Santorini Volcanic Complex (SVC): How Much Has the Crustal Velocity Structure Changed since the 2011–2012 Unrest, and at What Point Are We Now?
Abstract
:1. Introduction
- -
- The 1650 Columbo Volcanic Eruption: The trembling from the volcanic eruption caused widespread damage to Santorini and resulted in tsunamis that hit surrounding areas.
- -
- 1707, when an earthquake was associated with an eruption, and the activity ended on September 1711, creating Nea Kameni [28].
- -
- Since then, four central vent eruptions have been recorded, with the most recent one ending in 1950.
- -
- The 1956 Amorgos Earthquake, with a magnitude of 7.7, was one of the most devastating in modern times. It centered near the island of Amorgos but severely affected Santorini. The earthquake and subsequent tsunami destroyed many buildings and caused a significant loss of life, impacting the island [29,30,31,32].
2. Data
- -
- Each event had to be recorded at least by eight stations for both P and S phases.
- -
- For both time windows, we kept the arrivals recorded in common stations of the permanent network of HUSN.
- -
- A selection based on the magnitude was applied (ML ≥ 2.0) for the 2011–2012 intracalderic activity to maintain a similar ray coverage.
- -
- Focal depths had to be between 1 and 50 km.
- -
- The nearest station distance had to be less than the selected events’ hypocentral depth.
- -
- RMS could not be larger than 0.5 s.
3. Tomographic Inversion
4. Results
- The main negative anomaly for P-waves located in the southern part of the volcanic complex (~−12%) contrasts with the corresponding positive one (~+10%) from the central sector of Nea Kameni to Imerovigli, creating a discontinuity possibly connected with the Kameni tectonic line (slices of 2 and 4 km).
- The distribution of dVp is anticorrelated with that of dVs in the area N–NNE of Kameni.
- Furthermore, a similar observation is made in the central sector of Santorini Island, NNE of Akrotiri, where a strong contrast of the E–W direction between positive (north) and negative (south) body-wave velocity perturbations is observed (36.35–36.42° Ν, 25.42–25.45° Ε).
- On the other hand, heading towards Columbo, we see the dominance of negative body-wave velocity perturbations for the depth slices of 2 and 4 km, while in the deeper tomograms, this changes with the prevalence of positive anomalies (~6–8%) and the distribution of higher Vp/Vs ratio (Figure 11) (>1.87; ~36.50° Ν, 25.50° Ε).
- Strong negative anomalies at shallow depths to 6 km and relatively large Vp/Vs ratio values.
- At depths greater than 4 km (profiles AA’ and BB’), NNE and SSW of Nea Kameni, high body-wave anomalies (>8%).
- At a depth range between 3 and 7 km, beneath the caldera of Santorini, positive dVp (%) and negative dVs (%). This resulted in high Vp/Vs ratios that approached the value of 2.
- High Vp, low Vs, and high Vp/Vs ratios are observed at 6–8 km depth, south of Nea Kameni and north of Akrotiri (profile CC’).
- The absolute body-wave velocities range from 3.4 to 5.0 km/s (P-wave) and 2.2 to 3.4 km/s (S-wave) in the uppermost part of the crust (~5.0 km depth). At the 5–10 km depth, the P- and S velocities are generally low beneath the main volcanic centers of Kameni and Columbo, compared to the areas SW and NE (profiles AA’ and BB’; Figures S26 and S27).
- A considerable decrease in the intensity of the anomalies at depth slices of 2 and 4 km compared to the first time-window. In comparison, the widening of the negative anomalies (~−12%) in the S waves’ velocities and the change of the sign of the perturbations in the area south of Kameni for the slices of 8 and 12 km are characteristic.
- The greatest velocity contrasts were seen in the surface layers of the crust (<4 km), while for depths greater than 8 km, a zone of fast velocity anomalies (Vp and Vs) is observed in the area south of Kameni and near Akrotiri (Figure 15 and Figure 16), contrasting with the corresponding negative ones to the north.
- The main negative anomaly for P-waves located in the central part of the volcanic complex (~−12%) contrasts with the corresponding positive one (~+10%) from the southern sector of SVC, creating a discontinuity at the southern part of the island.
- Furthermore, a similar observation is made in the central sector of Santorini Island, NNE of Akrotiri, where a strong contrast of the E–W direction between positive (north) and negative (south) body-wave velocity perturbations is observed (36.35–36.42° Ν, 25.42–25.45° Ε), which resembles the results of [59,60,62] from the active source experiment conducted in 2015. In the area NE of Santorini Island, we keep seeing the dominance of negative body-wave velocity perturbations for the depth slices of 2 and 4 km, as in the first time-window (~36.50° Ν, 25.50° Ε). This is in agreement with the studies of [37,62,63]. The latter [63] has shown the presence of a low Vp zone below the submarine volcano of Columbo between 2 and 4 km depth.
- Strong negative anomalies at shallow depths in the intracalderic area, associated with relatively high Vp/Vs ratio values (>1.85).
- Low Vp and high Vs anomalies at deep parts of the area beneath Kameni (profiles DD’ and EE’), forming a low Vp/Vs ratio distribution.
- The absolute body-wave velocities range from 3.4 to 5.0 km/s (P-wave) and 2.2 to 3.4 km/s (S-wave) in the uppermost part of the crust (~5.0 km depth).
5. Discussion
6. Conclusions
- -
- A significant reduction in body-wave anomalies has been observed at shallow depths since the 2011–2012 unrest.
- -
- A persistently high Vp/Vs ratio (>1.87) remains NNE of Kameni at a shallower depth (2 km) than in the first time-period.
- -
- The Columbo volcano is mainly characterized by negative P and S anomalies and a low Vp/Vs ratio (1.56–1.64) at shallow depths in both time windows, interpreted as dry steam/gas phases.
- -
- At depths shallower than 20 km, the Columbo submarine volcanic center is not connected to the Kameni one.
- -
- There is a wide low-velocity (Vp) zone in the SW of Christiana Islands, which is correlated to the Pliocene NNE–SSW-oriented basin.
- -
- We have to be cautious about the above-mentioned results due to the limited resolution regarding the separation lengths between the volcano-tectonic features.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Papazachos, C.B.; Kiratzi, A.A. A detailed study of the active crustal deformation in the Aegean and surrounding area. Tectonophysics 1996, 253, 129–153. [Google Scholar] [CrossRef]
- McKenzie, D. Active Tectonics of the Mediterranean Region. Geophys. J. Int. 1972, 30, 109–185. [Google Scholar] [CrossRef]
- McClusky, S.; Balassanian, S.; Barka, A.; Demir, C.; Ergintav, S.; Georgiev, I.; Gurkan, O.; Hamburger, M.; Hurst, K.; Kahle, H.; et al. Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J. Geophys. Res. Space Phys. 2000, 105, 5695–5719. [Google Scholar] [CrossRef]
- Brüstle, A.; Friederich, W.; Meier, T.; Gross, C. Focal mechanism and depth of the 1956 Amorgos twin earthquakes from waveform matching of analogue seismograms. Solid Earth 2014, 5, 1027–1044. [Google Scholar] [CrossRef]
- Papazachos, B.C.; Papadimitriou, E.E.; Kiratzi, A.A.; Papazachos, C.B.; Louvari, E.K. Fault plane solutions in the Aegean Sea and the surrounding area and their tectonic implication. Boll. Geofis. Teor. Appl. 1998, 39, 199–218. [Google Scholar]
- Kassaras, I.; Kapetanidis, V.; Ganas, A.; Tzanis, A.; Kosma, C.; Karakonstantis, A.; Valkaniotis, S.; Chailas, S.; Kouskouna, V.; Papadimitriou, P. The New Seismotectonic Atlas of Greece (v1.0) and Its Implementation. Geosciences 2020, 10, 447. [Google Scholar] [CrossRef]
- Papadopoulos, G.; Sachpazi, M.; Panopoulou, G.; Stavrakakis, G. The volcanoseismic crisis of 1996–1997 in Nisyros, SE Aegean Sea, Greece. Terra Nova 1998, 10, 151–154. [Google Scholar] [CrossRef]
- Sachpazi, M.; Kontoes, C.; Voulgaris, N.; Laigle, M.; Vougioukalakis, G.; Sikioti, O.; Stavrakakis, G.; Baskoutas, J.; Kalogeras, J.; Lepine, J.C. Seismological and SAR signature of unrest at Nisyros Caldera, Greece. J. Volcanol. Geotherm. Res. 2002, 116, 19–33. [Google Scholar] [CrossRef]
- Bohnhoff, B.; Rische, M.; Meier, T.; Becker, D.; Stavrakakis, G.; Harjes, H.P. Microseismic activity in the Hellenic Volcanic Arc, Greece, with emphasis on the seismotectonic setting of the Santorini–Amorgos zone. Tectonophysics 2006, 423, 17–33. [Google Scholar] [CrossRef]
- Dimitriadis, I.; Karagianni, E.; Panagiotopoulos, D.; Papazachos, C.; Hatzidimitriou, P.; Bohnhoff, M.; Rische, M.; Meier, T. Seismicity and active tectonics at Coloumbo Reef (Aegean Sea, Greece): Monitoring an active volcano at Santorini Volcanic Center using a temporary seismic network. Tectonophysics 2009, 465, 136–149. [Google Scholar] [CrossRef]
- Kolaitis, A.; Papadimiriou, P.; Kassaras, I.; Makropoulos, K. Seismic observations with broadband instruments at Santorini Volcano, Bulletin of the Geological Society of Greece. In Proceedings of the 11th International Congress, Athens, Greece, 24 May 2007; pp. 1150–1161. [Google Scholar]
- Lagios, E.; Sakkas, V.; Novali, F.; Bellotti, F.; Ferretti, A.; Vlachou, K.; Dietrich, V. SqueeSARTM and GPS ground deformation monitoring of Santorini Volcano (1992–2012): Tectonic Implications. Tectonophysics 2013, 594, 38–59. [Google Scholar] [CrossRef]
- Newman, A.V.; Stiros, S.; Feng, L.; Psimoulis, P.; Moschas, F.; Saltogianni, V.; Jiang, Y.; Papazachos, C.; Panagiotopoulos, D.; Karagianni, E.; et al. Recent geodetic unrest at Santorini Caldera, Greece. Geophys. Res. Lett. 2012, 39, L06309. [Google Scholar] [CrossRef]
- Nomikou, P.; Parks, M.M.; Papanikolaou, D.; Pyle, D.M.; Mather, T.A.; Carey, S.; Watts, A.B.; Paulatto, M.; Kalnins, M.L.; Livanos, I.; et al. The emergence and growth of a submarine volcano: The Kameni islands, Santorini (Greece). Geo. Res. J. 2014, 1–2, 8–18. [Google Scholar] [CrossRef]
- Saltogianni, V.; Stiros, S.C.; Newman, A.V.; Flanagan, K.; Moschas, F. Time-space modeling of the dynamics of Santorini volcano (Greece) during the 2011–2012 unrest. J. Geophys. Res. Solid Earth 2014, 119, 8517–8537. [Google Scholar] [CrossRef]
- Papadimitriou, P.; Kapetanidis, V.; Karakonstantis, A.; Kaviris, G.; Voulgaris, N.; Makropoulos, K. The Santorini Volcanic Complex: A detailed multi-parameter seismological approach with emphasis on the 2011–2012 unrest period. J. Geodyn. 2015, 85, 32–57. [Google Scholar] [CrossRef]
- Kaviris, G.; Papadimitriou, P.; Kravvariti, P.; Kapetanidis, V.; Karakonstantis, A.; Voulgaris, N.; Makropoulos, K. A detailed seismic anisotropy study during the 2011-2012 unrest period in the Santorini Volcanic Complex. Phys. Earth Planet. Inter. 2015, 238, 51–88. [Google Scholar] [CrossRef]
- Druitt, T.H.; Mellors, R.A.; Pyle, D.M.; Sparks, R.S.J. Explosive volcanism on Santorini, Greece. Geol. Mag. 1989, 126, 95–126. [Google Scholar] [CrossRef]
- Druitt, T.H. New insights into the initiation and venting of the Bronze-Age eruption of Santorini, from component analysis. Bull. Volcanol. 2014, 76, 794. [Google Scholar] [CrossRef]
- Druitt, T.H.; Francaviglia, V. Caldera formation on Santorini and the physiography of the islands in the late Bronze Age. Bull. Volcanol. 1992, 54, 484–493. [Google Scholar] [CrossRef]
- Dura, A.; Nomikou, P.; Mertzimekis, T.J.; Hannington, M.D.; Petersen, S.; Poulos, S. Identifying Probable Submarine Hydrothermal Spots in North Santorini Caldera Using the Generalized Moments Method. Geosciences 2023, 13, 269. [Google Scholar] [CrossRef]
- Paraskevas, M.; Paradissis, D.; Hooft, E.; Nomikou, P. Spatiotemporal gravity changes at the Santorini Volcanic complex and their interpretation. Quat. Sci. Adv. 2024, 13, 100140. [Google Scholar] [CrossRef]
- Vougioukalakis, G.E.; Fytikas, M. Volcanic Hazards in the Aegean Area, Relative Risk Evaluation, Monitoring and Present State of the Active Volcanic Centers. In The South Aegean Active Volcanic Arc, Development in Volcanology; Fytikas, M., Vougioukalakis, G.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; Volume 7, pp. 161–183. [Google Scholar]
- Dominey-Howes, D.; Cundy, A.; Croudace, I. High energy marine flood deposits on Astypalea Island, Greece: Possible evidence for the AD 1956 southern Aegean tsunami. Mar. Geol. 2000, 163, 303–315. [Google Scholar] [CrossRef]
- Cantner, K.; Carey, S.; Nomikou, P. Integrated volcanologic and petrologic analysis of the 1650 AD eruption of Kolumbo submarine volcano, Greece. J. Volcanol. Geotherm. Res. 2014, 269, 28–43. [Google Scholar] [CrossRef]
- Ulrova, M.; Paris, R.; Nomikou, P.; Kelfoun, K.; Leibrandt, S.; Tappin, D.R.; McCoy, F.W. Source of the tsunami generated by the 1650 AD eruption of Kolumbo submarine volcano (Aegean Sea, Greece). J. Volcanol. Geotherm. Res. 2016, 321, 125–139. [Google Scholar] [CrossRef]
- Konstantinou, K.I. Magma chamber evolution during the 1650 AD Kolumbo eruption provides clues about past and future volcanic activity. Sci. Rep. 2020, 10, 15423. [Google Scholar] [CrossRef]
- Papazachos, B.C.; Papazachou, C. The Earthquakes of Greece; Ziti Publications: Athens, Greece, 2003. [Google Scholar]
- ten Veen, J.H.; Kleinspehn, K.L. Incipient continental collision and plate-boundary curvature: Late Pliocene–Holocene transtensional Hellenic forearc, Crete, Greece. J. Geol. Soc. 2003, 160 Pt 2, 161–181. [Google Scholar] [CrossRef]
- Papadimitriou, E.; Sourlas, G.; Karakostas, V. Seismicity variations in the Southern Aegean, Greece, before and after the large (M7.7) 1956 Amorgos earthquake due to evolving stress. Pure Appl. Geophys. 2005, 162, 783–804. [Google Scholar] [CrossRef]
- Okal, E.A.; Synolakis, C.E.; Uslu, B.; Kalligeris, N.; Voukouvalas, E. The 1956 earthquake and tsunami in Amorgos, Greece. Geophys. J. Int. 2009, 178, 1533–1554. [Google Scholar] [CrossRef]
- Konstantinou, K. Crustal rheology of the Santorini–Amorgos zone: Implications for the nucleation depth and rupture extent of the 9 July 1956 Amorgos earthquake, southern Aegean. J. Geodyn. 2010, 50, 400–409. [Google Scholar] [CrossRef]
- Hensch, M.; Dahm, T.; Hort, M.; Dehghani, A.; Hübscher, C.; The EGELADOS Working Group. First results of the ocean-bottom-seismometer and-tiltmeter experiment at Coloumbo submarine volcano (Aegean Sea, Greece). In Geophysical Research Abstracts, Proceedings of the EGU General Assembly, Vienna, Austria, 13–18 April 2008; European Geosciences Union: Vienna, Austria, 2008; Volume 10, EGU2008-A-02760. [Google Scholar]
- Sakellariou, D.; Sigurdsson, H.; Alexandri, M.; Carey, S.; Rousakis, G.; Nomikou, P.; Georgiou, P.; Ballas, D. Active Tectonics in the Hellenic Volcanic Arc: The Kolumbo Submarine Volcanic Zone. Bull. Geol. Soc. Greece 2017, 43, 1056. [Google Scholar] [CrossRef]
- Nomikou, P.; Hübscher, C.; Papanikolaou, D.; Farangitakis, G.; Ruhnau, M.; Lampridou, D. Expanding extension, subsidence and lateral segmentation within the Santorini–Amorgos basins during Quaternary: Implications for the 1956 Amorgos events, central–south Aegean Sea, Greece. Tectonophysics 2018, 722, 138–153. [Google Scholar] [CrossRef]
- Sigurdsson, H.; Carey, S.; Alexandri, M.; Vougioukalakis, G.; Croff, K.L.; Roman, C.; Sakellariou, D.; Anagnostou, C.; Rousakis, G.; Ioakim, C. Marine investigations of Greece’s Santorini volcanic field. Eos 2006, 87, 337–339. [Google Scholar] [CrossRef]
- Dimitriadis, I.; Papazachos, C.; Panagiotopoulos, D.; Hatzidimitriou, P.; Bohnhoff, M.; Rische, M.; Meier, T. P and S velocity structures of the Santorini–Coloumbo volcanic system (Aegean Sea, Greece) obtained by non-linear inversion of travel times and its tectonic implications. J. Volcanol. Geotherm. Res. 2010, 195, 13–30. [Google Scholar] [CrossRef]
- Konstantinou, K.; Evangelidis, C.; Liang, W.-T.; Melis, N.; Kalogeras, I. Seismicity, Vp/Vs and shear wave anisotropy variations during the 2011 unrest at Santorini caldera, southern Aegean. J. Volcanol. Geotherm. Res. 2013, 267, 57–67. [Google Scholar] [CrossRef]
- Parks, M.M.; Moore, J.D.P.; Papanikolaou, X.; Biggs, J.; Mather, T.A.; Pyle, D.M.; Raptakis, C.; Paradissis, D.; Hooper, A.; Parsons, B.; et al. Evolution From quiescence to unrest: 20 years of satellite geodetic measurements at Santorini volcano, Greece. J. Geophys. Res. Solid Earth 2015, 120, 1309–1328. [Google Scholar] [CrossRef]
- Feuillet, N. The 2011–2012 unrest at Santorini rift: Stress interaction between active faulting and volcanism. Geophys. Res. Lett. 2013, 40, 3532–3537. [Google Scholar] [CrossRef]
- Rivalta, E.; Corbi, F.; Passarelli, L.; Acocella, V.; Davis, T.; Di Vito, M.A. Stress inversions to forecast magma pathways and eruptive vent location. Sci. Adv. 2019, 5, eaau9784. [Google Scholar] [CrossRef]
- Karakonstantis, A.; Papadimitriou, P.; Kapetanidis, V.; Kaviris, G.; Voulgaris, N.; Kassaras, I. Moderate to Strong recoded earthquakes during 2020–2022 in the Hellenic peninsula and neighbouring regions. In Proceedings of the 16th International Congress of the Geological Society of Greece, Patras, Greece, 17–19 October 2022; p. 278. [Google Scholar]
- Ambraseys, N.N. The seismic sea wave of July 9, 1956, in the Greek archipelago. J. Geophys. Res. Space Phys. 1960, 65, 1257–1265. [Google Scholar] [CrossRef]
- Papadopoulos, G.A.; Gràcia, E.; Urgeles, R.; Sallares, V.; De Martini, P.M.; Pantosti, D.; González, M.; Yalciner, A.C.; Mascle, J.; Sakellariou, D.; et al. Historical and pre-historical tsunamis in the Mediterranean and its connected seas: Geological signatures, generation mechanisms and coastal impacts. Mar. Geol. 2014, 354, 81–109. [Google Scholar] [CrossRef]
- Papadopoulos, G.A.; Pavlides, S.B. The large 1956 earthquake in the South Aegean: Macroseismic field configuration, faulting, and neotectonics of Amorgos Island. Earth Planet. Sci. Lett. 1992, 113, 383–396. [Google Scholar] [CrossRef]
- Behr, Y.; Clinton, J.F.; Cauzzi, C.; Hauksson, E.; Jónsdóttir, K.; Marius, C.G.; Pinar, A.; Salichon, J.; Sokos, E. The Virtual Seismologist in SeisComP3: A New Implementation Strategy for Earthquake Early Warning Algorithms. Seism. Res. Lett. 2016, 87, 363–373. [Google Scholar] [CrossRef]
- Lee, W.H.K.; Lahr, J.C. HYP071 (Revised): A Computer Program for Determining Hypocenter, Magnitude, and First Motion Pattern of Local Earthquakes; U.S. Geological Survey Open File Report 75-311; U.S. Geological Survey: Reston, VA, USA, 1975.
- Klein, F.W. User’s Guide to HYPOINVERSE-2000, a Fortran Program to Solve for Earthquake Locations and Magnitudes, 2002–2171; United States Department of the Interior Geological Survey: Menlo Park, CA, USA, 2002; p. 123. [Google Scholar]
- Koulakov, I. LOTOS code for local earthquake tomographic inversion: Benchmarks for testing tomographic algorithms. Bull. Seismol. Soc. Am. 2009, 99, 194–214. [Google Scholar] [CrossRef]
- Toomey, D.R.; Foulger, G.R. Tomographic inversion of local earthquake data from the Hengill–Grensdalur central volcano complex, Iceland. J. Geophys. Res. 1989, 94, 17497–17510. [Google Scholar] [CrossRef]
- Jaxybulatov, K.; Koulakov, I.; Ibs-von Seht, M.; Klinge, K.; Reichert, C.; Dahren, B.; Troll, V.R. Evidence for high fluid/melt content beneath Krakatau volcano (Indonesia) from local earthquake tomography. J. Volcanol. Geotherm. Res. 2011, 206, 96–105. [Google Scholar] [CrossRef]
- Um, J.; Thurber, C.A. Fast algorithm for two-point seismic ray tracing. Bull. Seismol. Soc. Am. 1987, 77, 972–986. [Google Scholar] [CrossRef]
- Paige, C.C.; Saunders, M.A. LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares. ACM Trans. Math. Softw. 1982, 8, 43–71. [Google Scholar] [CrossRef]
- Nolet, G. Seismic wave propagation and seismic tomography. In Seismic Tomography; Springer: Dordrecht, The Netherlands, 1987; pp. 1–23. [Google Scholar]
- Julian, B.R.; Foulger, G.R. Time-dependent seismic tomography. Geophys. J. Int. 2010, 182, 1327–1338. [Google Scholar] [CrossRef]
- Humphreys, E.; Clayton, R.W. Adaptation of back projection tomography to seismic travel time problems. J. Geophys. Res. 1988, 93, 1073–1085. [Google Scholar] [CrossRef]
- Koulakov, I.; Boychenko, E.; Smirnov, S.Z. Magma Chambers and Meteoric Fluid Flows Beneath the Atka Volcanic Complex (Aleutian Islands) Inferred from Local Earthquake Tomography. Geosciences 2020, 10, 214. [Google Scholar] [CrossRef]
- Kasatkina, E.; Koulakov, I.; West, M.; Izbekov, P. Seismic structure changes beneath Redoubt Volcano during the 2009 eruption inferred from local earthquake tomography. J. Geophys. Res. Solid Earth 2014, 119, 4938–4954. [Google Scholar] [CrossRef]
- Hooft, E.; Heath, B.A.; Toomey, D.R.; Paulatto, M.; Papazachos, C.B.; Nomikou, P.; Morgan, J.V.; Warner, M.R. Seismic imaging of Santorini: Subsurface constraints on caldera collapse and present-day magma recharge. Earth Planet. Sci. Lett. 2019, 514, 48–61. [Google Scholar] [CrossRef]
- Heath, B.A.; Hooft, E.E.E.; Toomey, D.R.; Paulatto, M.; Papazachos, C.B.; Nomikou, P.; Morgan, J.V. Relationship between active faulting/fracturing and magmatism around Santorini: Seismic anisotropy from an active source tomography experiment. J. Geophys. Res. Solid Earth 2021, 126, e2021JB021898. [Google Scholar] [CrossRef]
- Drymoni, K.; Browning, J.; Gudmundsson, A. Spatial and temporal volcanotectonic evolution of Santorini volcano, Greece. Bull. Volcanol. 2022, 84, 60. [Google Scholar] [CrossRef]
- McVey, B.; Hooft, E.; Heath, B.; Toomey, D.; Paulatto, M.; Morgan, J. Magma accumulation beneath Santorini volcano, Greece, from P-wave tomography. Geology 2020, 48, 231–235. [Google Scholar] [CrossRef]
- Chrapkiewicz, K.; Paulatto, M.; Heath, B.; Hooft, E.; Nomikou, P.; Papazachos, C.B.; Schmid, F.; Toomey, D.R.; Warner, M.R.; Morgan, J.V. Magma Chamber Detected Beneath an Arc Volcano With Full-Waveform Inversion of Active-Source Seismic Data, Magma chamber detected beneath an arc volcano with full-waveform inversion of active-source seismic data. Geochem. Geophys. Geosystems 2022, 23, e2022GC010475. [Google Scholar] [CrossRef]
- Schmid, F.; Petersen, G.; Hooft, E.; Paulatto, M.; Chrapkiewicz, K.; Hensch, M.; Dahm, T. Heralds of future volcanism: Swarms of microseismicity beneath the submarine Kolumbo volcano indicate opening of near-vertical fractures exploited by ascending melts. Geochem. Geophys. Geosystems 2022, 23, e2022GC010420. [Google Scholar] [CrossRef]
- Tong, P.; Yang, D.; Li, D.; Liu, Q. Time-evolving seismic tomography: The method and its application to the 1989 Loma Prieta and 2014 South Napa earthquake area, California. Geophys. Res. Lett. 2017, 44, 3165–3175. [Google Scholar] [CrossRef]
- Ranjan, P.; Konstantinou, K.I. Local earthquake tomography of the Aegean crust: Implications for active deformation, large earthquakes, and arc volcanism. Tectonophysics 2024, 880, 230331. [Google Scholar] [CrossRef]
- D’Auria, L.; Koulakov, I.; Prudencio, J.; Cabrera-Pérez, I.; Ibáñez, J.M.; Barrancos, J.; García-Hernández, R.; Martínez van Dorth, D.; Padilla, G.D.; Przeor, M.; et al. Rapid magma ascent beneath La Palma revealed by seismic tomography. Sci Rep 2022, 12, 17654. [Google Scholar] [CrossRef]
- Kuznetsov, P.Y.; Koulakov, I.Y. The three-dimensional structure beneath the Popocatépetl volcano (Mexico) based on local earthquake seismic tomography. J. Volcanol. Geotherm. Res. 2014, 276, 10–21. [Google Scholar] [CrossRef]
- Bernard, A.; Battani, A.; Rizzo, A.L.; Balci, U.; Györe, D.; D’Alessandro, W.; Callot, J.-P.; Kyriakopoulos, K.; Pujol, M. Temporal monitoring of fumarole composition at Santorini volcano (Greece) highlights a quiescent state after the 2011–2012 unrest. Front. Earth Sci. 2024, 12, 1366213. [Google Scholar] [CrossRef]
- Dotsika, E.; Poutoukis, D.; Michelot, J.L.; Raco, B. Natural tracers for identifying the origin of the thermal fluids emerging along the Aegean Volcanic arc (Greece): Evidence of Arc-Type Magmatic Water (ATMW) participation. J. Volcanol. Geotherm. Res. 2009, 179, 19–32. [Google Scholar] [CrossRef]
- Boitnott, G.N.; Kirkpatrick, A. Interpretation of field seismic tomography at The Geysers geothermal field, California. In Proceedings of the 22nd Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 27–29 January 1997. [Google Scholar]
- De Natale, G.; Troise, C.; Trigila, R.; Dolfi, D.; Chiarabba, C. Seismicity and 3-D substructure at Somma–Vesuvius volcano: Evidence for magma quenching. Earth Planet. Sci. Lett. 2004, 221, 181–196. [Google Scholar] [CrossRef]
- Rizzo, A.L.; Caracausi, A.; Chavagnac, V.; Nomikou, P.; Polymenakou, P.N.; Mandalakis, M.; Kotoulas, G.; Magoulas, A.; Castillo, A.; Lampridou, D.; et al. Geochemistry of CO2-Rich Gases Venting From Submarine Volcanism: The Case of Kolumbo (Hellenic Volcanic Arc, Greece). Front. Earth Sci. 2019, 7, 60. [Google Scholar] [CrossRef]
- Karagianni, E.E.; Papazachos, C.B.; Panagiotopoulos, D.G.; Suhadolc, P.; Vuan, A.; Panza, G.F. Shear velocity structure in the Aegean area obtained by inversion of Rayleigh waves. Geophys. J. Int. 2005, 160, 127–143. [Google Scholar] [CrossRef]
- Klaver, M.; Carey, S.; Nomikou, P.; Smet, I.; Godelitsas, A.; Vroon, P. A distinct source and differentiation history for Kolumbo submarine volcano, Santorini volcanic field, Aegean arc. Geochem. Geophys. Geosystems 2016, 17, 3254–3273. [Google Scholar] [CrossRef]
- Preine, J.; Karstens, J.; Hübscher, C.; Crutchley, G.J.; Druitt, T.H.; Schmid, F.; Nomikou, P. The Hidden Giant: How a rift pulse triggered a cascade of sector collapses and voluminous secondary mass-transport events in the early evolution of Santorini. Basin Res. 2022, 34, 1465–1485. [Google Scholar] [CrossRef]
- Paulatto, M.; Hooft, E.E.E.; Chrapkiewicz, K.; Heath, B.; Toomey, D.R.; Morgan, J.V. Advances in seismic imaging of magma and crystal mush. Front. Earth Sci. 2022, 10, 970131. [Google Scholar] [CrossRef]
- Hellenic Mediterranean University Research Center (Former Technological Educational Institute of Crete). Seismological Network of Crete; 10.7914/SN/HC; International Federation of Digital Seismograph Networks: Crete, Greece, 2006. [Google Scholar]
- National Observatory of Athens, Institute of Geodynamics, Athens. National Observatory of Athens Seismic Network [Data set]. International Federation of Digital Seismograph Networks. 1975. Available online: https://www.fdsn.org/networks/detail/HL/ (accessed on 30 June 2024).
- University of Athens. Hellenic Seismological Network, University of Athens, Seismological Laboratory [Data Set]. International Federation of Digital Seismograph Networks. 2008. Available online: https://www.fdsn.org/networks/detail/HA/ (accessed on 30 June 2024).
- Aristotle University of Thessaloniki. Aristotle University of Thessaloniki Seismological Network [Data Set]. International Federation of Digital Seismograph Networks. 1981. Available online: https://www.fdsn.org/networks/detail/HT/ (accessed on 30 June 2024).
- Institute of Engineering Seismology Earthquake Engineering (ITSAK), Greece. 1981. Available online: https://www.fdsn.org/networks/detail/HI/ (accessed on 30 June 2024).
- University of Patras, Seismological Laboratory, HP. 2000. Available online: https://www.fdsn.org/networks/detail/HP/ (accessed on 30 June 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karakonstantis, A.; Vallianatos, F. Santorini Volcanic Complex (SVC): How Much Has the Crustal Velocity Structure Changed since the 2011–2012 Unrest, and at What Point Are We Now? Geosciences 2024, 14, 263. https://doi.org/10.3390/geosciences14100263
Karakonstantis A, Vallianatos F. Santorini Volcanic Complex (SVC): How Much Has the Crustal Velocity Structure Changed since the 2011–2012 Unrest, and at What Point Are We Now? Geosciences. 2024; 14(10):263. https://doi.org/10.3390/geosciences14100263
Chicago/Turabian StyleKarakonstantis, Andreas, and Filippos Vallianatos. 2024. "Santorini Volcanic Complex (SVC): How Much Has the Crustal Velocity Structure Changed since the 2011–2012 Unrest, and at What Point Are We Now?" Geosciences 14, no. 10: 263. https://doi.org/10.3390/geosciences14100263
APA StyleKarakonstantis, A., & Vallianatos, F. (2024). Santorini Volcanic Complex (SVC): How Much Has the Crustal Velocity Structure Changed since the 2011–2012 Unrest, and at What Point Are We Now? Geosciences, 14(10), 263. https://doi.org/10.3390/geosciences14100263