00217 | 205.2 | 269.1 | 0.786 | 3.65 | |
800 | 240 | 185.5 | 22.79 | 3.15 | 0.00196 | 215.5 | 217.8 | 0.768 | 27.06 |
Depth | T | yFZ | H | SiO2 | CO2 | log PCO2 | log ∑eq,in | log ∑eq,fin | pH | |
---|---|---|---|---|---|---|---|---|---|---|
(m) | °C | kJ/kg | mg/kg | mg/kg | ||||||
900 | 270 | 1 | 2789.5 | 1.03 | 0.3202 | 3346 | 0.768 | |||
900 | 270 | 0 | 1185.4 | 550.5 | 0.3234 | 51.72 | −1.043 | −1.910 | −1.920 | 7.539 |
1250 | 295 | 0 | 1317.1 | 658.9 | 0.3564 | 119.9 | −0.741 | −1.956 | −1.946 | 7.396 |
Depth | T | Na | K | Ca | Mg | HCO3 | SO4 | F | Cl | |
(m) | °C | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | |
900 | 270 | |||||||||
900 | 270 | 148.8 | 24.96 | 0.241 | 0.00447 | 16.76 | 12.92 | 0.984 | 152.8 | |
1250 | 295 | 137.4 | 28.79 | 0.181 | 0.00358 | 17.86 | 8.13 | 0.932 | 145.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marini, L.; Orlando, S.; Vespasiano, G.; Apollaro, C. Geochemical Feed Zone Analysis Based on the Mineral–Solution Equilibrium Hypothesis. Geosciences 2025, 15, 52. https://doi.org/10.3390/geosciences15020052
Marini L, Orlando S, Vespasiano G, Apollaro C. Geochemical Feed Zone Analysis Based on the Mineral–Solution Equilibrium Hypothesis. Geosciences. 2025; 15(2):52. https://doi.org/10.3390/geosciences15020052
Chicago/Turabian StyleMarini, Luigi, Stefano Orlando, Giovanni Vespasiano, and Carmine Apollaro. 2025. "Geochemical Feed Zone Analysis Based on the Mineral–Solution Equilibrium Hypothesis" Geosciences 15, no. 2: 52. https://doi.org/10.3390/geosciences15020052
APA StyleMarini, L., Orlando, S., Vespasiano, G., & Apollaro, C. (2025). Geochemical Feed Zone Analysis Based on the Mineral–Solution Equilibrium Hypothesis. Geosciences, 15(2), 52. https://doi.org/10.3390/geosciences15020052