Geophagy, Rare Earth Elements and Geochemical Endemics
Abstract
1. Introduction
2. Results
2.1. A Brief History of the Study of Geophagy in Humans; The Spatial Relationship of Geophagy in Humans and Animals
2.2. Mineral, Chemical and Particle Size Compositions of “Edible Earths”
2.3. Which Population Groups Are Characterized by Geophagy; In Which Form and in Which Quantities Are Earthy Substances Consumed?
2.4. Review of Existing Hypotheses on the Causes of Geophagy
2.5. The Relationship Between Geophagy and Landscape REE Anomalies
2.6. Linking Geophagy to Geochemical Endemic Diseases
2.6.1. Endomyocardial Fibrosis

2.6.2. Sickle Cell Disease
2.6.3. Prion Diseases (Spongiform Encephalopathies)
- -
- Possibility of transmission from animal to human and vice versa;
- -
- Long incubation period from 1 year to 20 years or more;
- -
- Absence of symptoms for a long time after infection;
- -
- At the initial stage of the disease there are no signs of inflammation or changes in the blood;
- -
- Extraordinary resistance of the pathogenic agent to physical and chemical influences;
- -
- Prions are believed to be involved in the development of mental disorders and myopathy [137];
- -
- The mechanism of action of prions and their transformation from normal to pathological forms remains unclear.
3. Discussion
On the Incompleteness of the Theory of Immunity and the Special Role of Rare Earth Elements in the Neuroimmune-Endocrine System of Animals and Humans
4. Conclusions
- In humans, as in animals, geophagy is a natural, evolutionary form of self-regulation by organisms using natural mineral substances.
- The main purpose of this self-regulation is to maintain the composition and concentration of rare earth elements in the neuroimmunoendocrine system, which is necessary for its normal functioning.
- Only some of the RE-elements are vital for mammals, probably La, Ce, Nd, Pr, Sc and Y, whereas most other elements exhibit pathogenicity.
- The pathogenicity of RE-elements is due to their ability to easily replace vital RE-elements in structures of the neuroimmunoendocrine system, but they cannot adequately perform the desired functions.
- The main function of REEs, which are normally found in the mammalian neuroimmunoendocrine system, and which they perform together with some other elements (possibly including Se, I and some others), is to control the flow of chemical elements (possibly only metals) in the organism, determining the place in the body’s structure for each of them.
- Disturbances in the composition and concentration of essential elements in the mammalian neuroimmunoendocrine system lead to disorders of mineral and general metabolism in the body and, ultimately, to the development of geochemical endemics.
- Most geochemical endemics occur in landscapes with anomalous, i.e., significantly different from background, levels of biologically available REE forms, either deficient or excessive.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ross, T. Personal Narrative of Travels to the Equinoctial Regiom of America During the Years 1799–1804 by Alexander von Humholdt and Aime Bonpland; Routledge: London, UK, 1895; Volume 2. [Google Scholar]
- Hooper, D.; Mann, H.H. Earth eating and the earth eating habit in India. Mem. Asiat. Soc. Bengal Calcutta 1906, 1, 249–270. [Google Scholar]
- Laufer, B. Geophagy Publications of the Field Museum of Natural History. Anthropol. Ser. 1930, 18, 101–198. [Google Scholar]
- Sternberg, L.Y. Gilyaks, Orochs, Golds, Negidals, Ainu; Dalgiz: Habarovsck, Russia, 1933; 740p. [Google Scholar]
- Anell, B.; Lagercrantz, S. Gefagical customs. Stud. Ethnogr. Ups. 1958, 17, 98. [Google Scholar]
- Vermeer, D.E. Geophagical clays from the Benin area of Nigeria: A major source for the markets of West Africa. Nat. Geogr. Soc. Res. Rep. 1984, 16, 705–711. [Google Scholar]
- Browman, D.L.; Gundersen, J.N. Altiplano Comestible Earths: Prehistoric and Historic Geophagy of Highland Peru and Bolivia. Geoarchaeol. Int. J. 1993, 8, 413–425. [Google Scholar] [CrossRef]
- Rowland, M.J. Geophagy: An Assessment of Implications for the Development of Australian Indigenous Plant Processing Technologies. Aust. Aborig. Studies 2002, 1, 51–66. Available online: https://www.thefreelibrary.com/Geophagy:+an+assessment+of+implications+for+the+development+of...-a0127621929 (accessed on 3 July 2025).
- Wiley, A.S.; Katz, S.H. Geophagy in pregnancy: A test of a hypothesis. Curr. Anthropol. 1998, 39, 532–545. [Google Scholar]
- Mills, A.; Milewski, A. Geophagy and nutrient supplementation in the Ngorongoro Conservation Area, Tanzania, with particular reference to selenium, cobalt and molybdenum. J. Zool. 2007, 271, 110–118. [Google Scholar] [CrossRef]
- Placek, C.D.; Hagen, E.H. A Test of Three Hypotheses of Pica and Amylophagy Among Pregnant Women In Tamil Nadu, India. Am. J. Hum. Biol. 2013, 25, 803–813. [Google Scholar] [CrossRef]
- Placek, C.D. Ethnomedical and Sociocultural Factors of Pica Substances in Rural South India. Ecol. Food Nutr. 2017, 56, 238–255. [Google Scholar] [CrossRef] [PubMed]
- Voros, J.; Mahaney, W.C.; Milner, M.W. Geophagy by the Bonnet Macaques (Macaca radiata) of Southern India: A Preliminary Analysis. Primates 2001, 42, 327–344. [Google Scholar] [CrossRef]
- Mahandran, V.; Raghuram, H.; Nathan, P.T. Geophagy by the Indian short-nosed fruit bat, Cynopterus sphinx (Pteropodidae) while foraging on Madhuca latifolia (Sapotaceae) in Tamil Nadu, South India. Acta Ethologica 2016, 19, 95–99. [Google Scholar] [CrossRef]
- Anitha, J.K.; Joseph, S.; Rejith, R.G.; Sundararajan, M. Monazite chemistry and its distribution along the coast of Neendakara-Kayamkulam belt, Kerala, India. SN Appl. Sci. 2020, 2, 812. [Google Scholar] [CrossRef]
- Gebel, A.D. About earthy substances used for food in Persia. In Notes of the Imperial Academy of Sciences; Imperial Academy of Sciences: St. Petersburg, Russia, 1862; Volume 2, pp. 126–135. [Google Scholar]
- Vermeer, D.E.; Ray, E.; Ferrell, J. Nigerian Geophagical Clay: A Traditional Antidiarrheal Pharmaceutical. Science 1985, 227, 634–636. [Google Scholar] [CrossRef] [PubMed]
- Ferrell, R.E.; Vermeer, D.E.; LeBlanc, W.S. Chemical and mineralogical composition of geophagical materials. Trace Subst. Environ. Health 1985, XIX, 47–55. [Google Scholar]
- Mahaney, W.C.; Hancock, R.G.V. Geochemical analysis of African buffalo geophagic sites and dung on Mount Kenya, East Africa. Mammalia 1990, 54, 25–32. [Google Scholar] [CrossRef]
- Mahaney, W.C.; Milner, M.W.; Sunmugadas, K.; Hancock, R.G.V.; Aufreiter, S.; Wrangham, R.; Pier, H.W. Analysis of geophagy soils in Kibale Forest, Uganda. Primates 1997, 38, 159–176. [Google Scholar] [CrossRef]
- Mahaney, W.C.; Zippin, J.; Hancock, R.G.V.; Aufreiter, S.; Campbell, S.; Malloch, D.; Wink, M.; Huffman, M.A. Chemistry, mineralogy and microbiology of termite mound soils eaten by the chimpanzees of the Mahale mountains, Western Tanzania. J. Trop. Ecol. 1999, 15, 565–588. [Google Scholar] [CrossRef]
- Mahaney, W.C.; Milner, M.W.; Muliono, H.; Hancock, R.G.V.; Aufreiter, S. Mineral and chemical analyses of soil eaten by humans in Indonesia. Int. J. Environ. Health Res. 2000, 10, 93–109. [Google Scholar] [CrossRef]
- Wilson, M.J. Clay mineralogical and related characteristics of geophagic materials. J. Chem. Ecol. 2003, 29, 1525–1547. [Google Scholar] [CrossRef]
- Young, S.L.; Wilson, J.; Hillier, S.; Delbos, E.; Ali, S.M.; Stoltzfus, R.J. Differences and Commonalities in Physical, Chemical and Mineralogical Properties of Zanzibari Geophagic Soils. J. Chem. Ecol. 2010, 36, 129–140. [Google Scholar] [CrossRef]
- Ngole, V.M.; Ekosse, G.E. Physico-chemistry, mineralogy, geochemistry and nutrient bioaccessibility of geophagic soils from Eastern Cape, South Africa. Sci. Res. Essays 2012, 7, 1319–1331. [Google Scholar] [CrossRef]
- Kenne Kalguem, E.D.; Wouatong, A.S.L.; Njopwouo, D.; Ekosse, G. Physico-Chemical Characterization of Clayey Materials Consumed by Geophagism in Locality of Sabga (North-Western Cameroon): Health Implications. Int. J. Appl. Sci. Technol. 2018, 8, 57–68. [Google Scholar] [CrossRef]
- Young, S.L.; Sherman, P.W.; Lucks, J.B.; Pelto, G.H. Why on earth?: Evaluating hypotheses about the physiological functions of human geophagy. Q. Rev. Biol. 2011, 86, 97–120. [Google Scholar] [CrossRef]
- Young, S.L.; Miller, J.D. Medicine beneath your feet: A biocultural examination of the risks and benefits of geophagy. Clays Clay Miner. 2019, 67, 81–90. [Google Scholar] [CrossRef]
- Saathoff, E.; Olsen, A.; Kvalsvig, J.D.; Geissler, P.W. Geophagy and its association with geohelminth infection in rural schoolchildren from northern KwaZulu-Natal, South Africa. Trans. R. Soc. Trop. Med. Hyg. 2002, 96, 485–490. [Google Scholar] [CrossRef]
- Nchito, M.; Geissler, P.W.; Mubila, L.; Friis, H.; Olsen, A. Effects of iron and multimicronutrient supplementation on geophagy: A two-by-two factorial study among Zambian schoolchildren in Lusaka. Trans. R. Soc. Trop. Med. Hyg. 2004, 98, 218–227. [Google Scholar] [CrossRef]
- Geissler, P.W.; Mwaniki, D.; Thiong’o, F.; Friis, H. Geophagy as a risk factor for geohelminth infections: A longitudinal study of Kenyan primary schoolchildren. Trans. R. Soc. Trop. Med. Hyg. 1998, 92, 7–11. [Google Scholar] [CrossRef]
- Luoba, A.I.; Wenzel Geissler, P.; Estambale, B.; Ouma, J.H.; Alusala, D.; Ayah, R.; Mwaniki, D.; Magnussen, P.; Friis, H. Earth-eating and reinfection with intestinal helminths among pregnant and lactating women in western Kenya. Trop. Med. Int. Health 2005, 10, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Saunders, C.; Padilha, P.d.C.; Della Líbera, B.; Nogueira, J.L.; Oliveira, L.M.d.; Astulla, Á. Pica: Epidemiology and association with pregnancy complications. Rev. Bras. De Ginecol. E Obs. 2009, 31, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Halsted, J.A. Geophagia in man: Its nature and nutritional effects. Am. J. Clin. Nutr. 1968, 21, 1384–1393. [Google Scholar] [CrossRef] [PubMed]
- Kambunga, S.N.; Candeias, C.; Hasheela, I.; Mouri, H. Review of the nature of some geophagic materials and their potential health effects on pregnant women: Some examples from Africa. Environ. Geochem. Health 2019, 41, 2949–2975. [Google Scholar] [CrossRef] [PubMed]
- Dissanayake, C.B.; Chandrajith, R. Introduction to Medical Geology; Springer science & business media: Durham, NC, USA, 2009. [Google Scholar] [CrossRef]
- Lakudzala, D.; Khonje, J. Nutritive potential of some ‘edible’soils in Blantyre city, Malawi. Malawi Med. J. 2011, 23, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, J.W. Kula Udongo (earth eating habits): A social and cultural practice among Chagga Women on the slopes of Mount Kilimanjaro. Indilinga Afr. J. Indig. Knowl. Syst. 2002, 1, 19–25. [Google Scholar] [CrossRef]
- Benza, S.; Liamputtong, P. Pregnancy, childbirth and motherhood: A meta-synthesis of the lived experiences of immigrant women. Midwifery 2014, 30, 575–584. [Google Scholar] [CrossRef]
- Cousik, R.; Hickey, M.G. Pregnancy and childbirth practices among immigrant women from India:“Have a healthy baby”. Pregnancy Childbirth 2016, 4, 18–2016. [Google Scholar] [CrossRef]
- Madziva, C.; Chinouya, M.J. Clay Ingestion during pregnancy among Black African Women in a North London Borough: Understanding cultural meanings, integrating indigenous and biomedical knowledge systems. Front. Sociol. 2020, 5, 20. [Google Scholar] [CrossRef]
- Madziva, C.; Chinouya, M.J. African migrant women acquisition of clay for ingestion during pregnancy in London: A call for action. Public Health 2023, 223, 110–116. [Google Scholar] [CrossRef]
- Traugott, M.T.; Singh, M.; Raj, D.K.; Kutalek, R. Geophagy in India: A qualitative exploratory study on motivation and perception of female consumers. Trans. R. Soc. Trop. Med. Hyg. 2019, 113, 123–130. [Google Scholar] [CrossRef]
- Vermeer, D.E. Geophagy among the Ewe of Ghana. Ethnology 1971, 10, 56–72. [Google Scholar] [CrossRef]
- Van Huis, A. Cultural significance of termites in sub-Saharan Africa. J. Ethnobiol. Ethnomedicine 2017, 13, 8. [Google Scholar] [CrossRef]
- Walker, A.; Walker, B.; Jones, J.; Verardi, M.; Walker, C. Nausea and vomiting and dietary cravings and aversions during pregnancy in South African women. BJOG Int. J. Obstet. Gynaecol. 1985, 92, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Luoba, A.I.; Geissler, P.W.; Estambale, B.; Ouma, J.H.; Magnussen, P.; Alusala, D.; Ayah, R.; Mwaniki, D.; Friis, H. Geophagy among pregnant and lactating women in Bondo District, western Kenya. Trans. R. Soc. Trop. Med. Hyg. 2004, 98, 734–741. [Google Scholar] [CrossRef]
- Foti, F.L. The Possible Nutritional/Medicinal Value of Some Termite Mounds Used by Aboriginal Communities of Nauiyu Nambiyu (Daly River) and Elliott of the Northern Territory, with an Emphasis on Mineral Elements. Master’s Thesis, Charles Darwin University, Brinkin, NT, Australia, 1994. [Google Scholar] [CrossRef]
- Hunter, J.M. Geophagy in Africa and in the United States: A culture-nutrition hypothesis. Geogr. Rev. 1973, 63, 170–195. [Google Scholar] [CrossRef]
- Çavdar, A.O.; Arcasoy, A.; Cin, S.; Babacan, E.; Gözdasoğlu, S. Geophagia in Turkey: Iron and zinc deficiency, iron and zinc absorption studies and response to treatment with zinc in geophagia cases. Prog. Clin. Biol. Res. 1983, 129, 71–97. [Google Scholar] [PubMed]
- Prasad, A.S. Recognition of zinc-deficiency syndrome. Nutrition 2001, 17, 67–69. [Google Scholar] [CrossRef]
- Sayers, G.; Lipschitz, D.A.; Sayers, M.; Seftel, H.C.; Bothwell, T.H.; Charlton, R. Relationship between pica and iron nutrition in Johannesburg black adults. S. Afr. Med. J. 1974, 48, 1655–1660. [Google Scholar]
- Bhalla, J.; Khanna, P.; Srivastava, J.; Sur, B.; Bhalla, M. Serum zinc level in pica. Indian Pediatr. 1983, 20, 667–670. [Google Scholar]
- Chen, X.-C.; Yin, T.-A.; He, J.-S.; Ma, Q.-Y.; Han, Z.-M.; Li, L.-X. Low levels of zinc in hair and blood, pica, anorexia, and poor growth in Chinese preschool children. Am. J. Clin. Nutr. 1985, 42, 694–700. [Google Scholar] [CrossRef]
- Lofts, R.H.; Schroeder, S.; Maier, R. Effects of serum zinc supplementation on pica behavior of persons with mental retardation. Am. J. Ment. Retard. AJMR 1990, 95, 103–109. [Google Scholar] [PubMed]
- Dreyer, M.J.; Chaushev, P.G.; Gledhill, R.F. Biochemical investigations in geophagia. J. R. Soc. Med. 2004, 97, 48. [Google Scholar] [CrossRef]
- Hooda, P.S.; Henry, C.J.K.; Seyoum, T.A.; Armstrong, L.D.M.; Fowler, M.B. The potential impact of soil ingestion on human mineral nutrition. Sci. Total Environ. 2004, 333, 75–87. [Google Scholar] [CrossRef]
- Abrahams, P.W.; Follansbee, M.H.; Hunt, A.; Smith, B.; Wragg, J. Iron nutrition and possible lead toxicity: An appraisal of geophagy undertaken by pregnant women of UK Asian communities. Appl. Geochem. 2006, 21, 98–108. [Google Scholar] [CrossRef]
- Edwards, A.A.; Mathura, C.B.; Edwards, C.H. Effects of maternal geophagia on infant and juvenile rats. J. Nat. Med. Assoc. 1983, 75, 895–902. [Google Scholar]
- González, R.; Sánchez de Medina, F.; Martínez-Augustin, O.; Nieto, A.; Gálvez, J.; Risco, S.; Zarzuelo, A. Anti-inflammatory effect of diosmectite in hapten-induced colitis in the rat. Br. J. Pharmacol. 2004, 141, 951–960. [Google Scholar] [CrossRef] [PubMed]
- Barr, M. Adsorption studies on clays II. The adsorption of bacteria by activated attapulgite, halloysite, and kaolin. J. Am. Pharm. Assoc. 1957, 46, 490–492. [Google Scholar] [CrossRef]
- Gilardi, J.D.; Duffey, S.S.; Munn, C.A.; Tell, L. Biochemical functions of geophagy in parrots: Detoxification of dietary toxins and cytoprotective effects. J. Chem Ecol. 1999, 25, 897–922. [Google Scholar] [CrossRef]
- Lipson, S.M.; Stotzky, G. Adsorption of reovirus to clay minerals: Effects of cation-exchange capacity, cation saturation, and surface area. Appl. Environ. Microbiol. 1983, 46, 673–682. [Google Scholar] [CrossRef]
- Ngole, V.; Ekosse, G.; De Jager, L.; Songca, S. Physicochemical characteristics of geophagic clayey soils from South Africa and Swaziland. Afr. J. Biotechnol. 2010, 9, 36. [Google Scholar] [CrossRef]
- Seim, G.L.; Ahn, C.I.; Bodis, M.S.; Luwedde, F.; Miller, D.D.; Hillier, S.E.; Tako, E.C.; Glahn, R.P.; Young, S.L. Bioavailability of iron in geophagic earths and clay minerals, and their effect on dietary iron absorption using an in vitro digestion. Food Funct. 2013, 4, 1263–1270. [Google Scholar] [CrossRef]
- Levy, G. Gastrointestinal clearance of drugs with activated charcoal. N. Engl. J. Med. 1982, 307, 676–678. [Google Scholar] [CrossRef]
- Ditter, B.; Urbaschek, R.; Urbaschek, B. Ability of various adsorbents to bind endotoxins in vitro and to prevent orally induced endotoxemia in mice. Gastroenterology 1983, 84, 1547–1552. [Google Scholar] [CrossRef]
- Cooney, D.O.; Struhsaker, T.T. Adsorptive capacity of charcoals eaten by Zanzibar red colobus monkeys: Implications for reducing dietary toxins. Int. J. Primatol. 1997, 18, 235–246. [Google Scholar] [CrossRef]
- Struhsaker, T.T.; Cooney, D.O.; Siex, K.S. Charcoal Consumption by Zanzibar Red Colobus Monkeys: Its Function and Its Ecological and Demographic Consequences. Int. J. Primatol. 1997, 18, 61–72. [Google Scholar] [CrossRef]
- Kikouama, O.J.R.; Balde, L. From edible clay to a clay-containing formulation for optimization of oral delivery of some trace elements: A review. Int. J. Food Sci. Nutr. 2010, 61, 803–822. [Google Scholar] [CrossRef]
- Danford, D.E. Pica and nutrition. Annu. Rev. Nutr. 1982, 2, 303–322. [Google Scholar] [CrossRef]
- Williams, D.E.; McAdam, D. Assessment, behavioral treatment, and prevention of pica: Clinical guidelines and recommendations for practitioners. Res. Dev. Disabil. 2012, 33, 2050–2057. [Google Scholar] [CrossRef]
- Chalker, A.E. The psychopathology of Pica: Etiology, assessment, and treatment. Inq. J. 2017, 9, 2. [Google Scholar]
- Diko, M.; Ekosse, G.; Ayonghe, S.; Ntasin, E. Physical and geotechnical characterization of unconsolidated sediments associated with the 2005 Mbonjo landslide, Limbe, Cameroon. Int. J. Phys. Sci. 2012, 7, 2784–2790. [Google Scholar] [CrossRef]
- Diko, M.; Ekosse, G. Soil ingestion and associated health implications: A physicochemical and mineralogical appraisal of geophagic soils from Moko, Cameroon. Stud. Ethno-Med. 2014, 8, 83–88. [Google Scholar] [CrossRef]
- Kenne Kalguem, E.D.; Wouatong, A.S.L.; Njopwouo, D.; Kemteu, C.S.; Ekosse, G. Geophagic Clayey Materials of Sabga Locality (North West Cameroon): Genesis and Medical Interest. Earth Sci. 2019, 8, 45–59. [Google Scholar] [CrossRef]
- Tsafack, J.P.F.; Wandji, P.; Bardintzeff, J.-M.; Bellon, H.; Guillou, H. The Mount Cameroon stratovolcano (Cameroon volcanic line, Central Africa): Petrology, geochemistry, isotope and age data. Geochem. Mineral. Petrol. 2009, 47, 65–78. [Google Scholar]
- Temga, J.P.; Sababa, E.; Mamdem, L.E.; Ngo Bijeck, M.L.; Azinwi, P.T.; Tehna, N.; Zame, P.Z.O.; Onana, V.L.; Nguetnkam, J.P.; Bitom, L.D.; et al. Rare earth elements in tropical soils, Cameroon soils (Central Africa). Geoderma Reg. 2021, 25, e00369. [Google Scholar] [CrossRef]
- Hu, Z.; Haneklaus, S.; Sparovek, G.; Schnug, E. Rare earth elements in soils. Commun. Soil Sci. Plant Anal. 2006, 37, 1381–1420. [Google Scholar] [CrossRef]
- Mohamad, H.; Rafek, A.G. The distribution of rare earth elements in tropical granitic soil: A case study from Malaysia. J. SE Asian Earth Sci. 1993, 8, 617–625. [Google Scholar] [CrossRef]
- Sadeghi, M.; Morris, G.A.; Carranza, E.J.M.; Ladenberger, A.; Andersson, M. Rare earth element distribution and mineralization in Sweden: An application of principal component analysis to FOREGS soil geochemistry. J. Geochem. Explor. 2013, 133, 160–175. [Google Scholar] [CrossRef]
- Diatloff, E.; Asher, C.; Smith, F. Concentrations of rare earth elements in some Australian soils. Soil Res. 1996, 34, 735–747. [Google Scholar] [CrossRef]
- da Silva, Y.J.A.B.; do Nascimento, C.W.A.; da Silva, Y.J.A.B.; Biondi, C.M.; Silva, C.M.C.A.C. Rare earth element concentrations in Brazilian benchmark soils. Rev. Bras. Ciência Solo 2016, 40, e0150413. [Google Scholar] [CrossRef]
- Alfaro, M.R.; do Nascimento, C.W.A.; Biondi, C.M.; da Silva, Y.J.A.B.; da Silva, Y.J.A.B.; de Aguiar Accioly, A.M.; Montero, A.; Ugarte, O.M.; Estevez, J. Rare-earth-element geochemistry in soils developed in different geological settings of Cuba. Catena 2018, 162, 317–324. [Google Scholar] [CrossRef]
- Kotelnikova, A.; Rogova, O.; Stolbova, V. Lanthanides in the soil: Routes of entry, content, effect on plants, and genotoxicity (a review). Eurasian Soil Sci. 2021, 54, 117–134. [Google Scholar] [CrossRef]
- Panichev, A.M.; Baranovskaya, N.V.; Seryodkin, I.V.; Okhlopkov, I.M.; Mamaev, N.V.; Chekryzhov, I.Y.; Zhornyak, L.V.; Vakh, E.A.; Ivanov, V.V.; Lutsenko, T.N.; et al. Geophagy among wild ungulates in Yakutia landscapes with low rare earth element contents. Bull. Tomsk. Polytech. Univ. Georesources Eng. 2025, 336, 194–216. [Google Scholar] [CrossRef]
- Markert, B.; De Li, Z. Natural background concentrations of rare-earth elements in a forest ecosystem. Sci. Total Environ. 1991, 103, 27–35. [Google Scholar] [CrossRef]
- Vieira, C.C.; Botelho, N.F.; Garnier, J. Geochemical and mineralogical characteristics of REEY occurrences in the Mocambo Granitic Massif tin-bearing A-type granite, central Brazil, and its potential for ion-adsorption-type REEY mineralization. Ore Geol. Rev. 2019, 105, 467–486. [Google Scholar] [CrossRef]
- Vermeer, D.E. Agricultural and Dietary Practices Among the Tiv, Ibo and Birom Tribes, Nigeria. Ph.D Thesis, University of Berkeley, Berkeley, CA, USA, 1964. [Google Scholar]
- Vermeer, D.E. Geophagy among the Tiv of Nigeria. Ann. Assoc. Am. Geogr. 1966, 56, 197–204. [Google Scholar] [CrossRef]
- Izugbara, C.O. The cultural context of geophagy among pregnant and lactating Ngwa women of Southeastern Nigeria. Afr. Anthropol. 2003, 10, 180–199. [Google Scholar] [CrossRef]
- Davies, T.; Lar, U.; Solomon, A.; Abraham, P. Mineralogy and geochemistry of geophagic materials consumed in Jos-Plateau State of Nigeria. Pap. Present. Int. Conf. S. Afr. 2008. [Google Scholar]
- Eigbike, C.; Nfor, B.; Imasuen, I. Physicochemical investigations and health implications of geophagial clays of Edo State, Mid-Western Nigeria. J. Geol. Geosci. 2013, 3, 2. [Google Scholar] [CrossRef]
- Odewumi, S. Mineralogy and geochemistry of geophagic clays from share area, Northern Bida Sedimentary Basin, Nigeria. J. Geol. Geosci. 2013, 2, 108. [Google Scholar] [CrossRef]
- Lar, U.; Agene, J.; Umar, A. Geophagic clay materials from Nigeria: A potential source of heavy metals and human health implications in mostly women and children who practice it. Environ. Geochem. Health 2015, 37, 363–375. [Google Scholar] [CrossRef]
- Okunlola, O.; Owoyemi, K. Compositional characteristics of geophagic clays in parts of Southern Nigeria. Earth Sci. Res. 2015, 4, 1. [Google Scholar] [CrossRef]
- Ekenedo, G.O.; Okereke, C.B. Pattern of Geophagy Among Inhabitants of Owerri, Nigeria. Int. J. Dev. Res. 2018, 8, 20157–20163. [Google Scholar]
- Asowata, I.T. Geophagic clay around Uteh-Uzalla near Benin: Mineral and trace elements compositions and possible health implications. SN Appl. Sci. 2021, 3, 569. [Google Scholar] [CrossRef]
- Olajide-Kayode, J.O.; Kolawole, T.O.; Oyaniran, O.O.; Mustapha, S.O.; Olatunji, A.S. Potentially Harmful Element toxicity in Geophagic clays consumed in parts of southeastern Nigeria. J. Trace Elem. Miner. 2023, 4, 100050. [Google Scholar] [CrossRef]
- Ojo, O.J.; Adepoju, S.A.; Awe, A.; Adedoyin, A.D.; Abdulraman, S.O.; Omoyajowo, B.T. Physicochemical and mineralogical composition studies of clays from Share and Tshonga areas, Northern Bida Basin, Nigeria: Implications for Geophagia. Open Geosci. 2024, 16, 20220507. [Google Scholar] [CrossRef]
- Ajibade, O.M.; Oladipupo, S.D.; Osobamiro, T.M.; Bankole, J.K. Geophagic clay predominance and its possible health implications in the south-east region of Nigeria. J. Sustain. Sci. Manag. 2022, 17, 97–117. [Google Scholar] [CrossRef]
- Smith, J.W.; Adebowale, E.; Ogundola, F.; Taiwo, A.; Akpavie, S.; Larbi, A.; Jabbar, M. Influence of minerals on the aetiology of geophagia in periurban dairy cattle in the derived savannah of Nigeria. Trop. Anim. Health Prod. 2000, 32, 315–327. [Google Scholar] [CrossRef]
- Adelana, S.; Olasehinde, P.; Bale, R.; Vrbka, P.; Edet, A.; Goni, I. An overview of the geology and hydrogeology of Nigeria. In Applied Groundwater Studies in Africa; CRC Press: Boca Raton, FL, USA, 2008; pp. 181–208. [Google Scholar]
- Mason, D. On atrophia a ventriculo (mal d’Estomac) or dirt-eating. Edinb. Med. Surg. J. 1833, 39, 95–289. [Google Scholar]
- Cragin, F.W. Observations on Cachexia Africana or dirt-eating. Am. J. Med. Sci. 1836, 17, 356–364. [Google Scholar] [CrossRef]
- Bukhman, G.; Ziegler, J.; Parry, E. Endomyocardial Fibrosis: Still a Mystery after 60 Years. PLoS Neglected Trop. Dis. 2008, 2, e97. [Google Scholar] [CrossRef]
- Smith, B.; Chenery, S.R.N.; Cook, J.M.; Styles, M.T.; Tiberindwa, J.V.; Hampton, C.; Freers, J.; Rutakinggirwa, M.; Sserunjogi, L.; Tomkins, A.; et al. Geochemical and environmental factors controlling exposure to cerium and magnesium in Uganda. J. Geochem. Explor. 1998, 65, 1–15. [Google Scholar] [CrossRef]
- Freers, J.; Masembe, V.; Schmauz, R.; Mayanja-Kizza, H. Endomyocardial fibrosis syndrome in Uganda. Lancet 2000, 355, 1994–1995. [Google Scholar] [CrossRef] [PubMed]
- Somers, K. Restrictive Cardiomyopathies. In Pediatric Cardiology International Congress Series 906; Pongpanich, B., Sueblinvong, V., Vongprateep, C., Eds.; Excerpta Medica: Amsterdam, The Netherlands, 1990. [Google Scholar]
- Mocumbi, A.O.; Ferreira, M.B.; Sidi, D.; Yacoub, M.H. A population study of endomyocardial fibrosis in a rural area of Mozambique. N. Engl. J. Med. 2008, 359, 43–49. [Google Scholar] [CrossRef]
- Rutakingirwa, M.; Ziegler, J.L.; Newton, R.; Freers, J. Poverty and eosinophilia are risk factors for endomyocardial fibrosis (EMF) in Uganda. Trop. Med. Int. Health 1999, 4, 229–235. [Google Scholar] [CrossRef]
- Connor, D.H.; Somers, K.; Hutt, M.S.; Manion, W.C.; D’Arbela, P.G. Endomyocardial fibrosis in Uganda (Davies’ disease). Part I: An epidemiologic, clinical, and pathologic study. Am. Heart J. 1967, 74, 687–709. [Google Scholar] [CrossRef]
- Davies, J.; Spry, C.; Vijayaraghavan, G.; De Souza, J. A comparison of the clinical and cardiological features of endomyocardial disease in temperate and tropical regions. Postgrad. Med. J. 1983, 59, 179–183. [Google Scholar] [CrossRef]
- Ferreira, B.; Matsika-Claquin, M.; Hausse-Mocumbi, A.; Sidi, D.; Paquet, C. Geographic origin of endomyocardial fibrosis treated at the central hospital of Maputo (Mozambique) between 1987 and 1999. Bull. Soc. Pathol. Exot. 2002, 95, 276–279. [Google Scholar] [PubMed]
- Barakos, G.; Mischo, H.; Gutzmer, J. Status quo and future evaluations of global rare earth mining (with respect to special rare earth element-industry criteria). In Proceedings of the Third International Future Mining Conference, Sydney, Australia, 4–6 November 2015. [Google Scholar]
- Valiathan, M.S.; Kartha, C.C.; Eapen, J.T.; Dang, H.S.; Sunta, C.M. A geochemical basis for endomyocardial fibrosis. Cardiovasc. Res. 1989, 23, 647–648. [Google Scholar] [CrossRef]
- Eapen, J.; Kartha, C.; Valiathan, M. Cerium levels are elevated in the serum of patients with endomyocardial fibrosis (EMF). Biol. Trace Elem. Res. 1997, 59, 41–44. [Google Scholar] [CrossRef]
- Kartha, C.C.; Valiathan, M.S.; Eapen, J.T.; Rathinam, K.; Kumary, T.V.; Kutty, V.R. Enhancement of cerium levels and associated myocardial lesions in hypomagnesaemic rats fed on cerium-adulterated diet. In Endomyocardial Fibrosis; Valiathan, M.S., Somers, K., Kartha, C.C., Eds.; Oxford University Press: Dehli, India, 1993; pp. 243–253. [Google Scholar]
- Ramachandran, K.K.; Balagopalan, M.; Vijayakumaran Nayr, P. Use Pattern and Chemical Characterization of the Natural Salt Licks in Chinnar Wildlife Sanctuary (Research Report 94); Kerala Forest Research Institute Peechi: Thrissur, India, 1995; 18p. [Google Scholar]
- Kutty, V.R.; Abraham, S.; Kartha, C.C. Geographical distribution of endomyocardial fibrosis in South Kerala. Int. J. Epidemiol. 1996, 25, 1202–1207. [Google Scholar] [CrossRef] [PubMed]
- Eapen, J.T. Elevated Levels of Ceriumin Tubers from Regions Endemic for Endomyocardial Fibrosis (EMF). Bull. Environ. Contam. Toxicol. 1998, 60, 168–170. [Google Scholar] [CrossRef] [PubMed]
- Valiathan, M.; Kartha, C.; Nair, R.; Shivakumar, K.; Eapen, J. Geochemical basis of tropical endomyocardial fibrosis. Curr. Sci. 1994, 67, 99–104. [Google Scholar]
- Huebl, L.; Leick, S.; Guettl, L.; Akello, G.; Kutalek, R. Geophagy in northern Uganda: Perspectives from consumers and clinicians. Am. J. Trop. Med. Hyg. 2016, 95, 1440. [Google Scholar] [CrossRef]
- Gaillardet, J.; Viers, J.; Dupré, B. Trace elements in river waters. Treatise Geochem. 2003, 5, 605. [Google Scholar] [CrossRef]
- Rawlins, B.; Cordeiro, M.; Smith, B. Exposure and Bioavailability of Cerium Through the Ingestion of Soil (Uganda); Technical Report WC/98/12; British Geological Survey: Nottinghamshire, UK, 1998. [Google Scholar]
- Chen, R. Characteristics and regularity analysis of the Chengnan rare earth ores in Ninghua County. Fujian Prov. J. Yangtze Univ. (Nat. Sci. Ed.) 2013, 10, 65–67. [Google Scholar]
- Henry, J.M.; Cring, F.D. Geophagy an Anthropological Perspective. In Soils and Human Health; Brevik, E.C., Burgess, L.C., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 179–198. [Google Scholar] [CrossRef]
- Encyclopædia Britannica. Available online: https://www.britannica.com/science/sickle-cell-anemia (accessed on 8 October 2025).
- Elzouki, A.Y.; Harfi, H.A.; Nazer, H.; Oh, W.; Stapleton, F.; Whitley, R.J. Textbook of Clinical Pediatrics, 2nd ed.; Springer: Berlin, Germany, 2011. [Google Scholar] [CrossRef]
- Guimarães, A.; Machado, C.L.; Santos, J.; Lanziani, R.; Cordovil, K. Pica in sickle cell disease: Nutritional management and implications. N. Afr. J. Food Nutr. Res. 2024, 8, 154–164. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Gaboli, H.O.; Attalla, B. Pica among Sudanese children with sickle cell anemia. Basic Res. J. Med. Clin. Sci. 2015, 4, 1–7. [Google Scholar]
- Aloni, M.N.; Lecerf, P.; Lê, P.-Q.; Heijmans, C.; Huybrechts, S.; Devalck, C.; Azzi, N.; Ngalula-Mujinga, M.; Ferster, A. Is Pica under-reported in children with sickle cell disease? A pilot study in a Belgian cohort. Hematology 2015, 20, 429–432. [Google Scholar] [CrossRef]
- Kolthof, H.; van Weel, E. ‘My daughter eats my mattress!’—A patient with pica. Tijdschr. Psychiatr. 2008, 50, 185–189. [Google Scholar] [PubMed]
- Ayeta, A.C.; da Cunha, A.C.B.; Heidelmann, S.P.; Saunders, C. Fatores nutricionais e psicológicos associados com a ocorrência de picamalácia em gestantes. Rev. Bras. Ginecol. E Obs. 2015, 37, 571–577. [Google Scholar] [CrossRef]
- Young, S.L. Pica in pregnancy: New ideas about an old condition. Annu. Rev. Nutr. 2010, 30, 403–422. [Google Scholar] [CrossRef]
- Kachani, A.T.; Cordás, T.A. Da ópera-bufa ao caos nosológico: Pica. Arch. Clin. Psychiatry 2009, 36, 162–169. [Google Scholar] [CrossRef]
- Brown, P. 1755 and all that: A historical primer of transmissible spongiform encephalopathy. BMJ 1998, 317, 1688–1692. [Google Scholar] [CrossRef]
- Katscher, F. It’s Jakob’s disease, not Creutzfeldt’s. Nature 1998, 393, 11. [Google Scholar] [CrossRef]
- Zigas, V.; Gajdusek, D.C. Kuru: Clinical study of a new syndrome resembling paralysis agitans in natives of the Eastern Highlands of Australian New Guinea. Med. J. Aust. 1957, 2, 745–754. [Google Scholar] [CrossRef]
- Williams, E.; Young, S. Chronic wasting disease of captive mule deer: A spongiform encephalopathy. J. Wildl. Dis. 1980, 16, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Prusiner, S.B. Novel proteinaceous infectious particles cause scrapie. Science 1982, 216, 136–144. [Google Scholar] [CrossRef]
- Chakrabortee, S.; Kayatekin, C.; Newby, G.A.; Mendillo, M.L.; Lancaster, A.; Lindquist, S. Luminidependens (LD) is an Arabidopsis protein with prion behavior. Proc. Natl. Acad. Sci. USA 2016, 113, 6065–6070. [Google Scholar] [CrossRef] [PubMed]
- Health Care Providers. Clinical Overview of Creutzfeldt-Jakob Disease (CJD). Available online: https://www.cdc.gov/creutzfeldt-jakob/hcp/clinical-overview/index.html (accessed on 1 July 2025).
- Collinge, J. Prion diseases of humans and animals: Their causes and molecular basis. Annu. Rev. Neurosci. 2001, 24, 519–550. [Google Scholar] [CrossRef]
- Spraker, T.; Miller, M.; Williams, E.; Getzy, D.; Adrian, W.; Schoonveld, G.; Spowart, R.; O’Rourke, K.I.; Miller, J.; Merz, P. Spongiform encephalopathy in free-ranging mule deer (Odocoileus hemionus), white-tailed deer (Odocoileus virginianus) and Rocky Mountain elk (Cervus elaphus nelsoni) in northcentral Colorado. J. Wildl. Dis. 1997, 33, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Benestad, S.L.; Mitchell, G.; Simmons, M.; Ytrehus, B.; Vikøren, T. First case of chronic wasting disease in Europe in a Norwegian free-ranging reindeer. Vet. Res. 2016, 47, 88. [Google Scholar] [CrossRef]
- Chronic Wasting Disease. Moose Found Dead in Forest with Chronic Wasting Disease. Available online: https://cwd-info.org/wp-content/uploads/2018/03/Update-119.pdf (accessed on 1 July 2025).
- Vikøren, T.; Våge, J.; Madslien, K.I.; Røed, K.H.; Rolandsen, C.M.; Tran, L.; Hopp, P.; Veiberg, V.; Heum, M.; Moldal, T. First detection of chronic wasting disease in a wild red deer (Cervus elaphus) in Europe. J. Wildl. Dis. 2019, 55, 970–972. [Google Scholar] [CrossRef]
- Kim, T.-Y.; Shon, H.-J.; Joo, Y.-S.; Mun, U.-K.; Kang, K.-S.; Lee, Y.-S. Additional cases of chronic wasting disease in imported deer in Korea. J. Vet. Med. Sci. 2005, 67, 753–759. [Google Scholar] [CrossRef]
- Escobar, L.E.; Pritzkow, S.; Winter, S.N.; Grear, D.A.; Kirchgessner, M.S.; Dominguez-Villegas, E.; Machado, G.; Townsend Peterson, A.; Soto, C. The ecology of chronic wasting disease in wildlife. Biol. Rev. 2020, 95, 393–408. [Google Scholar] [CrossRef]
- Plummer, I.H.; Johnson, C.J.; Chesney, A.R.; Pedersen, J.A.; Samuel, M.D. Mineral licks as environmental reservoirs of chronic wasting disease prions. PLoS ONE 2018, 13, e0196745. [Google Scholar] [CrossRef]
- Johnson, C.J.; Pedersen, J.A.; Chappell, R.J.; McKenzie, D.; Aiken, J.M. Oral transmissibility of prion disease is enhanced by binding to soil particles. PLoS Pathog. 2007, 3, e93. [Google Scholar] [CrossRef]
- VerCauteren, K.C.; Burke, P.W.; Phillips, G.E.; Fischer, J.W.; Seward, N.W.; Wunder, B.A.; Lavelle, M.J. Elk use of wallows and potential chronic wasting disease transmission. J. Wildl. Dis. 2007, 43, 784–788. [Google Scholar] [CrossRef] [PubMed]
- Lavelle, M.J.; Phillips, G.E.; Fischer, J.W.; Burke, P.W.; Seward, N.W.; Stahl, R.S.; Nichols, T.A.; Wunder, B.A.; VerCauteren, K.C. Mineral licks: Motivational factors for visitation and accompanying disease risk at communal use sites of elk and deer. Environ. Geochem. Health 2014, 36, 1049–1061. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, M.C.; Carlson, C.M.; Cross, P.C.; Johnson, C.J.; Richards, B.J.; Russell, R.E.; Samuel, M.D.; Sargeant, G.A.; Walsh, D.P.; Walter, W.D. Chronic Wasting Disease—Research by the U.S. Geological Survey and Partners; Open-File Report 2019-1109; U.S. Geological Survey: Reston, VA, USA, 2019; 29p. [CrossRef]
- Elliott, H.; Wall, F.; Chakhmouradian, A.; Siegfried, P.; Dahlgren, S.; Weatherley, S.; Finch, A.; Marks, M.; Dowman, E.; Deady, E. Fenites associated with carbonatite complexes: A review. Ore Geol. Rev. 2018, 93, 38–59. [Google Scholar] [CrossRef]
- Panichev, A.; Golokhvast, K. Major and Minor Causes of Geophagy-Lithophagy in Animals and Humans. Geosciences 2025, 15, 75. [Google Scholar] [CrossRef]
- U.S. Geological Survey. CWD Map March 2017. Available online: https://www.usgs.gov/media/images/cwd-map-march-2017 (accessed on 8 October 2025).
- Panichev, A.; Trepet, S.; Chekryzhov, I.Y.; Seryodkin, I.; Vakh, E.; Makarevich, R.; Eskina, T.; Bibina, K.; Stolyarova, T.; Mitina, E. A study of kudurs used by wild animals located on the water sources high in REE content in the Caucasus Nature Reserve. Environ. Geochem. Health 2021, 43, 91–112. [Google Scholar] [CrossRef]
- Panichev, A.M.; Seryodkin, I.V.; Kalinkin, Y.N.; Makarevich, R.A.; Stolyarova, T.A.; Sergievich, A.A.; Khoroshikh, P.P. Development of the “rare-earth” hypothesis to explain the reasons of geophagy in Teletskoye Lake are kudurs (Gorny Altai, Russia). Environ. Geochem. Health 2018, 40, 1299–1316. [Google Scholar] [CrossRef]
- Panichev, A.M.; Baranovskaya, N.V.; Seryodkin, I.V.; Chekryzhov, I.Y.; Vakh, E.A.; Kalinkin, Y.V.; Lutsenko, T.N.; Popov, N.Y.; Ruslan, A.V.; Ostapenko, D.S.; et al. Excess of REE in plant foods as a cause of geophagy in animals in the Teletskoye Lake basin, Altai Republic, Russia. World Acad. Sci. J. 2023, 5, 6. [Google Scholar] [CrossRef]
- Panichev, A.M.; Baranovskaya, N.V.; Seryodkin, I.V.; Chekryzhov, I.Y.; Soktoev, B.R.; Ivanov, V.V.; Vakh, E.A.; Desyatova, T.V.; Lutsenko, T.N.; Popov, N.Y.; et al. The Main Cause of Geophagy According to Extensive Studies on Olkhon Island, Lake Baikal. Geosciences 2023, 13, 211. [Google Scholar] [CrossRef]
- Panichev, A.M.; Baranovskaya, N.V.; Chekryzhov, I.Y.; Kalinkin, Y.N.; Kholodov, A.S.; Spandidos, D.A.; Tsatsakis, A.; Golokhvast, K.S. Kudurs (mineral licks) on ultrabasic rocks in the Altai Mountains, Russia. World Acad. Sci. J. 2022, 5, 2. [Google Scholar] [CrossRef]
- Panichev, A.M.; Baranovskaya, N.V.; Chekrizhov, I.Y.; Ivanov, V.V.; Tsatska, A.N. An Unusual Variety of Geophagy: Coal Consumption by Snow Sheep in the Transbaikalia Mountains. Dokl. Earth Sci. 2024, 516, 1061–1066. [Google Scholar] [CrossRef]
- Panichev, A.M.; Popov, V.K.; Chekryzhov, I.Y.; Seryodkin, I.V.; Stolyarova, T.A.; Zakusin, S.V.; Sergievich, A.A.; Khoroshikh, P.P. Rare earth elements upon assessment of reasons of the geophagy in Sikhote-Alin region (Russian Federation), Africa and other world regions. Environ. Geochem. Health 2016, 38, 1255–1270. [Google Scholar] [CrossRef]
- Panichev, A.M.; Baranovskaya, N.V.; Seryodkin, I.V.; Chekryzhov, I.Y.; Vakh, E.A.; Soktoev, B.R.; Belyanovskaya, A.I.; Makarevich, R.A.; Lutsenko, T.N.; Popov, N.Y.; et al. Landscape REE anomalies and the cause of geophagy in wild animals at kudurs (mineral salt licks) in the Sikhote-Alin. Environ. Geochem. Health 2021, 44, 1137–1160. [Google Scholar] [CrossRef] [PubMed]
- Panichev, A.M. Rare Earth Elements: Review of Medical and Biological Properties and Their Abundance in the Rock Materials and Mineralized SpringWaters in the Context of Animal and Human Geophagia Reasons Evaluation. Achiev. Life Sci. 2015, 9, 95–103. [Google Scholar] [CrossRef]
- Shilo, N.A.; Lozhkin, A.V.; Titov, E.E.; Shumilov, Y.V. Kirgilyakh Mammoth; Nauka: Moscow, Russia, 1983; 209p. (In Russian) [Google Scholar]
- Bgatov, V.I.; Lazarev, P.A.; Speshilova, M.A. Lithophagy and Mammoth Fauna; Yakutsk Scientific Center: Yakutsk, Russia, 1989; 32p. (In Russian) [Google Scholar]
- Mashchenko, E.N. New data on the peculiarities of mammoth biology. Priroda 1999, 10, 41–53. (In Russian) [Google Scholar]
- Leshchinskiy, S.V. Strong evidence for dietary mineral imbalance as the cause of osteodystrophy in Late Glacial woolly mammoths at the Berelyokh site (Northern Yakutia, Russia). Quat. Int. 2017, 445, 146–170. [Google Scholar] [CrossRef]
- Popov, V.K.; Sakhno, V.G.; Kuzmin, Y.V.; Glascock, M.D.; Choi, B.-K. Geochemistry of volcanic glasses of Pektusan volcano. Dokl. Akad. Nauk. 2005, 403, 242–247. [Google Scholar]
- Liu, J.; Shen, Z.; Yang, W.; Che, J.; Xie, L.; Lei, H. Effect of Long-term Intake of Rare Earth in Drinking Water on Trace Elements in Brains of Mice. J. Rare Earths 2002, 20, 562–564. [Google Scholar]
- Feng, L.; Xiao, H.; He, X.; Li, Z.; Li, F.; Liu, N.; Zhao, Y.; Huang, Y.; Zhang, Z.; Chai, Z. Neurotoxicological consequence of long-term exposure to lanthanum. Toxicol. Lett. 2006, 165, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Atherton, N.D.; Totten, J.W.; Gaitonde, M.D. Treatment of Bone Diseases. US 2002/0051822A1, 2 May 2002. [Google Scholar]
- Knebel, C. Untersuchungen Zum Einfluss Seltener Erd-Citrate Auf Leistungsparameter Beim Schwein Und Die Ruminale Fermentation Im künstlichen Pansen (RUSITEC). Doctoral Thesis, Ludwig Maximilian University of Munich, München, Germany, 2004. [Google Scholar]
- Wehr, U.; Feldhaus, A.; Rambeck, W. Rare earth elements restore accelerated bone loss in a small animal model of postmenopausal osteoporosis. In Proceedings of the Society of Nutrition Physiology, Goöttingen, Germany, 21–23 March 2006. [Google Scholar]
- Davies, P.; Brown, D.R. Manganese enhances prion protein survival in model soils and increases prion infectivity to cells. PLoS ONE 2009, 4, e7518. [Google Scholar] [CrossRef] [PubMed]
- Nichols, T.A.; Spraker, T.R.; Gidlewski, T.; Cummings, B.; Hill, D.; Kong, Q.; Balachandran, A.; VerCauteren, K.C.; Zabel, M.D. Dietary magnesium and copper affect survival time and neuroinflammation in chronic wasting disease. Prion 2016, 10, 228–250. [Google Scholar] [CrossRef]
- Shorter, J.; Lindquist, S. Prions as adaptive conduits of memory and inheritance. Nat. Rev. Genet. 2005, 6, 435–450. [Google Scholar] [CrossRef]
- Ziegler, J.L. Endemic Kaposi’s sarcoma in Africa and local volcanic soils. Lancet 1993, 342, 1348–1351. [Google Scholar] [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panichev, A.M.; Golokhvast, K.S.; Baranovskaya, N.V.; Strepetov, D.A. Geophagy, Rare Earth Elements and Geochemical Endemics. Geosciences 2025, 15, 428. https://doi.org/10.3390/geosciences15110428
Panichev AM, Golokhvast KS, Baranovskaya NV, Strepetov DA. Geophagy, Rare Earth Elements and Geochemical Endemics. Geosciences. 2025; 15(11):428. https://doi.org/10.3390/geosciences15110428
Chicago/Turabian StylePanichev, Alexander M., Kirill S. Golokhvast, Natalya V. Baranovskaya, and Dmitry A. Strepetov. 2025. "Geophagy, Rare Earth Elements and Geochemical Endemics" Geosciences 15, no. 11: 428. https://doi.org/10.3390/geosciences15110428
APA StylePanichev, A. M., Golokhvast, K. S., Baranovskaya, N. V., & Strepetov, D. A. (2025). Geophagy, Rare Earth Elements and Geochemical Endemics. Geosciences, 15(11), 428. https://doi.org/10.3390/geosciences15110428

