Cretaceous Dinosaurs across Alaska Show the Role of Paleoclimate in Structuring Ancient Large-Herbivore Populations
Abstract
:1. Introduction
2. Late Cretaceous Paleolatitude and Geochronology Setting
3. Methods for Determination of Paleoprecipitation and Paleotemperature Estimates
MAP | GSP | 3WM | 3DM | |
---|---|---|---|---|
Prince Creek Formation (PCF) | ||||
δ13C | 1250 [41] | |||
Bulk geochemistry | 1318 ± 181 [41] | - | - | - |
Lower Cantwell Formation (LCF) | - | 229 ± 670° [4] | 177 ± 282 | 141 ± 186 |
Lower Cantwell Formation (LCF) | 661 [27] | |||
Chignik Formation (CF) | 1090 |
4. Prince Creek Formation (PCF)
5. Lower Cantwell Formation (LCF)
6. Chignik Formation (CF)
7. Estimating Frequency of Large-Bodied Herbivorous Dinosaurs
8. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thoman, R.L.; Richter-Menge, J.; Druckenmiller, M.L. Arctic Report Card 2020; NOAA: Washington, DC, USA, 2020. [Google Scholar] [CrossRef]
- Druckenmiller, M.L.; Moon, T.; Thoman, R. State of the Climate in 2020. Bull. Am. Meteor. Soc. 2021, 102, S263–S315. [Google Scholar] [CrossRef]
- Godefroit, P.; Golovneva, L.; Shczepetov, S.; Garcia, G.; Alekseev, P. The last polar dinosaurs and the Cretaceous-Tertiary mass extinction event. Naturwissenschaften 2009, 96, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Gangloff, R.A.; Fiorillo, A.R. Taphonomy and paleoecology of a bonebed from the Prince Creek Formation, North Slope, Alaska. PALAIOS 2010, 25, 299–317. [Google Scholar] [CrossRef]
- Fiorillo, A.R.; McCarthy, P.J.; Flaig, P.P.; Brandlen, E.; Norton, D.W.; Zippi, P.; Jacobs, L.; Gangloff, R.A. New Perspectives on Horned Dinosaurs; Ryan, M.J., Chinnery-Allgeier, B.J., Eberth, D.A., Eds.; Indiana University Press: Bloomington, IN, USA, 2010; pp. 456–477. [Google Scholar]
- Fiorillo, A.R.; McCarthy, P.J.; Flaig, P.P. Taphonomic and sedimentologic interpretations of the dinosaur-bearing Upper Cretaceous Prince Creek Formation, Alaska: Insights from an ancient high-latitude terrestrial ecosystem. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 295, 376–388. [Google Scholar] [CrossRef]
- Fiorillo, A.R.; Hasiotis, S.T.; Kobayashi, Y. Herd structure in Late Cretaceous polardinosaurs: A remarkable new dinosaur tracksite, Denali National Park, Alaska, USA. Geology 2014, 42, 719–722. [Google Scholar] [CrossRef] [Green Version]
- Herman, A.B.; Spicer, R.A.; Spicer, T.E.V. Environmental constraints on terrestrial vertebrate behaviour and reproduction in the high Arctic of the Late Cretaceous. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 441, 317–338. [Google Scholar] [CrossRef] [Green Version]
- Shczepetov, S.V.; Herman, A.B. The formation conditions of the burial site of Late Cretaceous dinosaurs and plants in the Kakanaut River Basin (Koryak Highlands, Northeastern Asia). Strat. Geol. Corr. 2017, 25, 400–418. [Google Scholar] [CrossRef]
- Fiorillo, A.R. Alaska Dinosaurs: An ancient Arctic World; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Spicer, R.A.; Herman, A.B. The Late Cretaceous environment of the Arctic: A quantitative reassessment based on plant fossils. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 295, 423–442. [Google Scholar] [CrossRef] [Green Version]
- Spicer, R.; Valdes, P.; Hughes, A.; Yang, J.; Spicer, T.; Herman, A.; Farnsworth, A. New insights into the thermal regime and hydrodynamics of the early Late Cretaceous Arctic. Geol. Mag. 2019, 157, 1729–1746. [Google Scholar] [CrossRef] [Green Version]
- Zolina, A.A.; Golovneva, L.B.; Spicer, R.A. Latest Cretaceous (Maastrichtian) climate of the Koryak Upland of North-East Russia based on a quantitative analysis of a palaeo-polar flora. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 560, 109997. [Google Scholar] [CrossRef]
- Doblas-Reyes, F.J.; Sörensson, A.A.; Almazroui, M.; Dosio, A.; Gutowski, W.J.; Haarsma, R.; Hamdi, R.; Hewitson, B.; Kwon, W.-T.; Lamptey, B.L.; et al. Climate Change 2021: The Physical Science Basis: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; Available online: https://centaur.reading.ac.uk/99896/ (accessed on 15 February 2022).
- Van de Kerk, M.; Arthur, S.; Bertram, M.; Borg, B.; Herriges, J.; Lawler, J.; Mangipane, B.; Koizumai, C.L.; Wendling, B.; Prugh, L. Environmental influences on Dall’s Sheep survival. J. Wildl. Manag. 2020, 84, 1127–1138. [Google Scholar] [CrossRef]
- Mori, H.; Druckenmiller, P.; Erickson, G. A new Arctic hadrosaurid (Dinosauria: Hadrosauridae) from the Prince Creek Formation (lower Maastrichtian) of northern Alaska. Acta Palaeontol. Pol. 2016, 61, 15–32. [Google Scholar] [CrossRef] [Green Version]
- Parrish, J.T.; Spicer, R.A. Late Cretaceous terrestrial vegetation: A near-polar temperature curve. Geology 1988, 16, 22–25. [Google Scholar] [CrossRef]
- Chinsamy, A.; Thomas, D.B.; Tumarkin-Deratzian, A.R.; Fiorillo, A.R. Hadrosaurs were perennial polar residents. Anat. Rec. 2012, 295, 610–614. [Google Scholar] [CrossRef] [PubMed]
- Lawver, L.A.; Grantz, A.; Gahagan, L.M. Tectonic Evolution of the Bering Shelf-Chukchi Sea-Arctic Margin and Adjacent Landmasses; Miller, E.L., Grantz, A., Klemperer, S.L., Eds.; Geological Society of America Special Paper: Boulder, CO, USA, 2002; Volume 360, pp. 333–358. [Google Scholar]
- Hillhouse, J.W.; Coe, R.S. The Geology of Alaska; The Geology of North America; Plafker, G., Berg, H.C., Eds.; Geological Society of America: Boulder, CO, USA, 1994; Volume G-1, pp. 797–812. [Google Scholar]
- Mull, C.G.; Houseknecht, D.W.; Bird, K.J. Revised Cretaceous and Tertiary stratigraphic nomenclature in the Colville Basin, Northern Alaska. U.S. Geol. Surv. Prof. Paper 2003, 1673, 1–51. [Google Scholar]
- Phillips, R.L. Depositional environments and processes in Upper Cretaceous nonmarine and marine sediments, Ocean Point dinosaur locality, North Slope, Alaska. Cretac. Res. 2003, 24, 499–523. [Google Scholar] [CrossRef]
- Flaig, P.P.; McCarthy, P.J.; Fiorillo, A.R. New Frontiers in Paleopedology and Terrestrial Paleoclimatology; Driese, S.G., Nordt, L.C., Eds.; SEPM Special Publication: Broken Arrow, OK, USA, 2013; Volume 104, pp. 179–230. [Google Scholar]
- Flaig, P.P.; Fiorillo, A.R.; McCarthy, P.J. Dinosaur-bearing hyperconcentrated flows of Cretaceous arctic Alaska: Recurring catastrophic event beds on a distal paleopolar coastal plain. PALAIOS 2014, 29, 594–611. [Google Scholar] [CrossRef]
- Ridgway, K.D.; Trop, J.M.; Sweet, A.R. Thrust-top basin formation along a suture zone, Cantwell basin, Alaska Range: Implications for development of the Denali Fault system. Geol. Soc. Am. Bull. 1997, 109, 505–523. [Google Scholar] [CrossRef]
- Tomsich, C.S.; McCarthy, P.J.; Fiorillo, A.R.; Stone, D.; Benowitz, J.; O’Sullivan, P. New zircon U-Pb ages for the lower Cantwell Formation: Implications for the Late Cretaceous paleoecology and paleoenvironment of the lower Cantwell Formation near Sable Mountain, Denali National Park and Preserve, central Alaska Range, USA. In Proceedings of the International Conference on Arctic Margins, St. Petersburg, Russia, 2–5 June 2014; Volume VI, pp. 19–60. [Google Scholar]
- Salazar-Jaramillo, S.; Fowell, S.J.; McCarthy, P.J.; Benowitz, J.A.; Sliwinski, M.G.; Tomsich, C.S. Terrestrial isotopic evidence for a Middle-Maastrichtian warming event from the lower Cantwell Formation, Alaska. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 441, 360–376. [Google Scholar] [CrossRef]
- Detterman, R.L.; Case, J.E.; Miller, J.W.; Wilson, F.H.; Yount, M.E. Stratigraphic framework of the Alaska Peninsula. U.S. Geol. Surv. Bull. 1969, 1969-A, 1–74. [Google Scholar]
- Webb, L.J. Environmental relationships of the structural types of Australian rain forest vegetation. Ecology 1968, 49, 296–311. [Google Scholar] [CrossRef]
- Greenwood, D.R. Taphonomic constraints on foliar physiognomic interpretations of late Cretaceous and Tertiary paleoclimates. Rev. Palaeobot. Palynol. 1992, 71, 149–190. [Google Scholar] [CrossRef]
- Greenwood, D.R. History of the Australian Vegetation: Cretaceous to Recent; Hill, R.S., Ed.; Cambridge University Press: Cambridge, UK, 1994; pp. 44–59. [Google Scholar]
- Greenwood, D.R. Fossil angiosperm leaves and climate: From Wolfe and Dilcher to Burnham and Wilf. Adv. Angiosperm Paleobot. Paleoclimat. Reconstr. 2007, 258, 95–108. [Google Scholar]
- Jacobs, B.F. Estimation of rainfall variables from leaf characters in tropical Africa. Palaeogeog. Palaeoclimatol. Palaeoecol. 1999, 145, 231–250. [Google Scholar] [CrossRef]
- Jacobs, B.F. Estimation of low-latitude paleoclimates using fossil angiosperm leaves: Examples from the Miocene Tugen Hills, Kenya. Paleobiology 2002, 28, 399–421. [Google Scholar] [CrossRef]
- Jordan, G.I. A critical framework for the assessment of biological palaeooproxies: Predicting past climate and levels of atmospheric CO2 from fossilil leaves. New Phytol. 2011, 192, 29–44. [Google Scholar] [CrossRef] [PubMed]
- Royer, D.L.; Peppe, D.J.; Wheeler, E.A.; Niinemets, U. Roles of climate and functional traits in controlling toothed vs. untoothed leaf margins. Am. J. Bot. 2012, 99, 915–922. [Google Scholar] [CrossRef] [Green Version]
- Peppe, D.J.; Baumgartner, A.; Flynn, A.; Blonder, B. Methods in Paleoecology: Reconstructing Cenozoic Terrestrial Environments and Ecological Communities; Croft, D.A., Su, D.F., Simpson, S.W., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 289–317. [Google Scholar]
- Diefendorf, A.F.; Mueller, K.E.; Wing, S.L.; Koch, P.L.; Freeman, K.H. Global patterns in leaf 13C discrimination and implications for studies of past and future climate. Proc. Natl. Acad. Sci. USA 2010, 107, 5738–5743. [Google Scholar] [CrossRef] [Green Version]
- Leavitt, S.W.; Long, A. Stable-carbon isotope variability in tree foliage and wood. Ecology 1986, 67, 1002–1010. [Google Scholar] [CrossRef]
- Tomsich, C.S.; McCarthy, P.J.; Fowell, S.J.; Sunderlin, D. Paleofloristic and paleoenvironmental information from a Late Cretaceous (Maastrichtian) flora of the lower Cantwell Formation near Sable Mountain, Denali National Park, Alaska. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 295, 389–408. [Google Scholar] [CrossRef]
- Salazar-Jaramillo, S.; McCarthy, P.J.; Ochoa, A.; Fowell, S.J.; Longstaffe, F.J. Paleoclimate reconstruction of the Prince Creek Formation, Arctic Alaska, during Maastrichtian global warming. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 532, 109265. [Google Scholar] [CrossRef]
- Sheldon, N.D.; Tabor, N.J. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth Sci. Rev. 2009, 95, 1–52. [Google Scholar] [CrossRef]
- Spicer, R.A.; Parrish, J.T. Late Cretaceous–early Tertiary palaeoclimates of northern high latitudes: A quantitative view. J. Geol. Soc. 1990, 147, 329–341. [Google Scholar] [CrossRef]
- Upchurch, G.R., Jr.; Kiehl, J.; Shields, C.; Scherer, J.; Scotese, C. Latitudinal temperature gradients and high-latitude temperatures during the latest Cretaceous: Congruence of geologic data and climate models. Geology 2015, 43, 683–686. [Google Scholar] [CrossRef]
- Spicer, R.A. CLAMP. 2006. Available online: www.open.ac.uk/earth-research/spicer/CLAMP/Clampset1.html (accessed on 2 February 2022).
- Fiorillo, A.R.; McCarthy, P.J.; Hasiotis, S.T. Crayfish burrows from the latest Cretaceous lower Cantwell Formation (Denali National Park, Alaska): Their morphology and paleoclimatic significance. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 441, 352–359. [Google Scholar] [CrossRef]
- Fiorillo, A.R.; Kobayashi, Y.; McCarthy, P.J.; Tanaka, T.; Tykoski, R.S.; Lee, Y.-N.; Takasaki, R.; Yoshida, J. Dinosaur ichnology and sedimentology of the Chignik Formation (Upper Cretaceous), Aniakchak National Monument, southwestern Alaska; Further insights on habitat preferences of high-latitude hadrosaurs. PLoS ONE 2019, 14, e0223471. [Google Scholar] [CrossRef]
- Hollick, A. The Upper Cretaceous floras of Alaska. U.S. Geol. Surv. Prof. Paper 1930, 159, 1–123. [Google Scholar]
- Lockley, M.G. The paleobiological and paleoenvironmental importance of dinosaur footprints. Palaios 1986, 1, 37–47. [Google Scholar] [CrossRef]
- Lockley, M.G. Tracking Dinosaurs: A New Look at an Ancient World; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Blob, R.W.; Badgley, C. Bonebeds: Genesis, Analysis and Paleobiological Significance; Rogers, R.R., Eberth, D.A., Fiorillo, A.R., Eds.; University of Chicago Press: Chicago, IL, USA, 2007; pp. 333–396. [Google Scholar]
- Owen-Smith, N. (Ed.) Dynamics of Large Herbivore Populations in Changing Environments; Wiley-Blackwell: Hoboken, NJ, USA, 2010; pp. 63–97. [Google Scholar]
- Myers, T.S.; Tabor, N.J.; Jacobs, L.L.; Mateus, O. Estimating soil pCO2 using paleosol carbonates: Implications for the relationship between primary productivity and faunal richness in ancient terrestrial ecosystems. Paleobiology 2012, 38, 585–604. [Google Scholar] [CrossRef]
- Suarez, C.A.; Ludvigson, G.A.; Gonzalez, L.A.; Fiorillo, A.R.; Flaig, P.P.; McCarthy, P.J. Use of multiple oxygen isotope proxies for elucidating Arctic Cretaceous palaeo-hydrology. Geol. Soc. London, Spec. Pub. 2013, 382, 185–202. [Google Scholar] [CrossRef] [Green Version]
- Fiorillo, A.R.; McCarthy, P.J.; Flaig, P.P. A multi-disciplinary perspective on habitat preferences among dinosaurs in a Cretaceous Arctic greenhouse world, North Slope, Alaska (Prince Creek Formation: Lower Maastrichtian). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 441, 377–389. [Google Scholar] [CrossRef]
- Fiorillo, A.R. Microwear patterns on the teeth of northern high latitude hadrosaurs with comments on microwear patterns in hadrosaurs as a function of latitude and seasonal ecological constraints. Palaeontol. Electron. 2011, 14, 20A. [Google Scholar]
- Takasaki, R.; Fiorillo, A.R.; Tykoski, R.S.; Kobayashi, Y. Re-examination of the cranial osteology of the Arctic Alaskan hadrosaurine with implications for its taxonomic status. PLoS ONE 2020, 15, e0232410. [Google Scholar] [CrossRef] [PubMed]
- Currie, P.J.; Langston, W.; Tanke, D.H.; Ralrick, P.E.; Ridgely, R.C.; Witmer, L.M. A New Horned Dinosaur from an Upper Cretaceous Bone Bed in Alberta; NRC Research Press: Ottawa, ON, Canada, 2008. [Google Scholar]
- Fiorillo, A.R.; Tykoski, R.S. A new Maastrichtian species of the centrosaurine ceratopsid Pachyrhinosaurus from the North Slope of Alaska. Acta Palaeontol. Pol. 2012, 57, 561–573. [Google Scholar] [CrossRef] [Green Version]
MAT | WMMT | CMMT | |
---|---|---|---|
Prince Creek Formation (PCF) | 5–6 [44] | 10–12 | 2–4 |
6.7 ± 2.2 [11] | - | - | |
6.7 [8] | 14.5 ± 3.1 | −2 ± 3.9 | |
Lower Cantwell Formation (LCF) | 7.4 ± 2.4 [26] | 17.1 ± 3.2 | −2.3 ± 3.8 |
Chignik Formation (CF) | 13 [44] | - | - |
Bonebeds | % | Footprints | % | Footprints | % | |
---|---|---|---|---|---|---|
(PCF) | (LCF) | (CF) | ||||
Hadrosaurs | 5 | 83 | 77 | 73 | 67 | 100 |
Ceratopsians | 1 | 17 | 28 | 27 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiorillo, A.R.; McCarthy, P.J.; Kobayashi, Y.; Suarez, M.B. Cretaceous Dinosaurs across Alaska Show the Role of Paleoclimate in Structuring Ancient Large-Herbivore Populations. Geosciences 2022, 12, 161. https://doi.org/10.3390/geosciences12040161
Fiorillo AR, McCarthy PJ, Kobayashi Y, Suarez MB. Cretaceous Dinosaurs across Alaska Show the Role of Paleoclimate in Structuring Ancient Large-Herbivore Populations. Geosciences. 2022; 12(4):161. https://doi.org/10.3390/geosciences12040161
Chicago/Turabian StyleFiorillo, Anthony R., Paul J. McCarthy, Yoshitsugu Kobayashi, and Marina B. Suarez. 2022. "Cretaceous Dinosaurs across Alaska Show the Role of Paleoclimate in Structuring Ancient Large-Herbivore Populations" Geosciences 12, no. 4: 161. https://doi.org/10.3390/geosciences12040161