High Preservation Potential Volcaniclastic Sedimentation in the Serravallian Sequence of the Amantea Basin (Coastal Chain, North-Western Calabria)
Abstract
:1. Introduction
2. Geological Background
3. Methods
3.1. Field Observation and Sampling
3.2. Analytical Methods
3.2.1. Petrography
3.2.2. Imaging and Chemical Analyses
4. Results
4.1. Description of the Volcaniclastic Deposits
- ➢
- Bottom arenitic interval
- ➢
- Volcaniclastic interval
- ➢
- Top arenitic interval
4.2. Petrography
4.2.1. Framework Grains
4.2.2. Interstitial Components
4.2.3. Modal Compositions
4.2.4. Diagenesis
4.3. Features of Volcanic Grains
4.4. Major Element Composition of Glass and Crystals
5. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
SAMPLE | Qm | Qp | Qp-tf | Ch | Qm in Rg | Qp in Rg | Qm in Rs | K | K in Rg | K in Rs | P | P in Rg | AF-C | AF-Ser | AF in Rg | Bt | Bt in Rg | Mu | Mu in Rg | Chl | ABt/AMu | Gl |
SP2 | 107 | 17 | 4 | 4 | 0 | 0 | 0 | 33 | 0 | 0 | 31 | 0 | 0 | 30 | 0 | 58 | 0 | 35 | 0 | 5 | 14 | 2 |
BE1VG | 62 | 3 | 1 | 2 | 0 | 0 | 0 | 14 | 0 | 0 | 13 | 0 | 0 | 42 | 0 | 25 | 0 | 10 | 0 | 8 | 11 | 0 |
BE1VF | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 8 | 0 | 3 | 0 | 0 | 0 | 0 |
BE20-02 | 80 | 14 | 1 | 0 | 2 | 0 | 0 | 62 | 4 | 0 | 42 | 6 | 20 | 40 | 0 | 40 | 6 | 6 | 0 | 2 | 8 | 2 |
BE20-4 | 93 | 13 | 1 | 0 | 9 | 0 | 0 | 31 | 5 | 0 | 48 | 5 | 6 | 38 | 3 | 23 | 3 | 8 | 0 | 5 | 8 | 1 |
SC1VG | 80 | 23 | 1 | 1 | 8 | 0 | 0 | 33 | 1 | 0 | 36 | 1 | 0 | 25 | 0 | 39 | 0 | 18 | 0 | 4 | 6 | 1 |
SC20-03 | 108 | 18 | 0 | 2 | 4 | 0 | 0 | 68 | 2 | 0 | 42 | 2 | 12 | 42 | 4 | 36 | 0 | 4 | 0 | 2 | 10 | 2 |
SC20-04 | 95 | 18 | 0 | 5 | 16 | 0 | 4 | 55 | 8 | 0 | 27 | 3 | 22 | 54 | 10 | 26 | 8 | 3 | 3 | 1 | 7 | 0 |
SC20-05 | 31 | 3 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 3 | 0 | 3 | 7 | 0 | 28 | 0 | 19 | 0 | 2 | 8 | 0 |
SC20-06 | 44 | 11 | 0 | 2 | 0 | 0 | 0 | 20 | 0 | 0 | 28 | 0 | 13 | 30 | 0 | 36 | 0 | 14 | 0 | 6 | 15 | 3 |
SC20-07 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 4 | 0 | 0 | 2 | 0 | 4 | 0 | 0 | 0 | 2 | 4 | 6 |
SC20-08 | 98 | 30 | 2 | 2 | 4 | 0 | 0 | 38 | 2 | 0 | 28 | 0 | 16 | 20 | 0 | 34 | 0 | 10 | 0 | 3 | 9 | 4 |
SC20-09 | 66 | 20 | 0 | 2 | 0 | 0 | 0 | 26 | 0 | 0 | 18 | 0 | 0 | 28 | 0 | 22 | 0 | 18 | 0 | 8 | 24 | 2 |
SC20-10 | 76 | 40 | 2 | 10 | 24 | 12 | 8 | 68 | 16 | 2 | 40 | 2 | 14 | 48 | 10 | 16 | 2 | 2 | 0 | 6 | 10 | 6 |
SAMPLE | Py | Py in Rg | APy | Amph | Amph in Rg | Aamph | Gr | Zr | To | Ru | Ep | Sill | Hm(op) | Und(Hm) | Cal | Carb on Und | Lscmicr | OvsLscmicr | Lsccrist | Lss | Lm | Lvf |
SP2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 3 | 1 | 2 | 3 | 0 | 2 | 0 | 7 | 5 | 19 | 2 | 13 | 11 | 7 | 0 |
BE1VG | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 5 | 3 | 0 | 20 | 3 | 0 |
BE1VF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
BE20-02 | 4 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 10 | 4 | 6 | 0 | 0 | 2 | 0 | 2 | 4 | 0 |
BE20-4 | 1 | 0 | 2 | 12 | 1 | 2 | 14 | 2 | 0 | 2 | 1 | 5 | 12 | 1 | 0 | 2 | 1 | 0 | 0 | 2 | 5 | 0 |
SC1VG | 0 | 0 | 0 | 9 | 0 | 0 | 0 | 2 | 2 | 2 | 1 | 0 | 2 | 8 | 0 | 0 | 1 | 0 | 0 | 9 | 14 | 2 |
SC20-03 | 0 | 0 | 0 | 12 | 0 | 0 | 2 | 0 | 0 | 4 | 0 | 0 | 22 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 |
SC20-04 | 45 | 5 | 7 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 4 | 0 |
SC20-05 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
SC20-06 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 5 | 3 | 0 | 1 | 0 | 1 | 0 | 0 |
SC20-07 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 24 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
SC20-08 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 11 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 5 | 0 |
SC20-09 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 |
SC20-10 | 0 | 0 | 0 | 10 | 0 | 0 | 6 | 0 | 0 | 2 | 6 | 2 | 12 | 0 | 8 | 0 | 2 | 0 | 6 | 4 | 8 | 0 |
SAMPLE | ALvl | Shard | Pm | APm | Aglass | Bio | Zeo | SilMx | CMx | CC | Ox-Fe-C | Und | Tot | |||||||||
SP2 | 0 | 4 | 0 | 0 | 1 | 13 | 0 | 23 | 14 | 18 | 5 | 5 | 500 | |||||||||
BE1VG | 0 | 119 | 38 | 51 | 4 | 0 | 0 | 42 | 2 | 0 | 9 | 1 | 500 | |||||||||
BE1VF | 0 | 41 | 17 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 17 | 0 | 100 | |||||||||
BE20-02 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 4 | 114 | 0 | 1 | 500 | |||||||||
BE20-4 | 2 | 43 | 6 | 0 | 1 | 0 | 0 | 20 | 6 | 35 | 20 | 2 | 500 | |||||||||
SC1VG | 2 | 29 | 13 | 2 | 0 | 1 | 2 | 96 | 0 | 0 | 24 | 2 | 500 | |||||||||
SC20-03 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | 2 | 0 | 76 | 0 | 500 | |||||||||
SC20-04 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 13 | 48 | 2 | 3 | 500 | |||||||||
SC20-05 | 0 | 131 | 79 | 0 | 0 | 6 | 1 | 101 | 0 | 4 | 51 | 0 | 500 | |||||||||
SC20-06 | 0 | 80 | 49 | 6 | 0 | 3 | 2 | 13 | 3 | 84 | 15 | 3 | 500 | |||||||||
SC20-07 | 0 | 112 | 56 | 16 | 0 | 10 | 0 | 68 | 0 | 2 | 159 | 0 | 500 | |||||||||
SC20-08 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 162 | 4 | 1 | 500 | |||||||||
SC20-09 | 0 | 99 | 62 | 6 | 0 | 12 | 4 | 20 | 4 | 20 | 30 | 0 | 500 | |||||||||
SC20-10 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 6 | 4 | 4 | 2 | 500 |
Appendix B
Sample | Na2O | MgO | SiO2 | Al2O3 | K2O | Cl | CaO | FeO | TiO2 | P2O5 | MnO | Cr2O3 | SUM |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BE20-05_001 | 4.34 | 0.05 | 76.13 | 12.74 | 4.01 | 0.41 | 0.35 | 1.55 | 0.30 | 0.06 | 0.04 | 0.01 | 100 |
BE20-05_003 | 4.21 | 0.06 | 76.62 | 12.71 | 3.90 | 0.40 | 0.30 | 1.64 | 0.11 | 0.02 | 0.00 | 0.03 | 100 |
BE20-05_006 | 4.07 | 0.03 | 76.53 | 12.89 | 3.95 | 0.36 | 0.42 | 1.62 | 0.00 | 0.01 | 0.09 | 0.03 | 100 |
BE20-05_007 | 4.29 | 0.07 | 76.16 | 12.91 | 3.80 | 0.37 | 0.42 | 1.55 | 0.24 | 0.05 | 0.10 | 0.04 | 100 |
BE20-05_008 | 4.17 | 0.06 | 76.60 | 12.77 | 3.81 | 0.40 | 0.41 | 1.69 | 0.07 | 0.00 | 0.01 | 0.02 | 100 |
BE20-05_009 | 4.01 | 0.06 | 76.61 | 12.62 | 4.03 | 0.42 | 0.32 | 1.69 | 0.15 | 0.00 | 0.09 | 0.00 | 100 |
BE20-05_013 | 4.07 | 0.11 | 76.68 | 12.86 | 3.71 | 0.36 | 0.40 | 1.57 | 0.15 | 0.00 | 0.07 | 0.02 | 100 |
BE20-05_20 | 4.23 | 0.06 | 76.53 | 12.65 | 4.08 | 0.41 | 0.34 | 1.56 | 0.00 | 0.00 | 0.09 | 0.05 | 100 |
BE20-05_32 | 4.26 | 0.05 | 76.28 | 12.66 | 4.05 | 0.38 | 0.31 | 1.56 | 0.26 | 0.05 | 0.12 | 0.03 | 100 |
BE20-05_34 | 4.24 | 0.10 | 76.77 | 12.59 | 4.00 | 0.39 | 0.28 | 1.45 | 0.11 | 0.00 | 0.09 | 0.00 | 100 |
BE20-05_35 | 4.21 | 0.07 | 76.41 | 12.57 | 4.30 | 0.34 | 0.35 | 1.55 | 0.20 | 0.00 | 0.00 | 0.00 | 100 |
BE20-05_37 | 4.00 | 0.07 | 76.86 | 12.77 | 3.82 | 0.39 | 0.38 | 1.65 | 0.03 | 0.00 | 0.01 | 0.02 | 100 |
BE20-05_39 | 4.29 | 0.09 | 76.57 | 12.66 | 3.96 | 0.35 | 0.42 | 1.44 | 0.11 | 0.01 | 0.10 | 0.00 | 100 |
BE20-05_42 | 4.17 | 0.04 | 76.61 | 12.71 | 4.32 | 0.38 | 0.26 | 1.32 | 0.17 | 0.00 | 0.00 | 0.02 | 100 |
BE20-05_43 | 4.25 | 0.06 | 76.69 | 12.64 | 4.09 | 0.39 | 0.27 | 1.40 | 0.18 | 0.00 | 0.00 | 0.01 | 100 |
BE20-05_44 | 4.07 | 0.06 | 76.61 | 12.69 | 4.03 | 0.43 | 0.38 | 1.42 | 0.21 | 0.03 | 0.07 | 0.00 | 100 |
BE20-05_46 | 3.80 | 0.10 | 76.66 | 12.81 | 3.96 | 0.36 | 0.37 | 1.69 | 0.23 | 0.00 | 0.01 | 0.00 | 100 |
BE20-05_51 | 4.19 | 0.05 | 76.74 | 12.86 | 3.74 | 0.41 | 0.36 | 1.55 | 0.06 | 0.00 | 0.02 | 0.03 | 100 |
BE20-05_52 | 3.87 | 0.05 | 77.03 | 12.68 | 4.00 | 0.40 | 0.36 | 1.55 | 0.01 | 0.02 | 0.03 | 0.00 | 100 |
BE20-05_53 | 4.17 | 0.03 | 76.59 | 12.86 | 3.90 | 0.34 | 0.40 | 1.51 | 0.18 | 0.00 | 0.00 | 0.00 | 100 |
BE20-05_59 | 3.93 | 0.06 | 77.02 | 12.88 | 3.67 | 0.39 | 0.36 | 1.43 | 0.18 | 0.00 | 0.07 | 0.00 | 100 |
SC20-05_016 | 4.60 | 0.05 | 77.45 | 12.92 | 2.65 | 0.38 | 0.41 | 1.42 | 0.07 | 0.00 | 0.05 | 0.00 | 100 |
SC20-05_019 | 4.50 | 0.05 | 77.75 | 12.89 | 2.40 | 0.39 | 0.42 | 1.46 | 0.07 | 0.00 | 0.07 | 0.00 | 100 |
SC20-05_042 | 4.42 | 0.05 | 77.31 | 13.04 | 2.38 | 0.39 | 0.41 | 1.61 | 0.31 | 0.00 | 0.05 | 0.03 | 100 |
Appendix C
Sample | SiO2 | TiO2 | Al2O3 | Cr2O3 | Fe2O3 | FeO | MnO | NiO | MgO | CaO | Na2O | K2O | Sum | Si | Al | Ti | Fe3+ | Al | Ti | Cr | Fe3+ | Mg | Ni | Fe2+ | Mn | Ca | Na | K | En | Fe | Wo | Mg |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BE1VG_40-opx | 55.00 | 0.00 | 1.26 | 0.00 | 0.00 | 25.19 | 1.67 | 0.00 | 15.21 | 1.09 | 0.58 | 0.00 | 100.00 | 2.12 | -0.12 | 0.00 | 0.00 | 0.17 | 0.00 | 0.00 | 0.00 | 0.87 | 0.00 | 0.81 | 0.05 | 0.04 | 0.04 | 0.00 | 48.95 | 48.53 | 2.52 | 0.50 |
BE1VF_27-opx | 54.36 | 0.00 | 1.70 | 0.00 | 0.00 | 26.77 | 0.00 | 0.00 | 15.37 | 1.39 | 0.42 | 0.00 | 100.01 | 2.09 | -0.09 | 0.00 | 0.00 | 0.17 | 0.00 | 0.00 | 0.00 | 0.88 | 0.00 | 0.86 | 0.00 | 0.06 | 0.03 | 0.00 | 48.97 | 47.85 | 3.18 | 0.51 |
BE1VF_29-opx | 58.24 | 0.00 | 0.86 | 0.00 | 0.00 | 13.92 | 0.00 | 0.00 | 26.05 | 0.93 | 0.00 | 0.00 | 100.00 | 2.10 | -0.10 | 0.00 | 0.00 | 0.14 | 0.00 | 0.00 | 0.00 | 1.40 | 0.00 | 0.42 | 0.00 | 0.04 | 0.00 | 0.00 | 75.45 | 22.62 | 1.94 | 0.77 |
BE1VG_34-cpx | 51.44 | 1.89 | 7.10 | 0.00 | 0.00 | 9.84 | 0.00 | 0.00 | 16.57 | 11.87 | 0.81 | 0.49 | 100.01 | 1.89 | 0.11 | 0.00 | 0.00 | 0.19 | 0.05 | 0.00 | 0.00 | 0.91 | 0.00 | 0.30 | 0.00 | 0.47 | 0.06 | 0.02 | 54.11 | 18.03 | 27.86 | 0.75 |
BE1VG_41-cpx | 45.06 | 1.34 | 13.50 | 0.00 | 4.10 | 13.63 | 0.00 | 0.00 | 9.46 | 10.65 | 1.77 | 0.90 | 100.40 | 1.69 | 0.31 | 0.00 | 0.00 | 0.29 | 0.04 | 0.00 | 0.12 | 0.53 | 0.00 | 0.43 | 0.00 | 0.43 | 0.13 | 0.04 | 35.27 | 36.20 | 28.53 | 0.49 |
SC1VG_17-opx | 56.89 | 0.00 | 0.88 | 0.60 | 0.00 | 7.04 | 0.00 | 0.00 | 32.51 | 2.00 | 0.00 | 0.00 | 99.92 | 1.98 | 0.02 | 0.00 | 0.00 | 0.02 | 0.00 | 0.02 | 0.00 | 1.69 | 0.00 | 0.20 | 0.00 | 0.07 | 0.00 | 0.00 | 85.79 | 10.42 | 3.79 | 0.89 |
SC1VG_20-cpx | 53.17 | 0.00 | 5.45 | 0.00 | 0.00 | 7.75 | 0.00 | 0.00 | 18.64 | 14.29 | 0.70 | 0.00 | 100.00 | 1.92 | 0.08 | 0.00 | 0.00 | 0.16 | 0.00 | 0.00 | 0.00 | 1.01 | 0.00 | 0.23 | 0.00 | 0.55 | 0.05 | 0.00 | 56.05 | 13.07 | 30.88 | 0.81 |
SC1VG_26-opx | 56.25 | 0.00 | 0.75 | 0.00 | 0.00 | 22.24 | 0.00 | 0.00 | 18.63 | 1.68 | 0.45 | 0.00 | 100.00 | 2.12 | -0.12 | 0.00 | 0.00 | 0.15 | 0.00 | 0.00 | 0.00 | 1.05 | 0.00 | 0.70 | 0.00 | 0.07 | 0.03 | 0.00 | 57.65 | 38.61 | 3.74 | 0.60 |
SC1VG_23(004)-cpx | 46.80 | 1.54 | 9.80 | 0.00 | 5.18 | 6.63 | 0.00 | 0.00 | 13.89 | 14.62 | 1.15 | 0.62 | 100.23 | 1.73 | 0.27 | 0.00 | 0.00 | 0.15 | 0.04 | 0.00 | 0.14 | 0.76 | 0.00 | 0.20 | 0.00 | 0.58 | 0.08 | 0.03 | 45.20 | 20.61 | 34.19 | 0.69 |
SC1VG_020(001)-cpx | 53.17 | 0.00 | 5.45 | 0.00 | 0.00 | 7.75 | 0.00 | 0.00 | 18.64 | 14.29 | 0.70 | 0.00 | 100.00 | 1.92 | 0.08 | 0.00 | 0.00 | 0.16 | 0.00 | 0.00 | 0.00 | 1.01 | 0.00 | 0.23 | 0.00 | 0.55 | 0.05 | 0.00 | 56.05 | 13.07 | 30.88 | 0.81 |
SC1VG_028-cpx | 46.80 | 0.00 | 9.68 | 0.00 | 10.77 | 3.58 | 0.00 | 0.00 | 13.08 | 13.80 | 1.89 | 0.86 | 100.46 | 1.73 | 0.27 | 0.00 | 0.00 | 0.15 | 0.00 | 0.00 | 0.30 | 0.72 | 0.00 | 0.11 | 0.00 | 0.55 | 0.14 | 0.04 | 42.97 | 24.45 | 32.58 | 0.64 |
References
- Fisher, R.V.; Schmincke, H.-U. Volcaniclastic sediment transport and deposition. In Sediment Transport and Depositional Processes; Pye, K., Ed.; Blackwell Scientific Publications: Oxford, UK, 1994; pp. 351–388. [Google Scholar]
- Königer, S.; Stollhofen, H. Environmental and Tectonic Controls on Preservation Potential of Distal Fallout Ashes in Fluvio-Lacustrine Settings: The Carboniferous–Permian Saar–Nahe Basin, South–West Germany. Spec. Publs. Int. Ass. Sediment 2001, 30, 263–284. [Google Scholar]
- Fisher, R.V.; Schmincke, H.-U. Pyroclastic Rocks; Springer: Berlin/Heidelberg, Germany, 1984; p. 472. [Google Scholar]
- White, J.D.L.; Houghton, B.F. Primary volcaniclastic rocks. Geology 2006, 34, 677–680. [Google Scholar] [CrossRef]
- Sohn, C.; Sohn, Y.K. Distinguishing between primary and secondary volcaniclastic deposits. Sci. Rep. 2019, 9, 12425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carey, S.N.; Schneider, J.L. Volcaniclastic processes and deposits in the deep sea. In Developments in Sedimentology; Hüneke, H., Mulder, T., Eds.; Elsevier: Oxford, UK, 2011; Volume 63, pp. 457–515. [Google Scholar]
- Di Capua, A.; De Rosa, R.; Kereszturi, G.; Le Pera, E.; Rosi, M.; Watt, S. From volcanoes to sediments: Bridging the terminological gap between volcanology and sedimentology. In Volcanic Processes in the Sedimentary Record: When Volcanoes Meet the Environment; GSL Special publication: London, UK, 2021. [Google Scholar]
- Di Nocera, S.; Ortolani, F.; Russo, M.; Torre, M. Successioni sedimentarie messiniane e limite Miocene-Pliocene nella Calabria settentrionale. Boll. Soc. Geol. Ital. 1974, 93, 575–607. [Google Scholar]
- Ortolani, F.; Torre, M.; Di Nocera, S. I depositi altomiocenici del bacino di Amantea (Catena Costiera Calabra). Boll. Soc. Geol. Ital. 1979, 98, 559–587. [Google Scholar]
- Tansi, C. La tettonica recente dell′area di Amantea (Catena Costiera, Calabria). Rend. Soc. Geol. Ital. 1991, 14, 185–188. [Google Scholar]
- Argentieri, A.; Mattei, M.; Rossetti, F.; Argnani, A.; Salvini, F.; Funiciello, R. Tectonic evolution of the Amantea basin (Calabria, Southern Italy): Comparing in-land and off- shore data. Ann. Tect. 1998, 12, 79–96. [Google Scholar]
- Colella, A.; Longhitano, S. Il bacino di Amantea: Una possibile chiave di lettura della Stretta di Catanzaro. In Proceedings of the GEOITALIA 1° Forum Fist, Rimini, Italy, 5–9 October l997; Società Italiana di Mineralogia e Petrologia: Pisa, Italy, 1997; Volume 2, pp. 28–29. [Google Scholar]
- Longhitano, S.; Colella, A. Tettonica transpressiva tortoniana nel Bacino di Amantea (Calabria) e record sedimentario. In Proceedings of the Atti Della Riunione Annuale del GIS, Bologna, Italy, 6–9 October 1998; G. Geol.: Bologna, Italy, 1998; Volume 60, pp. 45–47. [Google Scholar]
- Mattei, M.; Speranza, F.; Argentieri, A.; Rossetti, F.; Sagnotti, L.; Funiciello, R. Extensional tectonics in the Amantea Basin (Calabria, Italy): A comparison between structural and magnetic anisotropy data. Tectonophysics 1999, 307, 33–49. [Google Scholar] [CrossRef]
- Speranza, F.; Mattei, M.; Sagnotti, L.; Grasso, F. Paleomagnetism of upper Miocene sediments from the Amantea basin (Calabria, Italy): Rotational differences between the northern and southern Tyrrhenian domains. J. Geol Soc. Lond. 2000, 157, 327–334. [Google Scholar] [CrossRef]
- Martini, I.P.; Sagri, M.; Colella, A. Neogene–Quaternary basins of the inner Apennines and Calabrian arc. In Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basin; Vai, G.B., Martini, I.P., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; pp. 375–400. [Google Scholar]
- Muto, F.; Perri, E. Evoluzione tettono-sedimentaria del bacino di Amantea, Calabria occidentale (Tectonic-sedimentary evolution of the Amantea basin, western Calabria). Boll. Soc. Geol. Ital. 2002, 121, 1–19. [Google Scholar]
- Mattei, M.; Cipollari, P.; Cosentino, D.; Argentieri, A.; Rossetti, F.; Speranza, F.; Di Bella, L. The Miocene tectono-sedimentary evolution of the southern Tyrrhenian Sea: Stratigraphy, structural and paleomagnetic data from the on shore Amantea basin (Calabrian Arc, Italy). Basin Res. 2002, 14, 147–168. [Google Scholar] [CrossRef]
- Longhitano, S.G.; Nemec, W. Statistical analysis of bed-thickness variation in a Tortonian succession of biocalcarenitic tidal dunes, Amantea Basin, Calabria, southern Italy. Sedim. Geol. 2005, 179, 195–224. [Google Scholar] [CrossRef]
- Boggs, S. Experimental study of rock fragments. J. Sediment. Petrol. 1968, 38, 1326–1339. [Google Scholar]
- Alvarez, W.; Cocozza, T.; Wezel, F.C. Fragmentation of the Alpine orogenic belt by microplate dispersal. Nature 1974, 248, 309–314. [Google Scholar] [CrossRef]
- Rossetti, F.; Faccenna, C.; Goff, P.; Moni, P.; Argentieri, A.; Funiciello, R.; Mattei, M. Alpine structural and metamorphic segnature of the Sila Piccola Massif nappe stack (Calabria, Italy): Insights for a tectonic evolution of the Calabrian Arc. Tectonics 2001, 20, 112–133. [Google Scholar] [CrossRef]
- Ogniben, L. Schema introduttivo alla geologia del confine calabro-lucano. Mem. Soc. Geol. Ital. 1969, 8, 453–763. [Google Scholar]
- Dewey, J.F.; Helman, M.L.; Turco, E.; Hutton, D.H.W.; Knott, S.D. Kinematics of the western Mediterranenan. In Alpine Tectonics; Coward, M.P., Dietrich, D., Park, R.G., Eds.; Geological Society Special Publications: London, UK, 1989; Volume 45, pp. 265–283. [Google Scholar]
- Knott, S.D.; Turco, E. Late Cenozoic kinematics of the Calabrian Arc, southern Italy. Tectonics 1991, 10, 1164–1172. [Google Scholar] [CrossRef]
- Bouillin, J.P. Nouvelle interprétation de la liaison Apennin-Magrébides en Calabre: Conséquences sur la paléogéographie téthysienne entre Gibraltar et les Alpes. Rev. Geol. Dyn. Geogr. Phys. 1984, 25, 321–338. [Google Scholar]
- Bouillin, J.P.; Durand-Delga, M.; Oliver, P.H. Betic- Rifian and Tyrrhenian arcs: Distinctive features, genesis and development stage. In The Origin of Arcs; Wezel, C.F., Ed.; Elsevier: Amsterdam, The Netherlands, 1986; pp. 281–304. [Google Scholar]
- Dietrich, D. Sense of overthrust shear in the Alpine nappes of Calabria (Southern Italy). J. Struct. Geol. 1988, 10, 373–381. [Google Scholar] [CrossRef]
- Amodio Morelli, L.; Bonardi, G.; Colonna, V.; Dietrich, D.; Giunta, G.; Ippolito, F.; Liguori, V.; Lorenzoni, S.; Paglionico, A.; Perrone, V.; et al. L’arco calabro-peloritano nell’orogene appenninico-maghrebide. Mem. Soc. Geol. Ital. 1976, 17, 1–60. [Google Scholar]
- Haccard, D.; Lorenz, C.; Grandjacquet, C. Essai sur l’evolution tectogénètique de la liaison Alpes-Apennines (de la Ligurie à la Calabre). Mem. Soc. Geol. Ital. 1972, 11, 309–341. [Google Scholar]
- Doglioni, C.; Mongelli, F.; Pialli, P. Boudinage of the Alpine belt in the Apenninic back-arc. Mem. Soc. Geol. Ital. 1998, 52, 457–468. [Google Scholar]
- Malinverno, A.; Ryan, W.B.F. Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migrationdriven by sinking of the lithosphere. Tectonics 1986, 5, 227–245. [Google Scholar] [CrossRef]
- Decandia, F.A.; Lazzarotto, A.; Liotta, D.; Cernobori, L.; Nicolich, R. The CROP03 traverse: Insights on post-collisional evolution of Northern Apennines. Mem. Soc. Geol. Ital. 1998, 52, 427–439. [Google Scholar]
- Brutto, F.; Muto, F.; Loreto, M.F.; De Paola, N.; Tripodi, V.; Critelli, S.; Facchin, L. The Neogene-Quaternary geodynamic evolution of the central Calabrian Arc: A case study from the western Catanzaro Trough basin. J. Geodyn. 2016, 102, 95–114. [Google Scholar] [CrossRef] [Green Version]
- Muto, F.; Critelli, S.; Robustelli, G.; Tripodi, V.; Zecchin, M.; Fabbricatore, D.; Perri, F. A Neogene-Quaternary Geotraverse within the northern Calabrian Arc from the foreland peri-Ionian margin to the backarc Tyrrhenian margin. In Proceedings of the 86° Congresso Nazionale della Società Geologica Italiana, Cosenza, Italy, 18–20 September 2012. [Google Scholar]
- Cello, G.; Lentini, F.; Tortorici, L. La struttura del settore calabro-lucano e suo significato nel quadro dell’evoluzione tettonica del sistema a thrust sudappenninico. St. Geol. Camerti Vol. Spec. 1990, 27–34. Available online: http://193.204.8.201:8080/jspui/handle/1336/216 (accessed on 21 August 2021).
- Ortolani, F. Alcune considerazioni sulle fasi tettoniche mioceniche e pliocenche dell’Appennino meridionale. Boll. Soc. Geol. Ital. 1978, 97, 609–616. [Google Scholar]
- Kastens, K.; Mascle, J.; Auroux, C.; Bonatti, E.; Broglia, C.; Channell, J.; Curzi, P.; Emeis, K.; Glacon, C.; Hasegawa, S.; et al. ODP Leg 107 in the Tyrrhenian Sea: Insights into passive margin and back-arc basin evolution. Geol. Soc. Am. Bull. 1988, 100, 1140–1156. [Google Scholar] [CrossRef]
- Van Dijk, J.P.; Bello, M.; Brancaleoni, G.P.; Cantarella, G.; Costa, V.; Frixa, A.; Golfetto, F.; Merlini, S.; Riva, M.; Torricelli, S.; et al. A regional structural model for the northern sector of the Calabrian Arc (southern Italy). Tectonophysics 2000, 324, 267–320. [Google Scholar] [CrossRef]
- Tansi, C.; Muto, F.; Critelli, S.; Iovine, G. Neogene-Quaternary strike-slip tectonics in the central Calabrian Arc (southern Italy). J. Geodyn. 2007, 43, 393–441. [Google Scholar] [CrossRef]
- Critelli, S.; Muto, F.; Perri, F.; Tripodi, V. Interpreting provenance relations from sandstone detrital modes, southern Italy foreland region: Stratigraphic record of the Miocene tectonic evolution. Mar. Petrol. Geol. 2017, 87, 47–59. [Google Scholar] [CrossRef]
- Tripodi, V.; Muto, F.; Brutto, F.; Perri, F.; Critelli, S. Neogene-Quaternary evolution of the forearc and backarc regions between the Serre and Aspromonte Massifs, Calabria (southern Italy). Mar. Petrol. Geol. 2018, 95, 328–343. [Google Scholar] [CrossRef]
- Sartori, R. The main results of ODP Leg 107 in the frame of Neogene to Recent geology of Perityrrhenian areas. Proc. Ocean Drill. Program Sci. Results 1990, 107, 715–730. [Google Scholar]
- Patacca, E.; Sartori, R.; Scandone, P. Tyrrhenian Basin and Apenninic Arcs: Kinematic relations since late Tortonian times. Mem. Soc. Geol. Ital. 1990, 45, 425–451. [Google Scholar]
- Faccenna, C.; Mattei, M.; Funiciello, R.; Jolivet, L. Styles of back-arc extension in the Central Mediterranean. Terra Nova 1997, 9, 126–130. [Google Scholar] [CrossRef]
- Jolivet, L.; Faccenna, C.; Goffa’, B.; Mattei, M.; Rossetti, F.; Brunet, C.; Storti, F.; Funiciello, R.; Cadet, J.P.; D’agostino, N.; et al. Midcrustal shear zones in postorogenic extension: The northern Tyrrhenian Sea case. J. Geophys. Res. 1998, 103, 12111–12586. [Google Scholar] [CrossRef]
- Cavinato, G.P.; De Celles, P.G. Extensional basins in the tectonically bimodal central Apennines fold-thrust belt, Italy: Response to corner flow above a subducting slab in retrograde motion. Geology 1999, 27, 955–958. [Google Scholar] [CrossRef]
- Cipollari, P.; Cosentino, D.; Gliozzi, E. Extension- and compression-related basins in central Italy during the Messinian Lago-Mare event. Tectonophysics 1999, 315, 163–185. [Google Scholar] [CrossRef]
- Sorriso-Valvo, M.; Sylvester, A. The relationship between geology and landforms along a coastal mountain front, Northern Calabria, Italy. Earth Surf. Proc. Land. 1993, 18, 257–273. [Google Scholar] [CrossRef]
- Monaco, C.; Tortorici, L. Tettonica estensionale quaternaria nell’Arco Calabro e in Sicilia orientale. St. Geol. Camerti. Spec. 1995, 2, 35l–362. [Google Scholar]
- Colella, A. Sedimentation, deformational events, and eustacy in the peri-Tyrrhenian Amantea Basin: Preliminary synthesis. G. Geol. 1995, 57, 179–193. [Google Scholar]
- Ingersoll, R.V.; Bullard, T.F.; Ford, R.L.; Grimm, J.P.; Pickle, J.D.; Sares, S.W. The effect of grain size on detrital modes: A test of the Gazzi-Dickinson point-counting method. J. Sediment. Petrol. 1984, 54, 103–116. [Google Scholar]
- Zuffa, G.G. Optical analyses of arenites: Influence of methodology on compositional results. In Provenance of Arenites; NATO ASI Series, 148; Zuffa, G.G., Ed.; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1985; pp. 165–189. [Google Scholar]
- Gazzi, P. Le arenarie del flysch sopracretaceo dell’Appennino modenese: Correlazioni con il flysch di Monghidoro. Mineral. Petrogr. Acta 1966, 12, 69–97. [Google Scholar]
- Dickinson, W.R. Interpreting detrital modes of graywacke and arkose. J. Sediment. Petrol. 1970, 40, 695–707. [Google Scholar]
- Zuffa, G.G. Hybrid arenites: Their composition and classification. J. Sediment. Petrol. 1980, 50, 21–29. [Google Scholar]
- Garzanti, E. Petrographic classification of sand and sandstone. Earth-Sci. Rev. 2019, 192, 545–563. [Google Scholar] [CrossRef]
- Dickinson, W.R. Interpreting provenance relations from detrital modes of sandstones. In Provenance of Arenites; NATO ASI Series, 148; Zuffa, G.G., Ed.; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1985; pp. 333–361. [Google Scholar]
- Folk, R.L. Petrology of Sedimentary Rocks; Hemphill Publishing Company: Austin, TX, USA, 1968. [Google Scholar]
- Ingersoll, R.V.; Suczek, C.A. Petrology and provenance of Neogene sand from Nicobar and Bengal fans, DSDP Sites 211 and 218. J. Sediment. Petrol. 1979, 49, 1217–1228. [Google Scholar]
- Morrone, C.; De Rosa, R.; Le Pera, E.; Marsaglia, K.M. Provenance of volcaniclastic beach sand in a magmatic-arc setting: An example from Lipari island (Aeolian archipelago, Tyrrhenian Sea). Geol. Mag. 2017, 154, 804–828. [Google Scholar] [CrossRef]
- Morrone, C.; Le Pera, E.; Marsaglia, K.M.; De Rosa, R. Compositional and textural study of modern beach sands in the active volcanic area of the campania region (southern italy). Sediment. Geol. 2020, 396, 105567. [Google Scholar] [CrossRef]
- Marsaglia, K.M. Petrography and provenance of volcaniclastic sands recovered from the Izu–Bonin Arc, Leg 126: Proceedings of the Ocean Drilling Program. Sci. Results 1992, 126, 139–154. [Google Scholar]
- Marsaglia, K.M. Basaltic island sand provenance. In Processes Controlling the Composition of Clastic Sediments: Geological Society of America; Special Paper; Johnsson, M.J., Basu, A., Eds.; Geological Society of America: Boulder, CO, USA, 1993; Volume 284, pp. 41–65. [Google Scholar]
- Talling, P.J.; Masson, G.D.; Summer, E.J.; Malgesini, G. Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentology 2012, 59, 1937–2003. [Google Scholar] [CrossRef]
- Mutti, E.; Tinterri, R.; Remacha, E.; Mavilla, N.; Angella, S.; Fava, L. An Introduction to the Analysis of Ancient Turbidite Basins from an Outcrop Perspective. In AAPG Continuing Education Course Note 39; The American Association of Petroleum Geologists: Tulsa, OK, USA, 1999; pp. 1–98. [Google Scholar]
- Dott, R.H. Wacke, graywacke and matrix—What approach to immature sandstone classification. J. Sediment. Petrol. 1964, 34, 625–632. [Google Scholar]
- Heiken, G.; Wohletz, K.H. Volcanic Ash; University of California Press: Berkeley, CA, USA, 1985; Volume 245. [Google Scholar]
- Garzanti, E.; Vezzoli, G. A classification of metamorphic grains in sands based on their composition and grade. J. Sediment. Res. 2003, 73, 830–837. [Google Scholar] [CrossRef]
- Andò, S.; Garzanti, E.; Padoan, M.; Limonta, M. Corrosion of heavy minerals during weathering and diagenesis: A catalog for optical analysis. Sediment. Geol. 2012, 280, 165–178. [Google Scholar] [CrossRef]
- Morton, A.C. Stability of detrital heavy minerals in Tertiary sandstones of the North Sea Basin. Clay Min. 1984, 19, 287–308. [Google Scholar] [CrossRef]
- McBride, E.F. Diagenetic processes that affect provenance determinations in sandstone. In Provenance of Arenites; Zuffa, G.G., Ed.; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1985; pp. 95–113. [Google Scholar]
- Velbel, M.A. Surface textures and dissolution processes of heavy minerals in the sedimentary cycle: Examples from pyroxenes and amphiboles. In Heavy Minerals in Use; Developments in Sedimentology Series 58; Mange, M.A., Wright, D.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 112–150. [Google Scholar]
- Hall, A. Zeolitization of volcaniclastic sediments: The role of temperature and pH. J. Sed. Res. 1998, 68, 739–745. [Google Scholar] [CrossRef]
- Boggs, S.; Seyedolali, A. Diagenetic albitization, zeolitization and replacement in Miocene sandstones, Sites 796,797, and 799, Japan Sea. Proc. Ocean Drill. Program Sci. Results 1992, 127, 131–151. [Google Scholar]
- LeBas, M.J.; Lemaitre, R.W.; Streckeisen, A.; Zanettin, B. A chemical classification of volcanic rocks based on total alkali silica diagram. J. Petrol. 1986, 27, 745–750. [Google Scholar]
- Shand, S.J. Eruptive Rocks; D. Van Nostrand Company: NewYork, NY, USA, 1927; Volume 360. [Google Scholar]
- Lustrino, M.; Fedele, L.; Melluso, L.; Morra, V.; Ronga, F.; Geldmacher, J.; Duggen, S.; Samuele Agostini, S.; Cucciniello, C.; Franciosi, L.; et al. Origin and evolution of Cenozoic magmatism of Sardinia (Italy). A combined isotopic (Sr–Nd–Pb–O–Hf–Os) and petrological view. Lithos 2013, 180, 138–158. [Google Scholar] [CrossRef]
- Ronga, F. Petrogenesi delle vulcaniti del Sulcis (Sardegna Sud-occidentale). Ph.D. Thesis, University of Catania, Sicily, Italy, 2011. [Google Scholar]
- Cas, R.A.F.; Wright, J.V. Volcanic Successions. Modern and Ancient. A Geological Approach to Processes, Products and Successions, 1st ed.; Cas, R.A.F., Wright, J.V., Eds.; Springer: Dordrecht, The Netherlands, 1996. [Google Scholar]
- Palomares, M.; Arribas, J. Modern stream sands from compound crystalline sources: Composition and sand generation index. In Processes Controlling the Composition of Clastic Sediments; Lolmsson, M.L., Basu, A., Eds.; Geological Society of America: Boulder, CO, USA, 1993; Volume 284, pp. 313–322. [Google Scholar]
- Heins, W.A.; Kairo, S. Predicting sand character with integrated genetic analysis. In Sedimentary Provenance and Petrogenesis: Perspectives from Petrography and Geochemistry; Arribas, J., Critelli, S., Johnsson, M.J., Eds.; Geological Society of America: Boulder, CO, USA, 2007; Volume 420, pp. 345–379. [Google Scholar]
- Dickinson, W.R.; Suczek, C.A. Plate tectonics and sandstone composition. Am. Assoc. Petrol. Geol. Bull. 1979, 63, 2164–2172. [Google Scholar]
- Critelli, S.; Le Pera, E. Tectonic evolution of the Southern Apennines thrust-belt (Italy) as reflected in modal compositions of Cenozoic sandstone. J. Geol. 1995, 103, 95–105. [Google Scholar] [CrossRef]
- Critelli, S.; Le Pera, E. Post-Oligocene sediment-dispersal systems and unroofing history of the Calabrian microplate, Italy. Int. Geol. Rev. 1998, 40, 609–637. [Google Scholar] [CrossRef]
Grain Categories | Abbreviation | Grain Categories | Abbreviation |
---|---|---|---|
Quartz | Phyllosilicates | ||
Quartz (single crystal) | Qm | Biotite (single crystal) | Bt |
Polycrystalline quartz without tectonic fabric | Qp | Biotite in granitic/gneissic rock fragment | Bt in Rg |
Polycrystalline quartz with tectonic fabric | Qp-tf | Muscovite (single crystal) | Mu |
Quartz in sedimentary rock fragment | Qm in Rs | Muscovite in granitic/gneissic rock fragment | Mu in Rg |
Quartz in granitic/gneissic rock fragment | Qm in Rg | Chlorite (single crystal) | Chl |
Polycrystalline quartz in granitic/gneissic rock fragment | Qp in Rg | Chlorite replacement on Bt/Mu | ABt/AMu |
Chert (or devitrified glass) | Ch | Glauconite | Gl |
Feldspars | Heavy minerals (Hm) | ||
K-feldspar (single crystal) | K | Pyroxene (single crystal) | Py |
K-feldspar in granitc/gneissic rock fragment | K in Rg | Altered pyroxene | APy |
K-feldspar in sedimentary rock fragment | K in Rs | Pyroxene in granitic/gneissic rock fragment | Py in Rg |
Plagioclase (single crystal) | P | Amphibole (single crystal) | Amph |
Plagioclase in granitic/gneissic rock fragment | P in Rg | Altered amphibole | Aamph |
Clay minerals replacement on undetermined feldspar | AF-C | Amphibole in granitic/gneissic rock fragment | Amph in Rg |
Sericite replacement on undetermined feldspar | AF-Ser | Garnet (single crystal) | Gr |
Altered-feldspar granitic/gneissic rock fragment | AF in Rg | Zircon (single crystal) | Zr |
Metamorphic lithic fragment | Tourmaline (single crystal) | To | |
Rutile (single crystal) | Ru | ||
Epidote (single crystal) | Ep | ||
Volcanic lithic fragment (Lv) | Lm | Sillimanite (single crystal) | Sill |
Shard (colorless glass) | Shard | Hm opaque (single crystal) | Hm(op) |
Pumice (colorless) | Pm | Undetermined Hm | Und(Hm) |
Clay minerals on Pumice | APm | Interstitial components (matrix and cement) | |
Volcanic lithic with felsitic texture | Lvf | ||
Altered volcanic lithic with lathwork texture | ALvl | Siliciclastic matrix | SilMx |
Altered volcanic glass | Algl | Carbonate matrix (micrite) | CMx |
Sedimentary lithic fragments (Ls) | Carbonate cement | CC | |
Carbonate replacement on undetermined grain | Carb on Und | ||
Calcite (single spar) | Cal | Oxid-Fe cement | Ox-Fe-C |
Micritic limestone | Lscmicr | Zeolite | Zeo |
Oversized micritic limestone | OvsLscmicr | Bioclast (single skeleton) | Bio |
Sparitic + microsparitic limestone | Lsccrist | Undetermined grain | Und |
Shale and siltstone | Lss | Total grains | Tot |
Recalculated Parameters (Values Are in %) | |||||||||
SAMPLE | Q + C | F | URF + C | Qt | F | L | Fr | Mx | Cem |
SP2 | 43 | 32 | 25 | 51 | 38 | 11 | 88 | 7 | 5 |
BE1VG | 18 | 18 | 64 | 18 | 19 | 63 | 89 | 9 | 2 |
BE1VF | 8 | 4 | 88 | 8 | 4 | 88 | 80 | 3 | 17 |
BE20-02 | 32 | 63 | 5 | 33 | 64 | 3 | 76 | 1 | 23 |
BE20-4 | 34 | 47 | 19 | 34 | 47 | 19 | 84 | 5 | 11 |
SC1VG | 37 | 37 | 26 | 37 | 37 | 26 | 76 | 19 | 5 |
SC20-03 | 42 | 57 | 1 | 42 | 57 | 1 | 81 | 4 | 15 |
SC20-04 | 35 | 63 | 2 | 36 | 63 | 1 | 87 | 3 | 10 |
SC20-05 | 12 | 9 | 79 | 13 | 9 | 78 | 69 | 20 | 11 |
SC20-06 | 20 | 32 | 48 | 20 | 32 | 48 | 77 | 3 | 20 |
SC20-07 | 8 | 6 | 86 | 8 | 7 | 85 | 54 | 14 | 32 |
SC20-08 | 53 | 44 | 3 | 53 | 44 | 3 | 65 | 2 | 33 |
SC20-09 | 26 | 21 | 53 | 27 | 22 | 51 | 85 | 5 | 10 |
SC20-10 | 32 | 61 | 7 | 33 | 63 | 4 | 97 | 1 | 2 |
Recalculated Parameters (Values Are in %) | |||||||||
SAMPLE | Lm | Ls | Lv | Shard | Pm | Algl | Lv | M | S |
SP2 | 12 | 79 | 9 | 80 | 0 | 20 | 2 | 27 | 71 |
BE1VG | 1 | 12 | 87 | 56 | 18 | 26 | 54 | 12 | 34 |
BE1VF | 0 | 0 | 100 | 71 | 29 | 0 | 75 | 14 | 11 |
BE20-02 | 50 | 50 | 0 | 0 | 0 | 0 | 0 | 22 | 78 |
BE20-4 | 8 | 5 | 87 | 86 | 12 | 2 | 14 | 23 | 63 |
SC1VG | 19 | 14 | 67 | 66 | 29 | 5 | 15 | 23 | 62 |
SC20-03 | 50 | 50 | 0 | 0 | 0 | 0 | 0 | 22 | 78 |
SC20-04 | 80 | 20 | 0 | 0 | 0 | 0 | 0 | 25 | 75 |
SC20-05 | 0 | 1 | 99 | 62 | 38 | 0 | 67 | 14 | 19 |
SC20-06 | 0 | 1 | 99 | 59 | 36 | 5 | 39 | 18 | 43 |
SC20-07 | 0 | 1 | 99 | 61 | 30 | 9 | 76 | 11 | 13 |
SC20-08 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 19 | 81 |
SC20-09 | 1 | 0 | 99 | 59 | 37 | 4 | 44 | 14 | 42 |
SC20-10 | 40 | 60 | 0 | 0 | 0 | 0 | 0 | 17 | 83 |
Q + C:F:URF + C%(Q + C) = 100 * Q + C/[(Q + C) + (F) + (URF + C)] | |||||||||
Q + C:F:URF + C%F = 100 * F/[(Q + C) + (F) + (URF + C)] | |||||||||
Q + C:F:URF + C%(URF + C) = 100 * (URF + C)/[(Q + C) + (F) + (URF + C)] | |||||||||
Qt:F:L%Qt = 100 * Qt/(Qt + F + L) | |||||||||
Qt:F:L%F = 100 * F/(Qt + F + L) | |||||||||
Qt:F:L%L = 100 * L/(Qt + F + L) | |||||||||
Fr:Mx:Cem%Fr = 100 * Fr/(Fr + Mx + Cem) | |||||||||
Fr:Mx:Cem%Mx = 100 * Mx/(Fr + Mx + Cem) | |||||||||
Fr:Mx:Cem%Cem = 100 * Cem/(Fr + Mx + Cem) | |||||||||
Lm:Ls:Lv%Lm = 100 * Lm/(Lm + Ls + Lv) | |||||||||
Lm:Ls:Lv%Ls = 100 * Ls/(Lm + Ls + Lv) | |||||||||
Lm:Ls:Lv%Lv = 100 * Lv/(Lm + Ls + Lv) | |||||||||
Shard:Pm:Algl%Shard = 100 * Shard/(Shard + Pm + Algl) | |||||||||
Shard:Pm:Algl%Pm = 100 * Pm/(Shard + Pm + Algl) | |||||||||
Shard:Pm:Algl%Algl = 100 * Algl/(Shard + Pm + Algl) | |||||||||
Lv:M:S%Lv = 100 * Lv/(Lv + M + S) | |||||||||
Lv:M:S%M = 100 * M/(Lv + M + S) | |||||||||
Lv:M:S%S = 100 * S/(Lv + M + S) | |||||||||
Keys for Recalculated Parameters | |||||||||
Q + C = Qm + Qp + Chert (Ch) | |||||||||
F = total feldspars + granitic + gneissic rock fragment (Rg) | |||||||||
URF + C = other unstable rock fragments (Lm + Lv) + C (Lscmicr + Lsccrist) | |||||||||
Qt = total quartz (Qm + Qp) including chert (Ch) | |||||||||
L = total lithic grains (Lm + Lv + Ls) | |||||||||
Fr = framework (all grains) | |||||||||
Mx = SilMx + CMx | |||||||||
Cem = Ox-Fe-C + CC + CarbonUnd | |||||||||
Lv = All volcanic lithic textures (Lvl + Lvmi + Lvv + Lvf + pumice grains) | |||||||||
M = mafic single crystal grains ((Py + Amph + Gr + Bt + Hm(Op)) | |||||||||
S = sialic single crystal grains (P + K+Qm + Qp) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiara Benedetta, C.; Rosanna, D.R.; Paola, D.; Consuele, M.; Francesco, M. High Preservation Potential Volcaniclastic Sedimentation in the Serravallian Sequence of the Amantea Basin (Coastal Chain, North-Western Calabria). Geosciences 2021, 11, 360. https://doi.org/10.3390/geosciences11090360
Chiara Benedetta C, Rosanna DR, Paola D, Consuele M, Francesco M. High Preservation Potential Volcaniclastic Sedimentation in the Serravallian Sequence of the Amantea Basin (Coastal Chain, North-Western Calabria). Geosciences. 2021; 11(9):360. https://doi.org/10.3390/geosciences11090360
Chicago/Turabian StyleChiara Benedetta, Cannata, De Rosa Rosanna, Donato Paola, Morrone Consuele, and Muto Francesco. 2021. "High Preservation Potential Volcaniclastic Sedimentation in the Serravallian Sequence of the Amantea Basin (Coastal Chain, North-Western Calabria)" Geosciences 11, no. 9: 360. https://doi.org/10.3390/geosciences11090360
APA StyleChiara Benedetta, C., Rosanna, D. R., Paola, D., Consuele, M., & Francesco, M. (2021). High Preservation Potential Volcaniclastic Sedimentation in the Serravallian Sequence of the Amantea Basin (Coastal Chain, North-Western Calabria). Geosciences, 11(9), 360. https://doi.org/10.3390/geosciences11090360