Quaternary Lowstand Prograding Wedges of the Salento Continental Shelf (Southern Adriatic Sea, Italy): Architectural Stacking Patterns and the Control of Glacio-Eustatic Sea Level Fluctuations and Foreland Tectonic Uplift
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. Glacio-Eustatic Sea Level Fluctuations and Foreland Tectonic Uplift in the Apulian Region
4.2. Architectural Stacking Patterns of Quaternary Lowstand Prograding Wedges
4.3. Ravinement Surfaces
5. Discussion
6. Conclusions
- -
- The Salento continental shelf represents a relatively undeformed area of the Apulian foreland, where the stratigraphic architecture of thick prograding wedges can be easily investigated based on the criteria of seismic and sequence stratigraphy due to the preservation of seismic sequences and original depositional geometries.
- -
- Three thick prograding wedges (W1, W2 and W3) whose stratigraphic architecture is punctuated by three regional unconformities interpreted as transgressive surfaces of erosion or ravinement surfaces have been recognized and correlated to the curves of isotopic stratigraphy.
- -
- The stratigraphic architecture of prograding wedges in the Salento continental shelf appear to be controlled by the interaction of high-frequency glacio-eustatic fluctuations with foreland tectonic uplift, as evidenced both by depositional geometries in seismic sequences and correlation with the curves of isotopic stratigraphy.
- -
- The huge Middle Pleistocene tectonic uplift in the Apulian foreland overcame the glacio-eustatic changes controlling the formation of a wide prograding wedge composed of four seismic units. The top of the wedge is eroded by a ravinement surface (RS1), correlating to a sea level rise of approximately 250 ky. Synsedimentary tectonics affecting the wedge also constrain the age of the wedge W1 to 250 ky based on regional geological evidence in the Salento region [89].
- -
- Several control mechanisms must be considered in discussing the deposition of the prograding wedge W1, having a key role in the comprehension of the stratigraphic architecture in this area. The sedimentary supply feeding this wedge is significantly rich, since it allowed a platform progradation of approximately 15 km during the Middle Pleistocene. Taking into account the absence of fluvial systems in the adjacent onshore area, such a siliciclastic supply can be have driven by high rates of tectonic uplift in the Apulian foreland during the Middle Pleistocene, as evidenced by geological and geomorphological evidence. The corrosion of coastal units and the concomitant discharge of prograding units in the adjoining offshore may have been very quick. Significant biodetritic production in the inner shelf, also evidenced by dredges carried out in the Salento offshore [8], has probably contributed to the upper slope progradation of the wedge W1. In this time interval, tectonic control prevailed over eustatic variation in controlling the stratigraphic architecture of prograding wedges.
- -
- Starting from 250 ky, this trend was reversed and the continental shelf deposits appear to be eustatically rather than tectonically controlled. The prograding wedges W2 and W3 are interpreted as 4th-order incomplete depositional sequences, whose stratigraphic record is exposed only at the shelf margin. The sequences are composed of transgressive, highstand and forced regression deposits; the location of the sequence boundary does not coincide with that of the ravinement surfaces, bounding the wedges at their base and top, since it is located between lowstand and forced regression deposits.
- -
- The deposition of the wedges W2 and W3 has been controlled by fourth-order glacio-eustasy modulated by short eccentricity rhythms [10]. A mixed nature of oscillation rhythms of relative sea level, where more protracted sea level rise merged with more abbreviated sea level falls, may be expected based on the correlation with comparable deposits detected offshore the Gargano Promontory [40].
- -
- The comprehensive seismo-stratigraphic setting and the stratigraphic correlation with the curves of isotopic stratigraphy advise a convincing decline in the uplift of the Apulian foreland in the last 250 ky. This conclusion is supported by the recent interesting data obtained by De Santis et al. [86,93] on the low rates of uplift in the Apulian region. New chronological constraints have been obtained by using amino acid racemization (AAR) and isoleucine/alloisoleucine epimerization (IE) on Patella spp., Thetystrombus latus (Gmelin), Glycymeris sp., and ostracods and U-series dating on corals Hoplangia durotrix Gosse and Cladocora caespitosa Linneo. This procedure has allowed for a quantitative estimate of the vertical movements and associated rates of tectonic uplift of the Apulian foreland. The palaeoshorelines in the field belonging to the following highstands 120 ky BP (MIS 5.5, second peak), 127 ky BP (MIS 5.5, first peak), 212 ky BP (MIS 7.3), 330 ky BP (MIS 9.3), 410 (MIS 11), 525 ky BP (MIS 13.3), and 590 ky BP (MIS 15) have been recognized. The obtained results show field observations of the reoccupation effect of younger palaeoshorelines over older ones due to the relatively slow uplift rates measured in the investigated area.
Funding
Data Availability Statement
Conflicts of Interest
References
- Catuneanu, O. Model-independent sequence stratigraphy. Earth Sci. Rev. 2019, 188, 312–388. [Google Scholar] [CrossRef]
- Catuneanu, O.; Zecchin, M. High-resolution sequence stratigraphy of clastic shelves II: Controls on sequence development. Mar. Pet. Geol. 2013, 39, 26–38. [Google Scholar] [CrossRef]
- Zecchin, M.; Catuneanu, O. High-resolution sequence stratigraphy of clastic shelves I: Units and bounding surfaces. Mar. Pet. Geol. 2013, 39, 1–25. [Google Scholar] [CrossRef]
- Zecchin, M. Towards the standardization of sequence stratigraphy: Is the parasequence concept to be redefined or abandoned? Earth Sci. Rev. 2010, 102, 117–119. [Google Scholar] [CrossRef]
- Melehan, S.; Botziolis, C.; Maravelis, A.G.; Catuneanu, O.; Ruming, K.; Holmes, E.; Collins, W.J. Sedimentology and Stratigraphy of an Upper Permian Sedimentary Succession: Northern Sydney Basin, Southeastern Australia. Geosciences 2021, 11, 273. [Google Scholar] [CrossRef]
- Maravelis, A.G.; Boutelier, D.; Catuneanu, O.; Seymour, K.S.; Zelilidis, A. A review of tectonics and sedimentation in a forearc setting: Hellenic Thrace Basin, North Aegean Sea and Northern Greece. Tectonophysics 2016, 674, 1–19. [Google Scholar] [CrossRef]
- Maravelis, A.G.; Catuneanu, O.; Nordsvan, A.; Landerberger, B.; Zelilidis, A. Interplay of tectonism and eustasy during the Early Permian icehouse: Southern Sydney Basin, southeast Australia. Geol. J. 2018, 53, 1372–1403. [Google Scholar] [CrossRef]
- Aiello, G.; Bravi, S.; Budillon, F.; Caruso, A.; D′Argenio, B.; De Lauro, M.; Ferraro, L.; Marsella, E.; Molisso, F.; Pelosi, N.; et al. Marine Geology of the Salento shelf (Apulia, south Italy): Preliminary results of a multidisciplinary study. Giorn. Di Geol. 1995, 57, 17–40. [Google Scholar]
- Budillon, F.; Aiello, G. Evoluzione pleistocenica della piattaforma continentale del Salento orientale: Fattori di controllo tettonici e/o eustatici. Il Quaternario 1999, 12, 149–160. [Google Scholar]
- Aiello, G.; Budillon, F. Lowstand prograding wedges as fourth-order glacio-eustatic cycles in the Pleistocene continental shelf of Apulia (Southern Italy). In Cyclostratigraphy: Approaches and Case Histories; D’Argenio, B., Fischer, A.G., Premoli Silva, I., Weissert, H., Ferreri, V., Eds.; Society for Sedimentary Geology: Tulsa, OK, USA, 2004; Volume 81, pp. 213–230. [Google Scholar]
- Shackleton, N.J.; Opdyke, N.D. Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V28-238: Oxygen isotope temperature and ice volume on a 10-year scale. Quat. Res. 1973, 3, 39–55. [Google Scholar] [CrossRef]
- Chappell, J.; Shackleton, N.J. Oxygen isotopes and sea level. Nature 1986, 324, 137–140. [Google Scholar] [CrossRef]
- Lambeck, K.; Johnston, P. Land subsidence and sea level change: Contributions from the melting of the last great ice sheets and the isostatic adjustement of the Earth. In Land Subsidence; Barends, F.B.J., Brower, F., Schroder, F., Eds.; Balkema: Rotterdam, The Netherlands, 1995; Volume 6, pp. 3–18. [Google Scholar]
- Martinson, D.G.; Pisias, N.G.; Hays, J.D.; Imbrie, J.; Moore, T.C.; Shackleton, J. Age dating and the orbital theory of the ice ages: Development of a high-resolution 0 to 300,000 year chronostratigraphy. Quat. Res. 1987, 27, 1–29. [Google Scholar] [CrossRef]
- Chappell, J. Sea level changes forced ice break out in the Last Glacial cycle: New results from coral terraces. Quat. Sci. Rev. 2002, 21, 1229–1240. [Google Scholar] [CrossRef]
- Lambeck, K.; Yokoyama, Y.; Purcell, T. Into and out of the last Glacial maximum: Sea level change during Oxygen Isotope Stages 3 and 2. Quat. Sci. Rev. 2002, 21, 343–360. [Google Scholar] [CrossRef]
- Lambeck, K.; Antonioli, F.; Purcell, T.; Silenzi, S. Sea level change along the Italian coast for the past 10,000 yrs. Quat. Sci. Rev. 2003, 23, 1567–1598. [Google Scholar] [CrossRef]
- Lisiecki, R.E.; Raymo, M.E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 2005, 20, PA1003. [Google Scholar] [CrossRef] [Green Version]
- Florindo, F.; Kamer, D.B.; Marra, F.; Renne, P.R.; Roberts, A.W.; Weaver, R. Radioisotopic age constraints for Glacial Terminations IX and VII from aggradational sections of the Tiber River delta in Rome, Italy. Earth Planet. Sci. Lett. 2007, 256, 61–80. [Google Scholar] [CrossRef]
- Huybers, P. Glacial variability over the last two million years: An extended depth-derived age model, continuous obliquity pacing and the Pleistocene progression. Quat. Sci. Rev. 2007, 26, 37–55. [Google Scholar] [CrossRef] [Green Version]
- Denton, G.H.; Anderson, R.F.; Toggweiler, J.R.; Edwards, R.L.; Schaefer, J.M.; Putnam, A.E. The Last Glacial Termination. Science 2010, 328, 1652–1656. [Google Scholar] [CrossRef] [Green Version]
- Konijnendijk, T.Y.M.; Ziegler, M.; Lourens, L.J. On the timing and forcing mechanisms of late Pleistocene glacial terminations: Insights from a new high-resolution benthic stable oxygen isotope record of the eastern Mediterranean. Quat. Sci. Rev. 2015, 129, 308–320. [Google Scholar] [CrossRef]
- Bosi, C.; Carobene, L.; Sposato, A. Il ruolo dell’eustatismo nell’evoluzione geologica dell’area mediterranea. Mem. Soc. Geol. Ital. 1996, 51, 363–382. [Google Scholar]
- Dini, M.; Mastronuzzi, G.; Sansò, P. The effects of relative sea level changes on coastal morphology of Southern Apulia (Italy) during the Holocene. In Geomorphology, Human Activity and Global Environmental Change; Slaymaker, O., Ed.; John Wiley and Sons: Chichester, UK, 2000; pp. 43–65. [Google Scholar]
- Centenaro, E.; Gianfreda, F.; Mastronuzzi, G.; Sansò, P.; Selleri, G. Pleistocene relative sea level changes and morphological evolution of Otranto-Castro coastal area (Puglia, Italy). In Proceedings of the Workshop MACRIVALIMA, Ostuni, Italy, 30–31 May 2002. [Google Scholar]
- Auriemma, R.; Iannone, A.; Mastronuzzi, G.; Mauz, B.; Sansò, P.; Selleri, G. Late Holocene sea level changes in Southern Apulia (Italy). In Proceedings of the Final Conference Project IGCP 437, Puglia 2003, Otranto, Italy, 22–28 September 2003. [Google Scholar]
- Mastronuzzi, G.; Pignatelli, C.; Sansò, P. Geological and geomorphological setting. In Proceedings of the Final Conference Project IGCP 437, Puglia 2003, Otranto, Italy, 22–28 September 2003. [Google Scholar]
- Cosentino, D.; Gliozzi, E. Considerazioni sulla velocità di sollevamento dei depositi eutirreniani dell′Italia meridionale e della Sicilia. Mem. Soc. Geol. Ital. 1992, 41, 653–665. [Google Scholar]
- Stewart, I.S.; Cundy, A.; Kershaw, S.; Firth, C. Holocene coastal uplift in the taormina area, northeastern sicily: Implications for the southern prolongation of the calabrian seismogenic belt. J. Geodyn. 1997, 24, 37–50. [Google Scholar] [CrossRef]
- Doglioni, C.; Mongelli, F.; Pieri, P. The Puglia uplift: An anomaly of the foreland of the Apenninic subduction due to the buckling of a thick continental lithosphere. Tectonics 1994, 13, 1309–1321. [Google Scholar] [CrossRef]
- Mindszenty, A.; D′Argenio, B.; Aiello, G. Lithospheric bulges at regional unconformities. The case of Mesozoic-Tertiary Apulia. Tectonophysics 1995, 252, 137–161. [Google Scholar] [CrossRef]
- Pieri, P.; Festa, V.; Moretti, M.; Tropeano, M. Quaternary tectonic activity of the Murge area (Apulian foreland—Southern Italy). Ann. Geofis. 1997, 60, 1395–1404. [Google Scholar] [CrossRef]
- Bordoni, P.; Valensise, G. Deformation of the 125 ka marine terrace in Italy: Tectonic implications. In Coastal Tectonics; Stewart, I.S., Vita-Finzi, C., Eds.; Geological Society of London, Special Publication: London, UK, 1998; Volume 146, pp. 71–110. [Google Scholar]
- Amato, A.; Belluomini, G.; Cinque, A.; Manolio, M.; Ravera, F. Terrazzi marini e sollevamenti tettonici quaternari lungo il margine ionico dell’Appennino lucano. Il Quaternario 1997, 10, 329–336. [Google Scholar]
- Ascione, A.; Cinque, A. Tectonics and erosion in the long-term relief history of the Southern Apennines. Zeitsch. Fur Geomorphol. 1999, 117 (Suppl. BD-218), 1–16. [Google Scholar]
- Amato, A. Estimating Pleistocene Tectonic Uplift Rates in Southeastern Apennines (Italy) from Erosional Land Surfaces and Marine Terraces. In Geomorphology, Human Activity and Global Environmental Change; Slaymaker, O., Ed.; John Wiley and Sons: Chichester, UK, 2000; pp. 67–87. [Google Scholar]
- Ghisetti, F.; Vezzani, L. Depth and modes of Pliocene–Pleistocene crustal extension of the Apennines (Italy). Terra Nova 1999, 11, 67–72. [Google Scholar] [CrossRef]
- Goodbred Jr, S.L.; Kuehl, S.A. The significance of large sediment supply, active tectonism and eustasy on margin sequence development: Late Quaternary stratigraphy and evolution of the Ganges-Brahmaputra delta. Sediment. Geol. 2000, 133, 222–248. [Google Scholar] [CrossRef]
- Moretti, M. Soft-sediment deformation structures interpreted as seismites in middle-late Pleistocene aeolian deposits (Apulian foreland, southern Italy). Sediment. Geol. 2000, 135, 167–179. [Google Scholar] [CrossRef]
- Ridente, D.; Trincardi, F. Late Pleistocene depositional cycles and syn-sedimentary tectonics on the central and south Adriatic shelf. Mem. Soc. Geol. Ital. 2002, 57, 517–526. [Google Scholar]
- Mastronuzzi, G.; Sansò, P. Holocene uplift rates and historical rapid sea-level changes at the Gargano promontory, Italy. J. Quat. Sci. 2002, 17, 593–606. [Google Scholar] [CrossRef]
- Ferranti, L.; Oldow, J.S. Latest Miocene to Quaternary horizontal and vertical displacement rates during simultaneous contraction and extension in the Southern Apennines orogen, Italy. Terra Nova 2005, 17, 209–214. [Google Scholar] [CrossRef]
- Mastronuzzi, G.; Quinif, Y.; Sansò, P.; Selleri, G. Middle-Late Pleistocene polycyclic evolution of a stable coastal area (southern Apulia, Italy). Geomorphology 2007, 86, 393–408. [Google Scholar] [CrossRef]
- Critelli, S.; Muto, F.; Tripodi, V.; Perri, F. Relationships between lithospheric flexure, thrust tectonics and stratigraphic sequences in foreland setting: The Southern Apennines foreland basin system. In New Frontiers in Tectonic Research—At the Midst of Plate Convergence; Schattner, U., Ed.; Intech Science Publishers: Rjeka, Croatia, 2011; pp. 121–170. [Google Scholar]
- Suter, J.R.; Berryhill, H.L. Late Quaternary shelf margin deltas, northwest Gulf of Mexico. AAPG Bull. 1985, 69, 77–91. [Google Scholar]
- Suter, J.R.; Berryhill, H.L.; Penland, S. Late Quaternary sea level fluctuations and depositional sequences, southwest Louisiana continental shelf. In Sea Level Fluctuation and Coastal Evolution; Nummendal, D., Pilkey, O.H., Howard, J.D., Eds.; Society for Sedimentary Geology: Tulsa, OK, USA, 1987; Volume 41, pp. 199–219. [Google Scholar]
- Ashley, G.M.; Wellner, R.W.; Esker, D.; Sheridan, R.E. Clastic sequences developed during Late-Quaternary glacio-eustatic sea-level fluctuations on a passive margin. Example from the inner continental shelf, Barnegat Inley, New Jersey. GSA Bull. 1991, 103, 1607–1621. [Google Scholar] [CrossRef]
- Hunt, D.; Tucker, M.E. Stranded parasequences and the forced regression wedge system tract: Deposition during base-level fall. Sediment. Geol. 1992, 81, 1–9. [Google Scholar] [CrossRef]
- Field, M.E.; Trincardi, F. Regressive coastal deposits on Quaternary continental shelves: Preservation and legacy. In From Shoreline to Abyss: Contributions in Marine Geology in Honor of Francis Parker Shepard; Osborne, R.H., Ed.; Society for Sedimentary Geology: Tulsa, OK, USA, 1992; Volume 46, pp. 107–122. [Google Scholar]
- Posamentier, H.W.; Allen, G.P.; James, D.P.; Tesson, M. Forced regression in a sequence stratigraphic framework: Concepts, examples and exploration significance. AAPG Bull. 1992, 76, 1687–1709. [Google Scholar]
- Posamentier, H.W.; James, D.P. An overview of sequence stratigraphic concepts: Uses and abuses. In Sequence Stratigraphy: Facies and Associations; Posamentier, H.W., Summerhayes, C.P., Haq, B.U., Allen, G.P., Eds.; International Association of Sedimentologists, Special Publication: Oxford, UK, 1993; Volume 18, pp. 3–18. [Google Scholar]
- Gensous, B.; Williamson, D.; Tesson, M. Late Quaternary transgressive and highstand deposits on a deltaic shelf (Rhone delta, France). In Sequence Stratigraphy: Facies and Associations; Posamentier, H.W., Summerhayes, C.P., Haq, B.U., Allen, G.P., Eds.; International Association of Sedimentologists, Special Publication: Oxford, UK, 1993; Volume 18, pp. 197–211. [Google Scholar]
- Steckler, M.S.; Reynolds, D.J.; Coakley, B.J.; Swift, B.A.; Jarrard, R. Modelling Passive Margin Sequence Stratigraphy. In Sequence Stratigraphy: Facies and Associations; Posamentier, H.W., Summerhayes, C.P., Haq, B.U., Allen, G.P., Eds.; International Association of Sedimentologists, Special Publication: Oxford, UK, 1993; Volume 18, pp. 19–41. [Google Scholar]
- Okamura, Y.; Blum, P. Seismic stratigraphy of Quaternary stacked depositional sequences in the Southwest Japan forearc: An example of fourth order sequences of an active margin. In Sequence Stratigraphy: Facies and Associations; Posamentier, H.W., Summerhayes, C.P., Haq, B.U., Allen, G.P., Eds.; International Association of Sedimentologists, Special Publication: Oxford, UK, 1993; Volume 18, pp. 213–232. [Google Scholar]
- Tesson, M.; Gensous, B.; Allen, G.P.; Ravenne, C. Late Quaternary deltaic lowstand wedges on the Rhone continental shelf, France. Mar. Geol. 1990, 91, 325–332. [Google Scholar] [CrossRef]
- Marani, M.; Taviani, M.; Trincardi, F.; Argnani, A.; Borsetti, A.; Zitellini, N. Pleistocene progradation and postglacial events on the tyrrhenian continental shelf between the Tiber river delta and Capo Circeo. Mem. Soc. Geol. Ital. 1986, 36, 67–89. [Google Scholar]
- Chiocci, F.L.; Ercilla, G.; Torres, J. Stratal architecture of western Mediterranean margin as the result of the stacking of Quaternary lowstand deposits below “glacio-eustatic fluctuation base-level”. Sediment. Geol. 1997, 112, 195–217. [Google Scholar] [CrossRef]
- Catalano, R.; Di Stefano, E.; Sulli, A.; Vitale, F.P.; Infuso, S.; Vail, P.R. Sequences and system tracts calibrated by high-resolution bio-chronostratigraphy: The central Mediterranean Plio-Pleistocene record. In Mesozoic and Cenozoic Sequence Stratigraphy of European Basins; de Graciansky, P.C., Hardenbol, J., Jacquin, T., Vail, P.R., Eds.; Society for Sedimentary Geology: Tulsa, OK, USA, 1998; Volume 60, pp. 155–177. [Google Scholar]
- Hernandez-Molina, F.J.; Somoza, L.; Rey, J.; Pomar, L. Late Pleistocene-Holocene sediments on the Spanish continental shelves: Model for very high-resolution sequence stratigraphy. Mar. Geol. 1994, 120, 129–174. [Google Scholar] [CrossRef]
- Goy, J.L.; Zazo, C. Sequences of the Quaternary marine levels in Elche basin (Eastern Betic Cordillera, Spain). Palaeogeogr. Palaeoclimatol. Palaeoecol. 1988, 68, 301–310. [Google Scholar] [CrossRef]
- Goy, J.L.; Zazo, C.; Dabrio, C.J.; Lario, J.; Borja, F.; Sierro, F.; Flores, J.A. Global and regional factors controlling changes of coastlines in southern Iberia (Spain) during the Holocene. Quat. Sci. Rev. 1996, 15, 773–780. [Google Scholar] [CrossRef] [Green Version]
- Somoza, L.; Barnolas, A.; Arasa, A.; Maestro, A.; Rees, J.G.; Hernandez Molina, F.J. Architectural stacking patterns of the Ebro delta controlled by Holocene high-frequency eustatic fluctuations, delta-lobe switching and subsidence processes. Sediment. Geol. 1998, 117, 11–32. [Google Scholar]
- Lobo, F.J.; Hernandez Molina, L.; Somoza, F.J.; Diaz Del Rio, V.; Dias, J.M.A. Stratigraphic evidence of an upper Pleistocene TST to HST complex on the Gulf of Cadiz continental shelf (south-west Iberian Peninsula). Geo-Mar. Lett. 2002, 22, 95–107. [Google Scholar]
- Cattaneo, A.; Trincardi, F.; Asioli, A.; Correggiari, A. The Western Adriatic shelf clinoform: Energy-limited bottomset. Cont. Shelf Res. 2007, 27, 506–525. [Google Scholar] [CrossRef] [Green Version]
- Steckler, M.S.; Ridente, D.; Trincardi, F. Modeling of sequence geometry north of Gargano Peninsula by changing sediment pathways in the Adriatic Sea. Cont. Shelf Res. 2007, 27, 526–541. [Google Scholar] [CrossRef]
- Maselli, V.; Trincardi, F.; Asioli, A.; Ceregato, A.; Rizzetto, F.; Taviani, M. Delta growth and river valleys: The influence of climate and sea level changes on the South Adriatic shelf (Mediterranean Sea). Quat. Sci. Rev. 2014, 99, 146–163. [Google Scholar] [CrossRef]
- Maselli, V.; Hutton, E.H.; Kettner, A.J.; Syvitski, J.P.M.; Trincardi, F. High-frequency sea level and sediment supply fluctuations during Termination I: An integrated sequence-stratigraphy and modeling approach from the Adriatic sea (Central Mediterranean). Mar. Geol. 2011, 287, 54–70. [Google Scholar] [CrossRef]
- Pellegrini, C.; Maselli, V.; Cattaneo, A.; Piva, A.; Ceregato, A.; Trincardi, F. Anatomy of a compound delta from the post-glacial transgressive record in the Adriatic sea. Mar. Geol. 2015, 362, 43–59. [Google Scholar] [CrossRef]
- Amorosi, A.; Maselli, V.; Trincardi, F. Onshore to offshore anatomy of a late-Quaternary source-to-sink system (Po Plain-Adriatic Sea, Italy). Earth Sci. Rev. 2016, 153, 212–237. [Google Scholar] [CrossRef]
- Foglini, F.; Campiani, E.; Trincardi, F. The reshaping of the South West Adriatic Margin by cascading of dense shelf waters. Mar. Geol. 2016, 375, 64–81. [Google Scholar] [CrossRef]
- Ridente, D.; Trincardi, F. Eustatic and tectonic control on deposition and lateral variability of Quaternary regressive sequences in the Adriatic basin (Italy). Mar. Geol. 2002, 184, 273–293. [Google Scholar] [CrossRef]
- De Santis, V.; Caldara, M. Evolution of an incised valley system in the southern Adriatic Sea (Apulian margin): An onshore–offshore correlation. Geol. J. 2016, 51, 263–284. [Google Scholar] [CrossRef]
- Maselli, V.; Trincardi, F. Large-scale single incised valley from a small catchment basin on the western Adriatic margin (central Mediterranean Sea). Glob. Planet. Change 2013, 100, 245–262. [Google Scholar] [CrossRef]
- Rovere, M.; Pellegrini, C.; Chiggiato, J.; Campiani, E.; Trincardi, F. Impact of dense bottom water on a continental shelf: An example from the SW Adriatic margin. Mar. Geol. 2019, 408, 123–143. [Google Scholar] [CrossRef]
- Patacca, E.; Scandone, P. Post-Tortonian mountain building in the Apennines. The role of the passive sinking of a relict lithospheric slab. In The Lithosphere in Italy; Boriani, A., Bonafede, M., Piccardo, G.B., Vai, G.B., Eds.; Advances in Earth Science Research, Accademia dei Lincei: Rome, Italy, 1989; pp. 157–176. [Google Scholar]
- D’Argenio, B.; Pescatore, T.; Scandone, P. Schema geologico dell’Appennino meridionale (Campania e Lucania). In Proceedings of the Conference Moderne Vedute Sulla Geologia dell’Appennino, Rome, Italy, 16–18 February 1973; Accademia Nazionale dei Lincei: Rome, Italy; Volume 183, pp. 49–72. [Google Scholar]
- Ricchetti, G.; Ciaranfi, N.; Luperto Sinni, E.; Mongelli, F.; Pieri, P. Geodinamica ed evoluzione stratigrafico-tettonica dell’avampaese apulo. Mem. Soc. Geol. Ital. 1992, 42, 287–300. [Google Scholar]
- De Dominicis, A.; Mazzoldi, G. Interpretazione geologico-strutturale del margine orientale della piattaforma apula. Mem. Soc. Geol. Ital. 1987, 38, 163–176. [Google Scholar]
- Aiello, G.; de Alteriis, G. Il margine adriatico della Puglia: Fisiografia ed evoluzione terziaria. Mem. Soc. Geol. Ital. 1993, 47, 197–212. [Google Scholar]
- Aiello, G. Analisi sismostratigrafica del margine apulo nell′offshore delle Murge settentrionali. G. di Geol. 1992, 54, 3–18. [Google Scholar]
- Aiello, G. Stratigrafia e strutture dell’offshore pugliese (Adriatico meridionale). Ph.D. Thesis, Università degli Studi di Napoli “Federico II”, Naples, Italy, 1993; pp. 1–230. [Google Scholar]
- Trincardi, F.; Correggiari, A.; Roveri, M. Late Quaternary transgressive erosion and deposition in a modern epiconental shelf: The Adriatic semienclosed basin. Geo-Mar. Lett. 1994, 14, 41–51. [Google Scholar] [CrossRef]
- Trincardi, F.; Normark, W.R. Sediment waves on the tiber prodelta slope: Interaction of deltaic sedimentation and currents along the shelf. Geo-Mar. Lett. 1988, 8, 149–157. [Google Scholar] [CrossRef]
- Nummendal, D.; Swift, D.J.P. Transgressive stratigraphy at sequence bounding unconformities: Some principles derived from Holocene and Cretaceous example. In Fluctuation and Coastal Evolution; Nummendal, D., Pilkey, O.H., Howard, S.D., Eds.; Society for Sedimentary Geology: Tulsa, OK, USA, 1987; Volume 41, pp. 241–260. [Google Scholar]
- Vacchi, M.; Marriner, N.; Morhange, C.; Spada, G.; Fontana, A.; Rovere, A. Multiproxy assessment of Holocene relative sea-level changes in the western Mediterranean: Sea-level variability and improvements in the definition of the isostatic signal. Earth Sci. Rev. 2016, 155, 172–197. [Google Scholar] [CrossRef] [Green Version]
- De Santis, V.; Scardino, G.; Scicchitano, G.; Meschis, M.; Montagna, P.; Pons-Branchu, E.; Ortiz, J.E.; Sánchez-Palencia, Y.; Caldara, M. Middle-late Pleistocene chronology of palaeoshorelines and uplift history in the low-rising to stable Apulian foreland: Overprinting and reoccupation. Geomorphology 2022, 421, 108530. [Google Scholar] [CrossRef]
- Hearty, P.J.; Dai Pra, G. The Age and Stratigraphy of Middle Pleistocene and Younger Deposits along the Gulf of Taranto (Southeast Italy). J. Coast. Res. 1992, 8, 882–905. [Google Scholar]
- Westaway, R. Quaternary uplift of Southern Italy. J. Geophys. Res. 1993, 98, 21741–21772. [Google Scholar] [CrossRef]
- Bossio, A.; Guelfi, F.; Mazzei, R.; Monteforti, B.; Salvatorini, G. Studi sul Neogene ed il Quaternario della Penisola Salentina, V—Note geologiche sulla zona di Castro. Quad. Geotec. Della Fac. Di Ing. Di Lecce 1988, 11, 127–145. [Google Scholar]
- Allen, P.A.; Allen, J.R. Basin Analysis: Principles and Applications; Blackwell Scientific Publications: Oxford, UK, 1990; pp. 1–451. [Google Scholar]
- Moretti, I.; Royden, L. Deflection, gravity anomalies and tectonics of doubly subducted continental lithosphere: Adriatic and Ionian seas. Tectonics 1987, 7, 875–893. [Google Scholar] [CrossRef]
- Posamentier, H.W.; Vail, P.R. Eustatic Controls on Clastic Deposition II—Sequence and Systems Tract Models. In Sea-Level Changes: An Integrated Approach; Wilgus, C.K., Hastings, B.S., Posamentier, H., Van Wagoner, J., Ross, C.A., Kendall, C.G., Eds.; Society for Sedimentary Geology: Tulsa, OK, USA, 1988; Volume 42. [Google Scholar] [CrossRef]
- De Santis, V.; Scardino, G.; Ortiz, J.E.; Sánchez-Palencia, Y.; Caldara, M. Pleistocene terracing phases in the metropolitan area of Bari—AAR dating and deduced uplift rates of the Apulian Foreland. Rend. Online Della Soc. Geol. Ital. 2021, 54, 49–61. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aiello, G. Quaternary Lowstand Prograding Wedges of the Salento Continental Shelf (Southern Adriatic Sea, Italy): Architectural Stacking Patterns and the Control of Glacio-Eustatic Sea Level Fluctuations and Foreland Tectonic Uplift. Geosciences 2023, 13, 4. https://doi.org/10.3390/geosciences13010004
Aiello G. Quaternary Lowstand Prograding Wedges of the Salento Continental Shelf (Southern Adriatic Sea, Italy): Architectural Stacking Patterns and the Control of Glacio-Eustatic Sea Level Fluctuations and Foreland Tectonic Uplift. Geosciences. 2023; 13(1):4. https://doi.org/10.3390/geosciences13010004
Chicago/Turabian StyleAiello, Gemma. 2023. "Quaternary Lowstand Prograding Wedges of the Salento Continental Shelf (Southern Adriatic Sea, Italy): Architectural Stacking Patterns and the Control of Glacio-Eustatic Sea Level Fluctuations and Foreland Tectonic Uplift" Geosciences 13, no. 1: 4. https://doi.org/10.3390/geosciences13010004
APA StyleAiello, G. (2023). Quaternary Lowstand Prograding Wedges of the Salento Continental Shelf (Southern Adriatic Sea, Italy): Architectural Stacking Patterns and the Control of Glacio-Eustatic Sea Level Fluctuations and Foreland Tectonic Uplift. Geosciences, 13(1), 4. https://doi.org/10.3390/geosciences13010004