Possible Indication of the Impact of the Storegga Slide Tsunami on the German North Sea Coast around 8150 cal BP
Abstract
:1. Introduction
2. Current State of Research
2.1. Identification of SST Deposits
2.2. Preservation of SST Deposits
2.3. Effects of SST on the Mesolithic Population
2.4. Numerical Simulation
2.5. Geographical Disctribution of SST Deposits
3. Eiderstedt Peninsula and the Garding Site (German Bight)
4. Materials and Methods
4.1. ERT Studies
4.2. DP Sensing
4.3. Vibracoring and Sedimentological Analyses
4.4. Microfaunal Analysis
4.5. Geochronological Data
4.6. Palaeogeographical Maps
5. Results
5.1. Geophysical Prospection Using Electrical Resistivity Tomography (ERT)
5.2. Description of Core Garding-2A
5.2.1. Stratigraphic Units
5.2.2. DP Measurements
5.3. Microfossil Analyses
5.4. Radiocarbon and OSL Dating
6. Discussion
6.1. Geochronostratigraphy
6.2. Palaeogeographies and Coastal Configuration
6.3. Sedimentological and Palaeoenvironmental Interpretation
6.4. Synopsis and Geographical Implications
7. Conclusions
- (i)
- Based on sedimentary and microfaunal evidence, we identified a high-energy event layer between 19.85 and 19.68 m b.s., representing an allochthonous intermingled marine facies lying on top of autochthonous fluvial deposits of the palaeo-Eider estuary system. This event facies bears sedimentary characteristics typical of tsunami impact such as a basal erosional unconformity, abundant shell debris, fining-upward in grain size and an upward increase of organic matter as well as incorporated muddy rip-up clasts.
- (ii)
- Considering the entire chronostratigraphy obtained for core Garding-2(A), the age of the tsunami bed most probably coincides with the SST (Garding-2A scenarioa and scenariob: 8152–7632 cal BP and 8064–7424 cal BP compared to SST ages by [3]: minimum 8176–7941 cal BP, maximum 8346–8029 cal BP, (weighted) mean age 8172–8031 cal BP).
- (iii)
- The Storegga slide tsunami layer identified at Garding was deposited at or maximum ca. 1–1.5 m below the local relative sea level at that time and tens of kilometers inland from the mouth of the palaeo-Eider estuary. This palaeogeographical setting along with sedimentary characteristics allow for the exclusion that the event layer was accumulated during a storm.
- (iv)
- Based on sedimentological results, the palaeogeographical setting and chronostratigraphic data, we suggest that the high-energy layer identified in core Garding-2A was deposited by the SST. Thus, this paper gives evidence, for the first time, of indications for (a) high-energy tsunami landfall along German North Sea coast and (b) the southernmost point of Storegga tsunami impact in the North Sea.
- (v)
- We identified the sedimentary unit found on top of the SST layer (unit IIc) as representing the Holocene marine transgression at Eiderstedt Peninsula at the end of the 8th mill. BP (7.3–6.5 ka cal BP), which correlates well with the findings for Rømø Island. The transgression finally opens up the palaeo-Eider estuary into a tidal channel system under permanent marine conditions as evidenced my sedimentary features and microfaunal assemblages.
- (vi)
- Other than presumed so far, we assume that the entire southern North Sea coast was affected by the SST, but that sedimentary signals have not yet been identified or have been misinterpreted.
- (vii)
- This paper gives reason to assume that the German North Sea coast is not protected from tsunami events but that tsunamis seem to be a common, low-frequency phenomenon in this region (see also [88,118]). The tsunami threat to the present coast, especially along the estuaries, should not be underestimated, especially for highly vulnerable infrastructure such as nuclear power plants (e.g., those located in the Elbe estuary).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haflidason, H.; Lien, R.; Sejrup, H.P.; Forsberg, C.F.; Bryn, P. The dating and morphometry of the Storegga Slide. Mar. Pet. Geol. 2005, 22, 123–136. [Google Scholar] [CrossRef]
- Weninger, B.; Schulting, R.; Bradtmöller, M.; Clare, L.; Collard, M.; Edinborough, K.; Hilpert, J.; Jöris, O.; Niekus, M.; Rohling, E.J.; et al. The catastrophic final flooding of Doggerland by the Storegga Slide tsunami. Doc. Praehist. 2008, 25, 1–24. [Google Scholar] [CrossRef]
- Bondevik, S.; Stormo, S.K.; Skjerdal, G. Green mosses date the Storegga tsunami to the chilliest decades of the 8.2 ka cold event. Quat. Sci. Rev. 2012, 45, 1–6. [Google Scholar] [CrossRef]
- Brown, H.E.; Holbrook, W.S.; Hornbach, M.J.; Nealon, J. Slide structure and role of gas hydrate at the northern boundary of the Storegga Slide, offshore Norway. Mar. Geol. 2006, 229, 179–186. [Google Scholar] [CrossRef]
- Dawson, A.G.; Long, D.; Smith, D.E. The Storegga slides: Evidence from eastern Scotland for a possible tsunami. Mar. Geol. 1988, 82, 271–276. [Google Scholar] [CrossRef]
- Dawson, A.; Bondevik, S.; Teller, J.T. Relative Timing of the Storegga submarine slide, methane release, and climate change during the 8.2 ka cold event. Holocene 2011, 21, 1167–1171. [Google Scholar] [CrossRef]
- Harbitz, C.B. Model simulations of tsunamis generated by the Storegga slides. Mar. Geol. 1992, 105, 1–21. [Google Scholar] [CrossRef]
- Henry, R.F.; Murty, T.S. Model studies of the effects of the Storegga slide tsunami. Sci. Tsunami Hazards 1992, 10, 51–62. [Google Scholar]
- Bondevik, S.; Magerud, J.; Dawson, S.; Dawson, A.; Lohne, Ø. Evidence for three North Sea tsunamis at the Shetland Islands between 8000 and 1500 years ago. Quat. Sci. Rev. 2005, 24, 1757–1775. [Google Scholar] [CrossRef]
- Hill, J.; Collins, G.S.; Avdis, A.; Kramer, S.C.; Piggott, M.D. How does multiscale modelling and inclusion of realistic palaeobathymetry affect numerical simulation of the Storegga slide tsunami? Ocean. Model. 2014, 83, 11–25. [Google Scholar] [CrossRef]
- Gaffney, V.; Fitch, S.; Bates, M.; Ware, R.L.; Kinnaird, T.; Gearey, B.; Hill, T.; Telford, R.; Batt, C.; Stern, B.; et al. Multi-proxy characterisation of the Storegga tsunami and its impact on the early Holocene landscapes of the southern North Sea. Geosciences 2020, 10, 270. [Google Scholar] [CrossRef]
- Walker, J.; Gaffney, V.; Fitch, S.; Muru, M.; Fraser, A.; Bates, M.; Bates, R. A great wave: The Storegga tsunami and the end of Doggerland? Antiquity 2020, 94, 1409–1425. [Google Scholar] [CrossRef]
- Fruergaard, M.; Piasecki, S.; Johannessen, P.N.; Noe-Nygaard, N.; Andersen, T.J.; Pejrup, M.; Nielsen, L.H. Tsunami propagation over a wide, shallow continental shelf caused by the Storegga slide, southeastern North Sea, Denmark. Geology 2015, 43, 1047–1050. [Google Scholar] [CrossRef]
- Bork, I.; Dick, S.; Kleine, E.; Müller-Navarra, S.H. Tsunami-Untersuchungen für die deutsche Nordseeküste. Die Küste 2007, 72, 65–103. Available online: https://hdl.handle.net/20.500.11970/101573 (accessed on 1 October 2024).
- Lehfeldt, R.; Milbradt, P.; Plüss, A.; Schüttrumpf, H. Propagation of a tsunami-wave in the North Sea. Die Küste 2007, 72, 105–123. Available online: https://hdl.handle.net/20.500.11970/101574 (accessed on 1 October 2024).
- Kulkarni, R.; Zimmermann, N.; Lanckriet, T.; Breugem, A. Inundation risk due to landslide-generated tsunami in the North-Sea. In Proceedings of the XXIVth TELEMAC-MASCARET User Conference, Graz, Austria, 17–20 October 2017; Dorfmann, C., Zenz, G., Eds.; Graz University of Technology: Graz, Austria, 2017; pp. 23–29. [Google Scholar]
- Behre, K.-E. Landschaftsgeschichte Norddeutschlands: Umwelt und Siedlung von der Steinzeit bis zur Gegenwart; Wachholtz Verlag: Kiel, Germany, 2008; 308p. [Google Scholar]
- Donkers, H. Een Tsunami aan Onze Kust. Geografie. November/December 2017. Available online: https://geografie.nl/artikel/een-tsunami-aan-onze-kust (accessed on 2 September 2021).
- Frère, A.; Daubord, C.; Gailler, A.; Hérbert, H. Sea level surges of June 2011 in the NE Atlantic Ocean: Observations and possible interpretation. Nat. Hazards 2014, 74, 179–196. [Google Scholar] [CrossRef]
- Newig, J.; Kelletat, D. The North Sea tsunami of June 5, 1858. J. Coast. Res. 2011, 27, 931–941. [Google Scholar] [CrossRef]
- Newig, J. Merkmale eines historischen Tsunamis in der Nordsee. Mainz. Geogr. Stud. 2013, 55, 95–110. [Google Scholar]
- Wartenberg, W.; Vött, A.; Freund, H.; Hadler, H.; Frechen, M.; Willershäuser, T.; Schnaidt, S.; Fischer, P.; Obrocki, L. Evidence of isochronic transgressive surfaces within the Jade Bay tidal flat area, southern German North Sea coast—Holocene event horizons of regional interest. Z. Geomorphol. Suppl. 2013, 57, 229–256. [Google Scholar] [CrossRef]
- Dawson, A.G.; Long, D.; Smith, D.E. Evidence for a tsunami from a Mesolithic site in Inverness, Scotland. J. Archaeol. Sci. 1990, 17, 509–512. [Google Scholar] [CrossRef]
- Nyland, A.J.; Walker, J.; Warren, G. Evidence of the Storegga Tsunami 8200 BP? An archaeological review of impact after a large-scale marine event in Mesolithic Northern Europe. Front. Earth Sci. 2021, 9, 767460. [Google Scholar] [CrossRef]
- Bondevik, S.; Svendsen, J.I.; Mangerud, J. Tsunami sedimentary facies deposited by the Storegga tsunami in shallow marine basins and coastal lakes, western Norway. Sedimentology 1997, 44, 1115–1131. [Google Scholar] [CrossRef]
- Bondevik, S.; Svendsen, J.I.; Johnson, G.; Mangerud, J.; Kaland, P.E. The Storegga tsunami along the Norwegian coast, its age and runup. Boreas 1997, 26, 29–53. [Google Scholar] [CrossRef]
- Bondevik, S.; Svendsen, J.I.; Mangerud, J. Distinction between the Storegga tsunami and the Holocene marine transgression in coastal basin deposits of western Norway. J. Quaternraay Sci. 1998, 13, 529–537. [Google Scholar] [CrossRef]
- Bondevik, S.; Mangerud, J.; Dawson, S.; Dawson, A.; Lohne, Ø. Record-breaking height for 8000-year-old tsunami in the North Atlantic. EOS Trans. Am. Geophys. Union 2003, 84, 289–293. [Google Scholar] [CrossRef]
- Rasmussen, H.; Bondevik, S.; Corner, G.D. Holocene relative sea level history and Storegga tsunami run-up in Lyngen, northern Norway. J. Quat. Sci. 2018, 33, 393–408. [Google Scholar] [CrossRef]
- Smith, D.E.; Shi, S.; Cullingford, R.A.; Dawson, A.G.; Dawson, S.; Firth, C.R.; Foster, I.D.L.; Fretwell, P.T.; Haggart, B.A.; Holloway, L.K.; et al. The Holocene Storegga slide tsunami in the United Kingdom. Quat. Sci. Rev. 2004, 23, 2291–2321. [Google Scholar] [CrossRef]
- Bondevik, S. The sands of tsunami time. Nature 2008, 455, 1183–1184. [Google Scholar] [CrossRef]
- Vasskog, K.; Waldmann, N.; Bondevik, S.; Nesje, A.; Chapron, E.; Ariztegui, D. Evidence of the Storegga tsunami run-up at the head of Nordfjord, western Norway. J. Quat. Sci. 2013, 28, 391–402. [Google Scholar] [CrossRef]
- Cascalho, J.; Costa, P.; Dawson, S.; Milne, F.; Rocha, A. Heavy mineral assemblages of the Storegga tsunami deposit. Sediment. Geol. 2016, 334, 21–33. [Google Scholar] [CrossRef]
- Long, A.J.; Barlow, N.L.M.; Dawson, S.; Hill, J.; Innes, J.B.; Kelham, C.; Milne, F.D.; Dawson, A. Lateglacial and Holocene relative sea-level changes and first evidence for the Storegga tsunami in Sutherland, Scotland. J. Quat. Sci. 2016, 31, 239–255. [Google Scholar] [CrossRef]
- Chagué-Goff, C.; Goff, J.; Wong, H.K.Y.; Cisternas, M. Insights from geochemistry and diatoms to characterise a tsunami’s deposit and maximum inundation limit. Mar. Geol. 2015, 359, 22–34. [Google Scholar] [CrossRef]
- Hill, J.; Avdis, A.; Mouradian, S.; Collins, G.; Piggott, M. Was Doggerland catastrophically flooded by the Mesolithic Storegga tsunami? arXiv 2017, arXiv:1707.05593v1. [Google Scholar]
- Waddington, C.; Wicks, K. Resilience or wipe out? Evaluating the convergent impacts of the 8.2 ka event and Storegga tsunami on the Mesolithic of northeast Britain. J. Archaeol. Sci. Rep. 2017, 14, 692–714. [Google Scholar] [CrossRef]
- Blankholm, H.P. In the wake of the wake. An investigation of the impact of the Storegga tsunami on the human settlement of inner Varangerfjord, northern Norway. Quat. Int. 2020, 549, 65–73. [Google Scholar] [CrossRef]
- Chacón-Barrantes, S.; Narayanan, R.; Mayerle, R. Several tsunami scenarios at the North Sea and their consequences at the German Bight. Sci. Tsunami Hazards 2013, 32, 8–28. [Google Scholar]
- Dawson, A.G.; Dawson, S.; Bondevik, S.; Costa, P.; Hill, J.; Stewart, I. Reconciling SToregga tsunami sedimentation pattersn with modelled wave heights: A discussioin from the Shetland Isles field laboratory. Sedimentology 2020, 67, 1344–1353. [Google Scholar] [CrossRef]
- Bateman, M.D.; Kinnaird, T.C.; Hill, J.; Ashurst, R.A.; Mohan, J.; Bateman, R.B.I.; Robinson, R. Detailing the impact of the Storegga Tsunami at Montrose, Scotland. Boreas 2021, 50, 1059–1078. [Google Scholar] [CrossRef]
- Röbke, B.R.; Vött, A.; Willershäuser, T.; Fischer, P.; Hadler, H. Considering coastal palaeogeographical changes in a numerical tsunami model—A progressive base to compare simulation results with field traces from three coastal settings in western Greece. Z. Geomorphol. Suppl. 2015, 59, 157–188. [Google Scholar] [CrossRef]
- Röbke, B.R.; Schüttrumpf, H.; Vött, A. Effects of different boundary conditions and palaeotopographies on the onshore response of tsunamis in a numerical model—A case study from western Greece. Cont. Shelf Res. 2016, 124, 182–199. [Google Scholar] [CrossRef]
- Fruergaard, M.; Andersen, T.J.; Johannessen, P.N.; Nielsen, L.H.; Pejrup, M. Major coastal impact induced by a 1000-year storm event. Sci. Rep. 2013, 3, 1051. [Google Scholar] [CrossRef]
- Leibniz-Institut für Angewandte Geophysik (LIAG). Informationsblatt zur Forschungsbohrung Garding; LIAG: Hannover, Germany, 2011; 8p. [Google Scholar]
- Grube, A.; Frechen, M.; Hesse, K.; Proborukmi, M.S.; Urban, B.; Wonik, T.; Zhang, J. Die Forschungsbohrung Garding-2—Ein neues wichtiges Klima- und Paläoumwelt-Archiv an der Westküste Schleswig-Holstein. Nat.-Landeskd. Z. Schleswig-Holst. Hambg. Mecklenbg. 2019, 126, 1–15. [Google Scholar]
- Adams, C.K.H. Faziesuntersuchungen an Tertiären und Quartären Sedimenten der Bohrung Garding-2. Ph.D. Thesis, Fachbereich Chemie, Pharmazie, Geowissenschaften und Geographie, Johannes Gutenberg-Universität Mainz, Mainz, Germany, 2021; 204p. [Google Scholar] [CrossRef]
- Panten, A.; Porada, H.T.; Steensen, T. (Eds.) Eiderstedt: Eine Landeskundliche Bestandsaufnahme im Raum St. Peter-Ording, Garding, Tönning und Friedrichstadt; Volume 72 Landschaften in Deutschland. Werte der deutschen Heimat; Köln/Weimar/Wien; Böhlau: Vienna, Austria, 2013; 400p. [Google Scholar]
- Panten, A. Der Reichtum der Rungholter: Sage oder Wirklichkeit? In Rungholt: Rätselhaft und Widersprüchlich; Newig, J., Haupenthal, U., Eds.; Druck- und Verlagsgesellschaft: Husum, Germany, 2016; pp. 41–45. [Google Scholar]
- Newig, J. Nordfrieslands Küste zwischen Landgewinn und Landverlust. Geogr. Rundsch. 2014, 3, 4–12. [Google Scholar]
- Prange, W. Die Bedeichungsgeschichte der Marschen in Schleswig-Holstein. Probl. Küstenforschung Südlichen Nord. 1986, 16, 1–53. [Google Scholar]
- Ehlers, J. The Morphodynamics of the Wadden Sea; Balkema: Rotterdam, The Netherlands, 1988; 397p. [Google Scholar]
- Meier, D. Man and environment in the marsh area of Schlewsig-Holstein from Roman until Medieval times. Quat. Int. 2004, 112, 55–69. [Google Scholar] [CrossRef]
- Proborukmi, M.S.; Urban, B.; Frechen, M.; Grube, A.; Rolf, C. Late Pliocene-Pleistocene record of the Garding-2 research drill core, Northwest Germany. Z. Dtsch. Ges. Geowiss. 2017, 168, 141–167. [Google Scholar] [CrossRef]
- Zhang, J.; Tsukamoto, S.; Grube, A.; Frechen, M. OSL and 14C chronologies of a Holocene sedimentary record (Garding-2 core) from the German North Sea coast. Boreas 2014, 43, 856–868. [Google Scholar] [CrossRef]
- Proborukmi, M.S.; Urban, B. Palaeoenvironmental investigations of the Holocene sedimentary record of the Garding-2 research drill core, northwestern Germany. Z. Dtsch. Ges. Geowiss. 2017, 168, 39–51. [Google Scholar] [CrossRef]
- Albert, J.; Schärf, M.; Enzmann, F.; Waltl, M.; Sirocko, F. Local radon flux maxima in the quaternary sediments of Schleswig-Holstein (Germany). Int. J. Earth Sci. 2021, 110, 1501–1516. [Google Scholar] [CrossRef]
- Lehné, R.; Sirocko, F. Recent vertical crustal movements and resulting surface deformation within the North German Basin (Schleswig-Holstein) derived by GIS-based analysis of repeated precise leveling data. Z. Ges. Geowiss. 2010, 161, 175–188. [Google Scholar] [CrossRef]
- McCall, W. Application of Geoprobe HPT Logging System for geo-environmental investigations. Geoprobe Tech. Bull. MK 2011, 3184, 1–36. [Google Scholar]
- Obrocki, L.; Vött, A.; Wilken, D.; Fischer, P.; Willershäuser, T.; Koster, B.; Lang, F.; Papanikolaou, I.; Rabbel, W.; Reicherter, K. Tracing tsunami signatures of the AD 551 and AD 1303 tsunamis at the Gulf of Kyparissia (Peloponnese, Greece) using Direct Push in situ sensing techniques combined with geophysical studies. Sedimentology 2020, 67, 1274–1308. [Google Scholar] [CrossRef]
- Köber, R.; Hornbruch, G.; Leven, C.; Tischer, L.; Großmann, J.; Dietrich, P.; Weiß, H.; Dahmke, A. Evaluation of Combined Direct-Push Methods Used for Aquifer Model Generation. Ground Water 2009, 47, 536–546. [Google Scholar] [CrossRef] [PubMed]
- McCall, W.; Christy, T.M.; Pipp, D.; Terkelsen, M.; Christensen, A.; Weber, K.; Engelsen, P. Field application of combined membrane-interface probe and hydraulic profiling tool (MiHpt). Ground Water Monit. Remediat. 2014, 34, 85–95. [Google Scholar] [CrossRef]
- Geoprobe. Geoprobe Hydraulic Profiling Tool (HPT) System. Standard Operating Procedure. Geoprobe Technical Bulletin MK313; Kejr, Inc.: Salina, KS, USA, 2015; pp. 1–22. [Google Scholar]
- Harrington, G.A.; Hendry, M.J. Using Direct-Push EC Logging to delineate heterogeneity in a clay-rich aquitard. Groundw. Monit. Remediat. 2006, 26, 92–100. [Google Scholar] [CrossRef]
- Wunderlich, T.; Fischer, P.; Wilken, D.; Hadler, H.; Erkul, E.; Mecking, R.; Günther, T.; Heinzelmann, M.; Vött, A.; Rabbel, W. Constraining electric resistivity tomography by direct push electric conductivity logs and vibracores: An exemplary study of the Fiume Morto silted riverbed (Ostia Antica, western Italy). Geophysics 2018, 83, B87–B103. [Google Scholar] [CrossRef]
- Lunne, T.; Robertson, P.K.; Powell, J.J.M. Cone Penetration Testing in Geotechnical Practice; Taylor and Francis Group: London, UK; New York, NY, USA, 2002; 312p. [Google Scholar]
- Robertson, P.K. Cone penetration test (CPT)-based soil bahviour type (SBT) classification system—An update. Can. Geotech. J. 2016, 23, 1910–1927. [Google Scholar] [CrossRef]
- Robertson, P.K. Interpretation of cone penetration tests—A unified approach. Can. Geotech. J. 2009, 46, 1337–1355. [Google Scholar] [CrossRef]
- Hausmann, J.; Dietrich, P.; Vienken, T.; Werban, U. Technique, analysis routines, and application of direct push-driven in situ color logging. Environ. Earth Sci. 2016, 75, 957. [Google Scholar] [CrossRef]
- Köhn, M. Korngrößenbestimmung vermittels Pipettanalyse. Tonind.-Ztg. 1929, 55, 729–731. [Google Scholar]
- Barsch, H.; Billwitz, K.; Bork, H.-R. (Eds.) Arbeitsmethoden in Physiogeographie und Geoökologie; Klett: Stuttgart, Germany, 2000; 612p. [Google Scholar]
- DIN EN 15935:2012-11; Sludge, Treated Biowaste, Soil and Waste—Determination of Loss on Ignition; German version EN 15935:2012. German Institute for Standardisation: Berlin, Germany, 2012.
- Schlichting, E.; Blume, H.-P.; Stahr, K. Bodenkundliches Praktikum: Eine Einführung in Pedologisches Arbeiten für Ökologen, Insbesondere Land- und Forstwirte, und für Geowissenschaftler, 2nd ed.; Spektrum Akademischer Verlag: Berlin/Wien, Germany, 1995. [Google Scholar]
- Blume, H.-P.; Stahr, K.; Leinweber, P. Bodenkundliches Praktikum: Eine Einführung in Pedologisches Arbeiten für Ökologen, Insbesondere Land- und Forstwirte, und für Geo- und Umweltwissenschaftler, 3rd ed.; Spektrum Akademischer Verlag: Heidelberg, Germany, 2010; 255p. [Google Scholar]
- Donato, S.V.; Reinhardt, E.G.; Boyce, J.I.; Rothaus, R.; Vosmer, T. Identifying tsunami deposits using bivalve shell taphonomy. Geology 2008, 36, 199–202. [Google Scholar] [CrossRef]
- Mischke, S.; Schudack, U.; Bertrand, S.; Leroy, S.A.G. Ostracods from a Marmara Sea lagoon (Turkey) as tsunami indicators. Quat. Int. 2012, 261, 156–161. [Google Scholar] [CrossRef]
- Pilarczyk, J.E.; Dura, T.; Horton, B.P.; Engelhart, S.E.; Kemp, A.C.; Sawai, Y. Microfossils from coastal environments as indicators of paleo-earthquakes, tsunamis and storms. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 413, 144–157. [Google Scholar] [CrossRef]
- Engel, M.; Pilarczyk, J.; May, S.M.; Brill, D.; Garrett, E. Geological Records of Tsunamis and Other Extreme Waves; Elsevier: Amsterdam, The Netherlands, 2020; 848p. [Google Scholar]
- Murray, J.W. Ecology and Applications of Benthic Foraminifers; Cambridge University Press: Cambridge, UK, 2006; 426p. [Google Scholar]
- Murray, J.W. Living benthic foraminifera: Biogeographical distributions and the significance of rare morphospecies. J. Micropalaeontology 2013, 32, 1–58. [Google Scholar] [CrossRef]
- Sen Gupta, B.K. Introduction to modern Foraminifera. In Modern Foraminifera; Sen Gupta, B.K., Ed.; Kluwer Academic Publisher: Dordrecht, The Netherlands, 1999; pp. 3–6. [Google Scholar]
- Sen Gupta, B.K. Systematics of modern Foraminifera. In Modern Foraminifera; Sen Gupta, B.K., Ed.; Kluwer Academic Publisher: Dordrecht, The Netherlands, 1999; pp. 7–36. [Google Scholar]
- Loeblich, A.R.; Tappan, H.N. Foraminiferal Genera and Their Classification; Springer: New York, NY, USA, 1988; 970p. [Google Scholar]
- Rönnfeld, W. Foraminifera a Catalogue of Typical Forms, 4th revised English ed.; Grzybowski Foundation Special Publication 24; Rheinisches Mineralien-Kontor GmbH: Bonn, Germany, 2020; 159p. [Google Scholar]
- Scott, D.B.; Medioli, F.S.; Schafer, C.T. Monitoring in Coastal Environments Using Foraminifera and Thecamooebian Indicators; Cambridge University Press: New York, NY, USA, 2001; 192p. [Google Scholar] [CrossRef]
- Cimerman, F.; Langer, M.R. Mediterranean Foraminifera; Classis IV: Historia Naturalis, Opera; Academia Scientiarum et Artium Slovenica: Lubljana, Slovenia, 1991; Volume 30, pp. 1–119. [Google Scholar]
- Heaton, T.J.; Köhler, P.; Butzin, M.; Bard, E.; Reimer, R.W.; Austin, W.E.N.; Bronk Ramsey, C.; Grootes, P.M.; Hughen, K.A.; Kromer, B.; et al. marine20—The marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 2020, 62, 779–820. [Google Scholar] [CrossRef]
- Reimer, P.; Austin, W.E.N.; Bard, E.; Bayliss, A.; Blackwell, P.G.; Bronk Ramsey, C.; Butzin, M.; Edwards, R.L.; Friedrich, M.; Grootes, P.M.; et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kB). Radiocarbon 2020, 62, 725–757. [Google Scholar] [CrossRef]
- Stuiver, M.; Reimer, P.J.; Reimer, R.W. CALIB 8.2 [WWW Program]. 2021. Available online: http://calib.org (accessed on 4 January 2021).
- Weidman, C.R. Development and Application of the Mollusc Arctica islandica as a Paleoceanographic Tool for the North Atlantic Ocean. Ph.D. Thesis, MIT/WHOI, Joint Program in Oceanography, Massachusetts Institute of Technology, Cambridge, MA, USA, Woods Hole Oceanographic Institution, Woods Hole, MA, USA, 1995; 203p. [Google Scholar]
- Olsson, I.U. Content of 14C in marine mammals from northern Europe. Radiocarbon 1980, 22, 662–675. [Google Scholar] [CrossRef]
- Heier-Nielsen, S.; Heinemeir, J.; Nielsen, H.L.; Rud, N. Recent reservoir ages for Danish fjords and marine waters. Radiocarbon 1995, 37, 875–882. [Google Scholar] [CrossRef]
- Enters, D.; Haynert, K.; Wehrmann, A.; Freund, H.; Schlütz, F. A new ΔR value for the southern North Sea and its application in coastal research. Neth. J. Geosci. 2021, 100, e1. [Google Scholar] [CrossRef]
- Vink, A.; Steffen, H.; Reinhardt, L.; Kaufmann, G. Holocene relative sea-level change, isostatic subsidence and the radial viscosity structure of the mantle of northwest Euoep (Belgium, the Netherlands, Germany, southern North Sea). Quat. Sci. Rev. 2007, 26, 3249–3275. [Google Scholar] [CrossRef]
- Elschner, A.; Scheder, J.; Bungenstock, F.; Bartholomä, A.; Becker, T.M.; Capperucci, R.M.; Enters, D.; Karle, M.; Schlütz, F.; Wehrmann, A.; et al. Microfauna- and sedimentology-based facies analysis for palaeolandscape reconstruction in the back-barrier area of Norderney (NW Germany). Neth. J. Geosci. 2021, 100, e4. [Google Scholar] [CrossRef]
- Karle, M.; Bungenstock, F.; Wehrmann, A. Holocene coastal landscape development in response to rising sea level in the Central Wadden Sea coastal region. Neth. J. Geosci. 2021, 100, e12. [Google Scholar] [CrossRef]
- Frischbutter, A. Recent vertical movements. Brand. Geowiss. Beiträge 2001, 8, 27–31. [Google Scholar]
- Lehné, R.; Sirocko, F. Quantification of recent movement potentials in Schleswig-Holstein (Germany) by GIS-based calculation of correlation coefficients. Int. J. Earth Sci. 2005, 94, 1094–1102. [Google Scholar] [CrossRef]
- Sirocko, F.; Reicherter, K.; Lehné, R.; Hübscher, C.; Winsemann, J.; Stackebrandt, W. Glaciation, salt and the present landscape. In Dynamics of Complex Intracontinental Basins—The Central European Basin System; Littke, R., Bayer, U., Gajewski, D., Nelskamp, S., Eds.; Springer: Hamburg, Germany, 2009; pp. 232–245. [Google Scholar]
- Hadler, H.; Fischer, P.; Obrocki, L.; Heinzelmann, M.; Vött, A. River channel evolution and tsunami impacts recorded in local sedimentary archives—The ‘Fiume Morto’ at Ostia Antica (Tiber River, Italy). Sedimentology 2020, 67, 1309–1343. [Google Scholar] [CrossRef]
- Ad-hoc-Arbeitsgruppe Boden. Bodenkundliche Kartieranleitung, 5th ed.; Schweizerbart: Hannover, Germany, 2005; 438p. [Google Scholar]
- Gebhardt, H.; Glaser, R.; Radtke, U.; Reuber, P.; Vött, A. (Eds.) Geographie. Physische Geographie und Humangeographie. 3. Auflage; Springer Nature: Berlin/Heidelberg, Germany, 2020; 1272p. [Google Scholar]
- Fischer, P.; Wunderlich, T.; Rabbel, W.; Vött, A.; Willershäuser, T.; Baika, K.; Rigakou, D.; Metallinou, G. Combined electrical resistivity tomography (ERT), direct-push electrical conductivity logging (DP-EC) and coring—A new methodological approach in geoarchaeological research. Archaeol. Prospect. 2016, 23, 213–228. [Google Scholar] [CrossRef]
- Behre, K.-E. A new Holocene sea-level curve for the southern North Sea. Boreas 2007, 36, 82–102. [Google Scholar] [CrossRef]
- Morton, R.A.; Gelfenbaum, G.; Jaffe, B.E. Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples. Sediment. Geol. 2007, 200, 184–207. [Google Scholar] [CrossRef]
- Kortekaas, S.; Dawson, A.G. Distinguishing tsunami and storm deposits: An example from Martinhal, SW Portugal. Sediment. Geol. 2007, 200, 208–221. [Google Scholar] [CrossRef]
- Hadler, H.; Wilken, D.; Bäumler, S.; Fischer, P.; Rabbel, W.; Willershäuser, T.; Wunderlich, T.; Vött, A. The Trendermarsch Polder (North Frisia, Germany)—Geophysical and geoarchaeological investigations of an anthropogenic medieval coastal landscape and its vulnerability against natural hazards. Geomorphology 2022, 418, 108461. [Google Scholar] [CrossRef]
- Röbke, B.R.; Vött, A. The tsunami phenomenon. Prog. Oceanogr. 2017, 159, 296–322. [Google Scholar] [CrossRef]
- De Martini, P.M.; Bruins, H.; Feist, L.; Goodman-Tchernov, B.N.; Hadler, H.; Lario, J.; Mastronuzzi, G.; Obrocki, L.; Pantosti, D.; Paris, R.; et al. The Mediterranean Sea and the Gulf of Cadiz as a natural laboratory for paleotsunami research: Recent advancements. Earth-Sci. Rev. 2021, 216, 103578. [Google Scholar] [CrossRef]
- Alappat, L.; Vink, A.; Tsukamoto, S.; Frechen, M. Establishing the late Pleistocene-Holocene sedimentation boundary in the southern North Sea using OSL dating of shallow continental shelf sediments. Proc. Geol. Assoc. 2010, 121, 43–54. [Google Scholar] [CrossRef]
- Vött, A.; Brückner, H.; May, S.M.; Sakellariou, D.; Nelle, O.; Lang, F.; Kapsimalis, V.; Jahns, S.; Herd, R.; Handl, M.; et al. The Lake Voulkaria (Akarnania, NW Greece) palaeoenvironmental archive—A sediment trap for multiple tsunami impact since the mid-Holocene. Z. Geomorphol. Suppl. 2009, 53, 1–37. [Google Scholar] [CrossRef]
- Fruergaard, M.; Andersen, T.J.; Nielsen, L.H.; Johannessen, P.N.; Aagaard, T.; Pejrup, M. High-resolution reconstruction of a coastal barrier system: Impact of Holocene sea-level change. Sedimentology 2015, 62, 928–969. [Google Scholar] [CrossRef]
- Fruergaard, M.; Møller, I.; Johannessen, P.N.; Nielsen, L.H.; Andersen, T.J.; Nielsen, L.; Sander, L.; Pejrup, M. Stratigraphy, evolution, and controls of a Holocene transgressive–regressive barrier island under changing sea level: Danish North Sea coast. J. Sediment. Res. 2015, 85, 820–844. [Google Scholar] [CrossRef]
- Hijma, M. From River Valley to Estuary: The Early-Mid Holocene Transgression of the Rhine-Meuse Valley, The Netherlands; Netherlands Geographical Studies 389; Utrecht University, Royal Dutch Geographical Society: Utrecht, The Netherlands, 2009; 192p. [Google Scholar]
- Röbke, B.R.; Schüttrumpf, H.; Vött, A. Hydro- and morphodynamic tsunami simulation for the Ambrakian Gulf (Greece) and comparison with geoscientific field traces. Geophys. J. Int. 2018, 213, 317–339. [Google Scholar] [CrossRef]
- Bahrouni, N.; Meghraoui, M.; Bayraktar, H.B.; Lorito, S.; Zagrarni, M.F.; Nabil Bel Mabrouk, N.B. Evidence of tsunami deposits in East Tunisia coastline contemporaneous of the AD 365 Crete earthquake: Field data and modelling. In Proceedings of the EGU21-9104, Online Event, 19–30 April 2021. [Google Scholar] [CrossRef]
- Scardino, G.; Rizzo, A.; De Santis, V.; Kyriakoudi, D.; Rovere, A.; Vacchi, M.; Scicchitano, G. On the origin of multiple tsunami inundation of the archaeological site of Ognina (Sicily): Numerical models and field geological data. In Proceedings of the EGU21-8591, Online, 19–30 April 2021. [Google Scholar] [CrossRef]
- Haslett, S.K.; Bryant, E.A. Historic tsunami in Britain since AD 1000: A review. Nat. Hazards Earth Syst. Sci. 2008, 8, 587–601. [Google Scholar] [CrossRef]
- Heimreich, A. (reprints: 1819, 1982). Nordfresische Chronik, Bd. 2. Schleswig, Tondern, Leer. 1668. [Google Scholar]
- Hinrichs, B. Die Landverderbliche Sündenflut. In Flutkatastrophe 1634; Hinrichs, B., Panten, A., Riecken, B., Eds.; Wachholtz Verlag: Neumünster, Germany, 1985. [Google Scholar]
- Müller, F.; Fischer, O. Alt-Nordstrand. Das Wasserwesen an der Schleswig-Holsteinischen Nordseeküste, 2. Teil; Die Inseln: Berlin, Germany; Reimer-Verlag: Berlin, Germany, 1936; 224p. [Google Scholar]
- Berg, H.P.; Goertz, R.; Frohmel, T.; Winter, C. Probabilistic safety assessment of external flooding protection for nuclear power plants in Germany. J. Power Energy Syst. 2008, 2, 734–743. [Google Scholar] [CrossRef]
- Iancu, A.; Berg, H.-P. Tsunamis and sea level rise in the North and Baltic Seas and potential consequences for nuclear facilities. J. Pol. Saf. Reliab. Assoc. Summer Saf. Reliab. Semin. 2017, 8, 55–66. [Google Scholar]
Reference | Lab. No. | Depth (m b.s.) | Depth (m b.s.l.) | Sample Description | δ13C (ppm) | 14C Age (BP) | 1σ Max; Min (cal BP) | 2σ Max; Min (cal BP) |
---|---|---|---|---|---|---|---|---|
[55] | KIA 48674 | 17.44 | 16.17 | shell | −2.71 ± 0.16 | 4115 ± 35 | 4361–4053 a | 4496–3893 a |
4225–3812 b | 4412–3601 b | |||||||
KIA 48063 | 19.50 | 18.23 | shell | −0.32 ± 0.10 | 6600 ± 40 | 7202–6936 a | 7311–6789 a | |
7095–6730 b | 7253–6551 b | |||||||
KIA 48675 | 19.61 | 18.34 | shell | −0.85 ± 0.21 | 6975 ± 45 | 7551–7328 a | 7661–7209 a | |
7462–7151 b | 7596–6958 b | |||||||
KIA 48676 | 19.77 | 18.50 | shell | −1.30 ± 0.41 | 7445 ± 60 | 8005–7747 a | 8152–7632 a | |
7907–7590 b | 8064–7424 b | |||||||
[3] | TUa-2893 | - | - | Racomitrium sp., green moss, minimum age | −21.1 | 7231 ± 64 | 8165; 7971 | 8176–7941 |
TUa-3055 | - | - | Pleurozium schreberi, green moss, maximum age | −24.6 | 7387 ± 72 | 8326; 8045 | 8346–8029 | |
Mean | green mosses, mean age | - | 7300 ± 20 | 8169; 8038 | 8172–8031 |
Sample ID | Depth (m b.s.) | Depth (m b.s.l.) | Uranium (ppm) | Thorium (ppm) | Potassium (%) | Total Dose Rate (Environmental + Cosmic) (Gy ka−1) | De (Gy) | Age (ka before 2012) |
---|---|---|---|---|---|---|---|---|
2719 | 15.35 | 14.08 | 1.92 ± 0.10 | 6.35 ± 0.33 | 1.62 ± 0.10 | 1.57 ± 0.13 | 5.2 ± 0.11 | 3.30 ± 0.27 |
2721 | 16.22 | 14.95 | 2.06 ±0.11 | 7.22 ± 0.37 | 1.63 ± 0.10 | 1.61 ± 0.13 | 5.0 ± 0.09 | 3.13 ± 0.26 |
2722 | 17.25 | 15.98 | 0.87 ±0.05 | 2.71 ± 0.16 | 1.11 ± 0.07 | 1.16 ± 0.13 | 5.1 ± 0.26 | 4.43 ± 0.55 |
2725 | 18.25 | 16.98 | 1.29 ±0.07 | 3.95 ± 0.22 | 1.32 ± 0.08 | 1.45 ± 0.14 | 6.4 ± 0.15 | 4.41 ± 0.45 |
2727 | 19.65 | 18.38 | 0.89 ± 0.05 | 2.07 ± 0.12 | 0.98 ± 0.06 | 1.10 ± 0.14 | 7.6 ± 0.16 | 6.92 ± 0.90 |
2728 | 20.25 | 18.98 | 0.52 ± 0.03 | 1.15 ± 0.10 | 0.76 ± 0.05 | 0.83 ± 0.14 | 11.0 ± 0.32 | 13.3 ± 2.2 |
2729 | 20.65 | 19.38 | 0.46 ±0.03 | 1.01 ± 0.08 | 0.74 ± 0.05 | 0.82 ± 0.15 | 10.4 ± 0.22 | 12.8 ± 2.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vött, A.; Hadler, H.; Willershäuser, T.; Slabon, A.; Slabon, L.; Wahlen, H.; Fischer, P.; Bungenstock, F.; Röbke, B.R.; Frechen, M.; et al. Possible Indication of the Impact of the Storegga Slide Tsunami on the German North Sea Coast around 8150 cal BP. Geosciences 2024, 14, 262. https://doi.org/10.3390/geosciences14100262
Vött A, Hadler H, Willershäuser T, Slabon A, Slabon L, Wahlen H, Fischer P, Bungenstock F, Röbke BR, Frechen M, et al. Possible Indication of the Impact of the Storegga Slide Tsunami on the German North Sea Coast around 8150 cal BP. Geosciences. 2024; 14(10):262. https://doi.org/10.3390/geosciences14100262
Chicago/Turabian StyleVött, Andreas, Hanna Hadler, Timo Willershäuser, Aron Slabon, Lena Slabon, Hannah Wahlen, Peter Fischer, Friederike Bungenstock, Björn R. Röbke, Manfred Frechen, and et al. 2024. "Possible Indication of the Impact of the Storegga Slide Tsunami on the German North Sea Coast around 8150 cal BP" Geosciences 14, no. 10: 262. https://doi.org/10.3390/geosciences14100262
APA StyleVött, A., Hadler, H., Willershäuser, T., Slabon, A., Slabon, L., Wahlen, H., Fischer, P., Bungenstock, F., Röbke, B. R., Frechen, M., Grube, A., & Sirocko, F. (2024). Possible Indication of the Impact of the Storegga Slide Tsunami on the German North Sea Coast around 8150 cal BP. Geosciences, 14(10), 262. https://doi.org/10.3390/geosciences14100262