Geophysical and Geochemical Proxies of Neolithic Sites from Thessaly: A Comparative Study on the Potential of Soil Magnetic Susceptibility and Phosphate Analyses for Minimally Invasive Location and Interpretation of Buried Features
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Large-Area Magnetometer Survey Data
2.3. Soil Sampling Using Explorative Lines and Augering
2.4. Soil Analyses
2.4.1. Magnetic Susceptibility
2.4.2. Phosphate Analysis
2.4.3. Data Integration
3. Results
3.1. Rizomilos
3.1.1. Lateral Results (Exploratory Lines 1, 2 and 3)
3.1.2. In-Depth Results (Auger Points)
3.1.3. Correlation of the Proxies at Rizomilos
3.2. Almyriotiki
3.2.1. Lateral Results (Exploratory Lines 1, 2, 3, 4, 5 and 6)
3.2.2. In-Depth Results (Auger Points)
3.2.3. Correlation of the Proxies at Almyriotiki
3.3. Perdika II
3.3.1. Lateral Results (Exploratory Lines 1 and 2)
3.3.2. In-Depth Results (Auger Points)
3.3.3. Correlation of the Proxies at Perdika II
4. Discussion
4.1. Could Soil Analyses Act as Alternatives for Locating Such Targets If Geophysical Surveys Were Not Possible?
4.2. Can We Say Anything Else beyond the Information about the Geometry and Spatial Distribution of the Possible Buried Features Provided by the Magnetometer Data?
4.2.1. About Enclosures
4.2.2. About Structures and Materials
4.2.3. About Intra-Site Activity
4.3. Future Actions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aidona, E.V.; Sarris, A.; Kondopoulou, D.; Sanakis, I. Application of Magnetic and Spectrometry Methods in the Detection of Human Activity in Soils: A Case Study at the Archaeological Site of Kitros (Northern Greece). Archaeol. Prospect. 2001, 8, 187–198. [Google Scholar] [CrossRef]
- Dalan, R.A.; Banerjee, S.K. Solving Archaeological Problems Using Techniques of Soil Magnetism. Geoarchaeology 1998, 13, 3–36. [Google Scholar] [CrossRef]
- Eppelbaum, L.V.; Khesin, B.E.; Itkis, S.E. Prompt Magnetic Investigations of Archaeological Remains in Areas of Infrastructure Development: Israeli Experience. Archaeol. Prospect. 2001, 8, 163–185. [Google Scholar] [CrossRef]
- Scollar, I.; Tabbagh, A.; Hesse, A.; Herzog, I. Archaeological Prospecting and Remote Sensing, 1st ed.; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Tite, M.S.; Mullins, C. Enhancement of the Magnetic Susceptibility of Soils on Archaeological Sites. Archaeometry 1971, 13, 209–219. [Google Scholar] [CrossRef]
- Wilson, C.A.; Davidson, D.A.; Cresser, M.S. Multi-Element Soil Analysis: An Assessment of Its Potential as an Aid to Archaeological Interpretation. J. Archaeol. Sci. 2008, 35, 412–424. [Google Scholar] [CrossRef]
- Cuenca-García, C. Inorganic Geochemical Methods in Archaeological Prospection. In Best Practices of GeoInformatic Technologies for the Mapping of Archaeolandscapes; Archaeopress Archaeology: Oxford, UK, 2015. [Google Scholar]
- Armstrong, K.; Cheetham, P.; Darvill, T. Tales from the Outer Limits: Archaeological Geophysical Prospection in Lowland Peat Environments in the British Isles. Archaeol. Prospect. 2019, 26, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Cuenca-García, C.; Jones, R.; Hall, A.; Poller, T. From the Air to the Atomic Level of a Ditch: Integrating Geophysical and Geochemical Survey Methods at the Prehistoric Cropmark Complex of Forteviot (Perthshire, Scotland). In Proceedings of the Archaeological Prospection: Proceedings of the 10th International Conference, Vienna, Austria, 29 May–2 June 2013. [Google Scholar]
- Cuenca-García, C. Soil Geochemical Methods in Archaeo-Geophysics: Exploring a Combined Approach at Sites in Scotland. Archaeol. Prospect. 2019, 26, 57–72. [Google Scholar] [CrossRef] [Green Version]
- Dirix, K.; Muchez, P.; Degryse, P.; Music, B.; Poblome, J. Integrating Geochemical Survey and Magnetic Prospection on an Archaeological Site in SW-Turkey. In Proceedings of the Archaeological Prospection: Proceedings of the 10th International Conference on Archaeological Prospection, Vienna, Austria, 29 May–2 June 2013; pp. 110–113. [Google Scholar]
- Garcia-Garcia, E.; Andrews, J.; Iriarte, E.; Sala, R.; Aranburu, A.; Hill, J.; Agirre-Mauleon, J. Geoarchaeological Core Prospection as a Tool to Validate Archaeological Interpretation Based on Geophysical Data at the Roman Settlement of Auritz/Burguete and Aurizberri/Espinal (Navarre). Geosciences 2017, 7, 104. [Google Scholar] [CrossRef] [Green Version]
- Gustavsen, L.; Cannell, R.J.S.; Nau, E.; Tonning, C.; Trinks, I.; Kristiansen, M.; Gabler, M.; Paasche, K.; Gansum, T.; Hinterleitner, A.; et al. Archaeological Prospection of a Specialized Cooking-Pit Site at Lunde in Vestfold, Norway. Archaeol. Prospect. 2018, 25, 17–31. [Google Scholar] [CrossRef]
- Hafez, I.T.; Sorrentino, G.; Faka, M.; Cuenca-García, C.; Makarona, C.; Charalambous, A.; Nys, K.; Hermon, S. Geochemical Survey of Soil Samples from the Archaeological Site Dromolaxia-Vyzakia (Cyprus), by Means of Micro-XRF and Statistical Approaches. J. Archaeol. Sci. Rep. 2017, 11, 447–462. [Google Scholar] [CrossRef]
- Jones, R.E.; Challands, A.; French, C.; Card, N.; Downes, J.; Richards, C. Exploring the Location and Function of a Late Neolithic House at Crossiecrown, Orkney by Geophysical, Geochemical and Soil Micromorphological Methods. Archaeol. Prospect. 2010, 17, 29–47. [Google Scholar] [CrossRef]
- Schneidhofer, P.; Nau, E.; Leigh McGraw, J.; Tonning, C.; Draganits, E.; Gustavsen, L.; Trinks, I.; Filzwieser, R.; Aldrian, L.; Gansum, T.; et al. Geoarchaeological Evaluation of Ground Penetrating Radar and Magnetometry Surveys at the Iron Age Burial Mound Rom in Norway. Archaeol. Prospect. 2017, 24, 425–443. [Google Scholar] [CrossRef]
- Verhegge, J.; Missiaen, T.; Crombé, P. Exploring Integrated Geophysics and Geotechnics as a Paleolandscape Reconstruction Tool: Archaeological Prospection of (Prehistoric) Sites Buried Deeply below the Scheldt Polders (NW Belgium). Archaeol. Prospect. 2016, 23, 125–145. [Google Scholar] [CrossRef]
- Verhegge, J.; Mendoza Veirana, G.; Cornelis, W.; Crombé, P.; Grison, H.; De Kort, J.-W.; Rensink, E.; De Smedt, P. Working the Land, Searching the Soil: Developing a Geophysical Framework for Neolithic Land-Use Studies: Project Introduction, Methodology, and Preliminary Results at ‘Valther Tweeling’. Notae Praehist. 2021, 41, 187–197. [Google Scholar]
- Cuenca-Garcia, C.; Armstrong, K.; Aidona, E.; De Smedt, P.; Rosveare, A.; Rosveare, M.; Schneidhofer, P.; Wilson, C.; Faßbinder, J.; Moffat, I. The Soil Science & Archaeo-Geophysical Alliance (SAGA): Going beyond Prospection. Res. Ideas Outcomes 2018, 4, e31648. [Google Scholar] [CrossRef]
- Alram-Stern, E.; Sarris, A.; Vouzaxakis, K.; Almatzi, K.; Arachoviti, P.; Rondiri, V.; Efstathiou, D.; Stamelou, E.; García, C.C.; Kalayci, T.; et al. Visviki Magoula Revisited: Comparing Past Excavations’ Data to Recent Geophysical Research. In Communities, Landscapes, and Interaction in Neolithic Greece; International Monographs in Prehistory; Berghahn Books: New York, NY, USA, 2018; Volume 20, pp. 137–148. [Google Scholar]
- Sarris, A.; Kalayci, T.; Simon, F.-X.; Donati, J.; García, C.C.; Manataki, M.; Cantoro, G.; Moffat, I.; Kalogiropoulou, E.; Karampatsou, G.; et al. Opening a New Frontier in the Study of Neolithic Settlement Patterns of Eastern Thessaly, Greece. In Communities, Landscapes, and Interaction in Neolithic Greece; Berghahn Books: New York, NY, USA, 2018; pp. 27–48. [Google Scholar]
- Simon, F.-X.; Kalayci, T.; Donati, J.C.; Cuenca-García, C.; Manataki, M.; Sarris, A. How Efficient Is an Integrative Approach in Archaeological Geophysics? Comparative Case Studies from Neolithic Settlements in Thessaly (Central Greece). Near Surf. Geophys. 2015, 13, 633–643. [Google Scholar] [CrossRef] [Green Version]
- Fassbinder, J.W.E.; Stanjekt, H.; Vali, H. Occurrence of Magnetic Bacteria in Soil. Nature 1990, 343, 161–163. [Google Scholar] [CrossRef]
- Sarris, A. Processing and Analysing Geophysical Data. In Archaeological Spatial Analysis: A Methodological Guide; Routledge: London, UK, 2020; pp. 376–407. [Google Scholar]
- Mullins, C. Magnetic Susceptibility of the Soil and Its Significance in Soil Science—A Review. Eur. J. Soil Sci. 1977, 28, 223–246. [Google Scholar] [CrossRef]
- Batt, C.; Fear, S.; Heron, C. The Role of Magnetic Susceptibility as a Geophysical Survey Technique: A Site Assessment at High Cayton, North Yorkshire. Archaeol. Prospect. 1995, 2, 179–196. [Google Scholar] [CrossRef]
- Dearing, J.A. Environmental Magnetic Susceptibility: Using the Bartington MS2 System; Chi Pub: Kenilworth, UK, 1994. [Google Scholar]
- Dearing, J.A.; Dann, R.J.L.; Hay, K.; Lees, J.A.; Loveland, P.J.; Maher, B.A.; O’Grady, K. Frequency-Dependent Susceptibility Measurements of Environmental Materials. Geophys. J. Int. 1996, 124, 228–240. [Google Scholar] [CrossRef] [Green Version]
- Clark, A. Seeing Beneath the Soil; B.T. Batsford: London, UK, 1990. [Google Scholar]
- Jordanova, N.; Petrovsky, E.; Kovacheva, M.; Jordanova, D. Factors Determining Magnetic Enhancement of Burnt Clay from Archaeological Sites. J. Archaeol. Sci. 2001, 28, 1137–1148. [Google Scholar] [CrossRef]
- Jordanova, N.; Jordanova, D.; Lesigyarski, D.; Kostadinova-Avramova, M. Imprints of Paleo-Environmental Conditions and Human Activities in Mineral Magnetic Properties of Fired Clay Remains from Neolithic Houses. J. Archaeol. Sci. Rep. 2020, 33, 102473. [Google Scholar] [CrossRef]
- Holliday, V.T.; Gartner, W.G. Methods of Soil P Analysis in Archaeology. J. Archaeol. Sci. 2007, 34, 301–333. [Google Scholar] [CrossRef]
- Schmidt, A. Electrical and Magnetic Methods in Archaeological Prospection. In Seeing the Unseen. Geophysics and Landscape Archaeology; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Nanoglou, S. Social and Monumental Space in Neolithic Thessaly, Greece. Eur. J. Archaeol. 2001, 4, 303–322. [Google Scholar] [CrossRef]
- Manzetti, M.C.; Sarris, A. A Methodological Approach for Intra—Site Analysis of Prehistoric Settlements. Stud. Digit. Herit. 2021, 5, 88–106. [Google Scholar] [CrossRef]
- Chernysheva, E.; Korobov, D.; Khomutova, T.; Fornasier, F.; Borisov, A. Soil Microbiological Properties in Livestock Corrals: An Additional New Line of Evidence to Identify Livestock Dung. J. Archaeol. Sci. Rep. 2021, 37, 103012. [Google Scholar] [CrossRef]
- Elliott, S.; Bendrey, R.; Whitlam, J.; Aziz, K.R.; Evans, J. Preliminary Ethnoarchaeological Research on Modern Animal Husbandry in Bestansur, Iraqi Kurdistan: Integrating Animal, Plant and Environmental Data. Environ. Archaeol. 2015, 20, 283–303. [Google Scholar] [CrossRef] [Green Version]
- Shahok-Gross, R.; Marshall, F.; Weiner, S. Geo-Ethnoarchaeology of Pastoral Sites: The Identification of Livestock Enclosures in Avandoned Maasai Settlements. J. Archaeol. Sci. 2003, 30, 439–459. [Google Scholar] [CrossRef]
- Manataki, M.; Sarris, A.; Donati, J.; Cuenca-García, C.; Kalaicy, T. GPR: Theory and Practice in Archaeological Prospection. In Best Practices of GeoInformatic Technologies for the Mapping of Archaeolandscapes; Archaeopress Archaeology: Oxford, UK, 2015. [Google Scholar]
Site | Date | Geomorphology/Current Land Use | Geology | Soil |
---|---|---|---|---|
Rizomilos | Early Neolithic 6500 B.C.—Early Bronze Age ~3300 B.C. | Circular low hill/A farm is located at the top of the hill surrounded by arable land. | Pleistocene (marine deposits: marl, clay, sand and conglomerate, marine terraces). | Cambisol |
Almyriotiki | Early Neolithic ~6500 B.C.—Late Bronze Age ~1100 B.C. | Fairly low elevation with a circular top/ Covers several agricultural fields. | Holocene (recent deposits on valleys, plains and coasts. | Cambisol |
Perdika II | Middle Neolithic ~6000–5500 B.C. | Top of a steep high hill/Fallow. | Neogene (lacustrine and marine deposits: conglomerates, sandstone, marl, clay occasionally with lignite beds). Close to Cretaceous flysch. | Luvisol |
Rizomilos | Almyriotiki | Perdika II | |
---|---|---|---|
Lines | 3 (122 soil samples) | 6 (140 soil samples) | 2 (95 soil samples) |
Targeted anomalies | Concentric ditch-like positive magnetic anomalies and similar linear ditch-like anomaly | Strong positive magnetic anomalies of possible burnt structures, possible structures of negative magnetic contrast, and ditch-like magnetic anomalies | Different positive magnetic anomalies of possible enclosures and structures |
Augers | 8 (87 soil samples, to a depth of 1 m). Features augured were not bottomed | 22 (117 soil samples) | 49 (106 soil samples), some augers reached the feature’s bottom/solid geology (most enclosure targets were bottomed at 0.32–0.5 m) |
Field use | Mostly a fallowfield, with some ploughed areas | Harvested field (wheat, cotton and corn). Bailing works at the field containing the nucleus of the site limited the soil sampling | Fallow |
Texture | Grayish brown, silty loam. Soil was quite moist during sampling but dried quickly | Brown clay loam (the soil texture in Line 9 was especially clayey) | Reddish brown sandy loam and very organic topsoil. South area had very sandy soil with lenses of chalk and clay |
Controls | 1 auger (14 soil samples) | 2 augers (20 soil samples) | 2 augers (11 soil samples) |
Rizomilos (0.25–0.30 m Depth) | Almyriotiki (0.25–0.30 m Depth) | Perdika II (0.15–0.20 m Depth) | ||||
---|---|---|---|---|---|---|
χlf | P | χlf | P | χlf | P | |
Mean (Lines) | 1.55 × 10−6 | 1804 | 2.30 × 10 −6 | 4230 | 1.28 × 10−6 | 1795 |
Mean (Controls) | 1.01 × 10−6 | - | 1.04 × 10−6 | 429 | 4.93 × 10−7 | 453 |
% Increase | 53% | - | 122% | 886% | 159% | 296% |
Rizomilos | Almyriotiki | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Augers | A1 | A2 | B1 | C1 | C2 | Controls | C1 | C2 | C3 | C4 | C5 | Controls |
Mean χlf | 1.7 | 1.8 | 1.7 | 1.4 | 1.2 | 9.0 × 10−7 | 2.3 | 2.3 | 2.1 | 3.3 | 2.5 | 7.6 × 10−7 |
Mean χfd | 7.5 | 8.1 | 7.3 | 6.9 | 6.7 | 6.63 | 8.67 | 8.91 | 8.49 | 9.14 | 7.95 | 6.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuenca-García, C.; Aidona, E.; Wilson, C.; Jrad, A.; Sarris, A. Geophysical and Geochemical Proxies of Neolithic Sites from Thessaly: A Comparative Study on the Potential of Soil Magnetic Susceptibility and Phosphate Analyses for Minimally Invasive Location and Interpretation of Buried Features. Geosciences 2023, 13, 3. https://doi.org/10.3390/geosciences13010003
Cuenca-García C, Aidona E, Wilson C, Jrad A, Sarris A. Geophysical and Geochemical Proxies of Neolithic Sites from Thessaly: A Comparative Study on the Potential of Soil Magnetic Susceptibility and Phosphate Analyses for Minimally Invasive Location and Interpretation of Buried Features. Geosciences. 2023; 13(1):3. https://doi.org/10.3390/geosciences13010003
Chicago/Turabian StyleCuenca-García, Carmen, Elina Aidona, Clare Wilson, Abir Jrad, and Apostolos Sarris. 2023. "Geophysical and Geochemical Proxies of Neolithic Sites from Thessaly: A Comparative Study on the Potential of Soil Magnetic Susceptibility and Phosphate Analyses for Minimally Invasive Location and Interpretation of Buried Features" Geosciences 13, no. 1: 3. https://doi.org/10.3390/geosciences13010003
APA StyleCuenca-García, C., Aidona, E., Wilson, C., Jrad, A., & Sarris, A. (2023). Geophysical and Geochemical Proxies of Neolithic Sites from Thessaly: A Comparative Study on the Potential of Soil Magnetic Susceptibility and Phosphate Analyses for Minimally Invasive Location and Interpretation of Buried Features. Geosciences, 13(1), 3. https://doi.org/10.3390/geosciences13010003