Best Practices for Developing Geotechnical Models and Seismic Hazard Procedures for Critical Infrastructure: The Viadotto Italia Case Study in Southern Italy
Abstract
:1. Introduction
2. The Viadotto Italia Case Study
2.1. Historical Overview and Geometrical and Technical Background of the Construction of the Viadotto Italia Case Study
2.2. The 2014 Renovation of the Viadotto Italia
3. Geotechnical Model of the Viadotto Italia Site
- Geophysical test results performed by Compagnia Mediterranea Prospezioni Roma in 1965 for ANAS [12]. This data was obtained using a rather rudimentary geophysical prospection approach and was not used in this study;
- Data from boring logs (labeled as Bx, where x is the boring number in Figure 3), with standard penetration tests (SPTs), flat dilatometer tests, and pressuremeter tests performed on various samples along the borings, and Lugeon permeability tests when such measurement was deemed to be possible in fractured rock. These tests were performed by Trivel Sondaggi s.r.l. (a sub-contractor of the general contractor Italsarc Scpa) for ANAS in 2013. This data was used to guide the upcoming renovation process, which started in 2014. A total of seven of these borings are shown in Figure 3 and are located in the central portion of the bridge (crossing the Lao river canyon);
- Geophysical test results, including multichannel analysis of surface waves (MASW) and seismic refraction tomography (SRT) tests performed by IdroGeo s.r.l. (a sub-contractor of the general contractor Italsarc Scpa) for ANAS in 2013; and
- Non-invasive geophysical test results, including one MASW (labeled as M1 in Figure 3), electrical resistivity tomography (ERT) tests, microtremor-based horizontal-to-vertical spectral ratio (HVSR) analysis, and refraction microtremor (ReMi) tests performed by the University of Calabria in collaboration with the Italian Research Council in 2015 as part of the research presented herein [13,14].
3.1. Geology of the Area
- Lao river schists (SL): greyish to greenish argillites with thin layers of quartzite;
- Dolomite rocks (D): gray to black dolomites with medium-to-fine grains;
- Colle Trodo Formation (TR): gray to dark blue calcareous breccia and limestone alternated with silty clays, marly limestone, and marly varicolored clays;
- Calcareous breccia and limestone (BC): gray compact microcrystalline limestone intercalated with sedimentary carbonatic breccia and carbonatic cobbles;
- Serra Bonangelo and Grisolia Formations (BG): indistinguishable formations comprising gray to black micritic limestone and thin layers of limestone intercalated with red and yellow marls and compact and stratified dolomitic limestone;
- Mercure fluvial deposits (FLM): gravelly to sandy fluvial deposits with thin layers of fine-grained lacustrine material.
3.2. Geotechnical/Geophysical Characterization and Geotechnical Model of the Site
4. Site-Specific PSHA for the Viadotto Italia Site
5. A Step-by-Step Procedure to Build a Geotechnical Model and Develop a Site-Specific PSHA for Critical Infrastructure Systems
- Historical and new data gathering and analysis;
- Analysis of the geology of the area and its tectonic setting;
- Reliability assessment of historical data based on its quality;
- Geotagging of any investigation location with unknown coordinates;
- Creation of a GIS-based map of all investigations;
- Multi-epoch consistency analysis to identify aleatory variability ranges and knowledge gaps that could be treated as epistemic uncertainties in forward prediction analysis. This step involves the comparison of co-located investigation data arising from different test programs;
- Development of the final pragmatic geotechnical engineering model based on all available data;
- Analysis of the consistency between geologic units identified in step 2 and finite faults implemented in the source model to be used for the site-specific PSHA;
- Definition of a source model that comprises all local faults (also those which may be missing from code-based or regional models);
- Choice of optimal GMMs;
- Definition of target spectra and comparison with available regional and/or code-based models.
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bonazzi, D. La maintenance du savoir sur les ouvrage en exploitation: l’expérience internationale d’un ingénieur, conseil. In Proceedings of the XVII International Congress on Large Dams (ICOLD), Vienna, Austria, 17–21 June 1991; Volume 5, p. R23. (In French). [Google Scholar]
- Devi, A.; Israil, M.; Anbalagan, R.; Gupta, P.K. Subsurface soil characterization using geoelectrical and geotechnical investigations at a bridge site in Uttarakhand Himalayan region. J. Appl. Geophys. 2017, 144, 78–85. [Google Scholar] [CrossRef]
- U.S. Federal Highway Administration. Characterization of Bridge Foundations Workshop Report; Technical Report No. FHWA-HRT-13-101; U.S. Department of Transportation, Federal Highway Administration: McLean, VA, USA, 2013.
- Elanashai, A.S.; Borzi, B.; Vlachos, S. Deformation-based vulnerability functions for RC bridges. Struct. Eng. Mech. 1999, 17, 215–244. [Google Scholar] [CrossRef]
- Green, R.A.; Allen, J.; Wotherspoon, L.; Cubrinovski, M.; Bradley, B.; Bradshaw, A.; Cox, B.; Algie, T. Performance of Levees (Stopbanks) during the 4 September 2010 Mw 7.1 Darfield and 22 February 2011 Mw 6.2 Christchurch, New Zealand, Earthquakes. Seismol. Res. Lett. 2011, 82, 939–949. [Google Scholar] [CrossRef]
- Sasaki, Y.; Towhata, I.; Miyamoto, K.; Shirato, M.; Narita, A.; Sasaki, T.; Sako, S. Reconnaissance report on damage in and around river levees caused by the 2011 off the Pacific coast of Tohoku earthquake. Soils Found. 2012, 52, 1016–1032. [Google Scholar] [CrossRef] [Green Version]
- Kwak, D.Y.; Stewart, J.P.; Brandenberg, S.J.; Mikami, A. Characterization of seismic levee fragility using field performance data. Earthq. Spectra 2016, 32, 193–215. [Google Scholar]
- Durante, M.G.; Di Sarno, L.; Zimmaro, P.; Stewart, J.P. Damage to roadway infrastructure from 2016 Central Italy earthquake sequence. Earthq. Spectra 2018, 34, 1721–1737. [Google Scholar] [CrossRef]
- Zimmaro, P.; Kwak, D.Y.; Tsai, Y.T.; Stewart, J.P.; Brandenberg, S.J.; Mikami, A.; Kataoka, S. Database on seismic response of flood control levees. Earthq. Spectra 2019, 36, 924–938. [Google Scholar] [CrossRef]
- Cestelli Guidi, C.; De Miranda, F.; Pellegrino, G.C. Il progetto del viadotto sul fiume Lao dell’Autostrada Salerno-Reggio Calabria. Acciaio Costr. Metall. 1965, 6, 454–458. (In Italian) [Google Scholar]
- Durante, M.G.; Brandenberg, S.J.; Ausilio, E.; Zimmaro, P. On the combined effect of topographic irregularities and wave passage on the spatial variation of seismic ground motion. Bull. Earthquake Eng. 2022, 20, 3577–3592. [Google Scholar] [CrossRef]
- ANAS. Relazione Geologica ANAS Autostrada Salerno Reggio Calabria Tronco III Caslabuono–Campotenese Lotto 7°–Appalto concorso per la costruzione del Viadotto sul Fiume Lao; Impresa Ing. Lodigiani, S.p.A.–Progettisti: Ing. Enzo Bedeschi, Ing. Lucio Casciati–Consulenti: Ing. Riccardo Morandi, S.p.A. Antonio Badoni, Studio Geotecnico Italiano s.r.l., Ing Giovanni Rodio; Technical Report; ANAS: Rome, Italy, 1966. (In Italian) [Google Scholar]
- Rizzo, E.; (CNR IMAA, Centro Nazionale delle Ricerche–Istituto di Metodologie per l’Analisi Ambientale, Tito Scalo, Italy). Relazione tecnica geofisica–tomografie di resistivita’ elettrica (ERT) per la caratterizzazione del Viadotto Italia Autostrada A3 (Napoli-Reggio Calabria), (2014)–CNR IMAA (Centro Nazionale delle Ricerche–Istituto di Metodologie per l’Analisi Ambientale), prepared for: Department of Civil Engineering, University of Calabria. Unpublished Technical Report. 2014. (In Italian) [Google Scholar]
- Vignola, L.; (ALPHAGEO Soc. Coop., Viggiano, Italy). Indagini geofisiche, indagini di Sismica Passiva: Misure congiunte HVSR ed ESAC presso Viadotto Italia Autostrada A3 (SA-RC)–CNR IMAA (Centro Nazionale delle Ricerche–Istituto di Metodologie per l’Analisi Ambientale) prepared for: Department of Civil Engineering, University of Calabria. Unpublished Technical Report. 2016. (In Italian) [Google Scholar]
- Guerricchio, A. Aspetti geologico-applicatici nell’attraversamento con il viadotto Italia della profonda gola in rocce carbonatiche carsificate del Fiume Lao (Calabria Settentrionale). Geol. Appl. E Idrogeol. 1982, 17, 269–296. (In Italian) [Google Scholar]
- Ogniben, L. Schema introduttivo alla geologia del confine Calabro Lucano. Mem. Soc. Geol. Ital. 1969, 8, 453–763. (In Italian) [Google Scholar]
- Ausilio, E.; Dente, G.; Durante, M.G.; Mirabelli, S.; Zimmaro, P. Effect of topography on the asyncronism of seismic ground motion in the Lao river valley in Calabria. In Proceedings of the XXVI Convegno Nazionale di Geotecnica, Rome, Italy, 20–22 June 2017. [Google Scholar]
- Ausilio, E.; Zimmaro, P. Landslide characterization using a multidisciplinary approach. Measurement 2017, 104, 294–301. [Google Scholar] [CrossRef]
- Ohta, Y.; Goto, N. Empirical shear wave velocity equations in terms of characteristic soil indexes. Earthq. Eng. Struct. Dynam. 1978, 6, 167–187. [Google Scholar] [CrossRef]
- Cornell, C.A. Engineering seismic risk analysis. Bull. Seismol. Soc. Am. 1968, 58, 1583–1606. [Google Scholar] [CrossRef]
- McGuire, R. Seismic Hazard and Risk Analysis; Earthquake Engineering Research Institute (EERI)–MNO-10: Oakland, CA, USA, 2004. [Google Scholar]
- Zimmaro, P.; Kwak, D.Y.; Stewart, J.P.; Brandenberg, S.J.; Balakrishnan, A.; Jongejan, R.; Ausilio, E.; Dente, G.; Xie, J.; Mikami, A. Procedures from international guidelines for assessing seismic risk to flood control levees. Earthq. Spectra 2017, 33, 1191–1218. [Google Scholar] [CrossRef] [Green Version]
- Zimmaro, P.; Stewart, J.P. Site-specific seismic hazard analysis for Calabrian dam site using regionally customized seismic source and ground motion models. Soil Dyn. Earth. Eng. 2017, 94, 179–192. [Google Scholar] [CrossRef]
- Rovida, A.; Locati, M.; Camassi, R.; Lolli, B.; Gasperini, P. CPTI15, the 2015 Version of the Parametric Catalogue of Italian Earthquakes; Istituto Nazionale di Geofisica e Vulcanologia: Rome, Italy, 2016. [Google Scholar] [CrossRef]
- Pagani, M.; Monelli, D.; Weatherill, G.A.; Danciu, L.; Crowley, H.; Silva, V.; Henshaw, P.; Butler, L.; Nastasi, M.; Panzeri, L.; et al. OpenQuake engine: An pen hazard (and risk) software for the global earthquake model. Seismol. Res. Lett. 2014, 85, 692–702. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.X.; Zhang, J.; Asano, A.; Ohno, Y.; Oouchi, T.; Takahashi, T.; Ogawa, H.; Irikura, K.; Thio, H.K.; Somerville, P.G.; et al. Attenuation relations of strong ground motion in Japan using site classification based on predominant period. Bull. Seismol. Soc. Am. 2006, 96, 898–913. [Google Scholar] [CrossRef]
- Boore, D.M.; Stewart, J.P.; Seyhan, E.; Atkinson, G.M. NGA-West 2 equations for predicting PGA, PGV, and 5%-damped PSA for shallow crustal earthquakes. Earthq. Spectra 2014, 30, 1057–1085. [Google Scholar] [CrossRef] [Green Version]
- Akkar, S.; Bommer, J.J. Empirical equations for the prediction of PGA, PGV and spectra accelerations in Europe, the Mediterranean region and the Middle East. Seismol. Res. Lett. 2010, 81, 195–206. [Google Scholar] [CrossRef] [Green Version]
- Abrahamson, N.A.; Gregor, N.; Addo, K. BC Hydro ground motion prediction equations for subduction earthquakes. Earthq. Spectra 2015, 32, 23–44. [Google Scholar] [CrossRef]
- Atkinson, G.M.; Boore, D.M. Empirical ground-motion relations for subduction zone earthquakes and their application to Cascadia and other regions. Bull. Seismol. Soc. Am. 2003, 93, 1703–1729. [Google Scholar] [CrossRef]
- Woessner, J.; Danciu, L.; Giardini, D.; Crowley, H.; Cotton, F.; Grünthal, G.; Valensise, G.; Arvidsson, R.; Basili, R.; Demircioglu, M.B.; et al. The 2013 european seismic hazard model: Key components and results. Bull. Earthq. Eng. 2015, 13, 3553–3596. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Infrastructures and Transport of Italy. Aggiornamento Delle «Norme Tecniche Per le Costruzioni»; Ministerial decree 17 January 2018; Gazzetta Ufficiale della Repubblica Italiana: Rome, Italy, 2018. (In Italian)
- Durante, M.G.; Brandenberg, S.J.; Ausilio, E.; Zimmaro, P. Influence of topographic irregularities on the asyncronism of strong ground motions. In Proceedings of the 11th National Conference on Earthquake Engineering, Los Angeles, CA, USA, 25–29 June 2018. [Google Scholar]
- Zimmaro, P.; Scasserra, G.; Stewart, J.P.; Kishida, T.; Tropeano, G.; Castiglia, M.; Pelekis, P. Strong ground motion characteristics from 2016 Central Italy earthquake sequence. Earthq. Spectra 2018, 34, 1611–1637. [Google Scholar] [CrossRef] [Green Version]
- Łacnya, Ł.; Kozień, M.; Ziemiański, D. Selected overview of the impact of ground motion on the vibrations of particle accelerators. AIP Conf. Proc. 2020, 2239, 020025. [Google Scholar]
- McNamara, D.E.; Buland, R.P. Ambient noise levels in the continental United States. Bull. Seismol. Soc. Am. 2004, 94, 1517–1527. [Google Scholar] [CrossRef]
- Scislo, L. High activity earthquake swarm event monitoring and impact analysis on underground high energy physics research facilities. Energies 2022, 15, 3705. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ausilio, E.; Durante, M.G.; Zimmaro, P. Best Practices for Developing Geotechnical Models and Seismic Hazard Procedures for Critical Infrastructure: The Viadotto Italia Case Study in Southern Italy. Geosciences 2022, 12, 295. https://doi.org/10.3390/geosciences12080295
Ausilio E, Durante MG, Zimmaro P. Best Practices for Developing Geotechnical Models and Seismic Hazard Procedures for Critical Infrastructure: The Viadotto Italia Case Study in Southern Italy. Geosciences. 2022; 12(8):295. https://doi.org/10.3390/geosciences12080295
Chicago/Turabian StyleAusilio, Ernesto, Maria Giovanna Durante, and Paolo Zimmaro. 2022. "Best Practices for Developing Geotechnical Models and Seismic Hazard Procedures for Critical Infrastructure: The Viadotto Italia Case Study in Southern Italy" Geosciences 12, no. 8: 295. https://doi.org/10.3390/geosciences12080295
APA StyleAusilio, E., Durante, M. G., & Zimmaro, P. (2022). Best Practices for Developing Geotechnical Models and Seismic Hazard Procedures for Critical Infrastructure: The Viadotto Italia Case Study in Southern Italy. Geosciences, 12(8), 295. https://doi.org/10.3390/geosciences12080295