Validating Structural Styles in the Flysch Basin Northern Rif (Morocco) by Means of Thermal Modeling
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Methods
3.1. Samples
3.2. Methods
3.2.1. Organic Matter Optical Analysis
3.2.2. Micro-Raman Spectroscopy on Organic Matter
3.2.3. Thermal Modeling
4. Results
4.1. Organic Matter Optical Analysis
4.2. Micro-Raman Spectroscopy on Organic Matter
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dahlstrom, C.D.A. Balanced cross sections. Can. J. Earth Sci. 1969, 6, 743–757. [Google Scholar] [CrossRef]
- Boyer, S.E.; Elliott, D. Thrust systems. Am. Assoc. Pet. Geol. Bull. 1982. [Google Scholar] [CrossRef]
- Butler, R.W.H. Thrust sequences. J. Geol. Soc. Lond. 1987, 144, 619–634. [Google Scholar] [CrossRef]
- Willett, S.D.; Beaumont, C.; Fullsack, P. Mechanical Model for doubly vergent compressional orogens. Geology 1993, 21, 371–374. [Google Scholar] [CrossRef]
- Butler, R.W.H.; Mazzoli, S. Styles of continental contraction: A review and introduction. Spec. Pap. Geol. Soc. Am. 2006, 414. [Google Scholar] [CrossRef]
- Cifelli, F.; Mattei, M.; Porreca, M. New paleomagnetic data from Oligocene-upper Miocene sediments in the Rif chain (northern Morocco): Insights on the Neogene tectonic evolution of the Gibraltar arc. J. Geophys. Res. Solid Earth 2008, 113, 1–12. [Google Scholar] [CrossRef]
- Royden, L.; Faccenna, C. Subduction Orogeny and the Late Cenozoic Evolution of the Mediterranean Arcs. Annu. Rev. Earth Planet. Sci. 2018, 46, 261–289. [Google Scholar] [CrossRef] [Green Version]
- Tozer, R.S.J.; Butler, R.W.H.; Corrado, S. Comparing thin- and thick-skinned thrust tectonic models of the Central Apennines, Italy. Stephan Mueller Spec. Publ. Ser. 2001, 1, 181–194. [Google Scholar] [CrossRef]
- Balestra, M.; Corrado, S.; Aldega, L.; Rudkiewicz, J.L.; Gasparo Morticelli, M.; Sulli, A.; Sassi, W. 3D structural modeling and restoration of the Apennine-Maghrebian chain in Sicily: Application for non-cylindrical fold-and-thrust belts. Tectonophysics 2019, 761, 86–107. [Google Scholar] [CrossRef]
- Leprêtre, R.; de Lamotte, D.F.; Combier, V.; Gimeno-Vives, O.; Mohn, G.; Eschard, R. The Tell-Rif orogenic system (Morocco, Algeria, Tunisia) and the structural heritage of the southern Tethys margin. BSGF Earth Sci. Bull. 2018, 189, 10. [Google Scholar] [CrossRef] [Green Version]
- Gimeno-Vives, O.; de Lamotte, D.F.; Leprêtre, R.; Haissen, F.; Atouabat, A.; Mohn, G. The structure of the Central-Eastern External Rif (Morocco); Poly-phased deformation and role of the under-thrusting of the North-West African paleo-margin. Earth Sci. Rev. 2020, 205, 103198. [Google Scholar] [CrossRef]
- Casciello, E.; Fernàndez, M.; Vergés, J.; Cesarano, M.; Torne, M. The Alboran domain in the western Mediterranean evolution: The birth of a concept. Bull. Soc. Geol. Fr. 2015, 186, 371–384. [Google Scholar] [CrossRef]
- Platt, J.P.; Vissers, R.L.M. Extensional collapse of thickened continental lithosphere: A working hypothesis for the Alboran Sea and Gibraltar arc. Geology 1989, 17, 540–543. [Google Scholar] [CrossRef]
- Lonergan, L.; White, N. Origin of the Betic-Rif mountain belt. Tectonics 1997, 16, 504–522. [Google Scholar] [CrossRef] [Green Version]
- Spakman, W.; Wortel, R. A tomographic view on western Mediterranean geodynamics. In The TRANSMED Atlas. The Mediterranean Region from Crust to Mantle; Cavazza, W., Roure, F., Spakman, W., Stampfli, G.M., Ziegler, P.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 31–52. [Google Scholar]
- Vergés, J.; Fernàndez, M. Tethys-Atlantic interaction along the Iberia-Africa plate boundary: The Betic-Rif orogenic system. Tectonophysics 2012, 579, 144–172. [Google Scholar] [CrossRef]
- Suter, G. Carte Géologique de la Chaîne Rifaine 1:500,000; Service géologique du Maroc, BRGM: Orléans, France, 1980. [Google Scholar]
- Chalouan, A.; Michard, A.; El Kadiri, K.; Negro, F.; de Lamotte, D.F.; Soto, J.-I.; Saddiqi, O. The Rif belt. In The Geology of Morocco; Michard, A., Ed.; Springer: Berlin, Germany, 2008. [Google Scholar] [CrossRef]
- Gimeno-Vives, O.; Mohn, G.; Bosse, V.; Haissen, F.; Zaghloul, M.N.; Atouabat, A.; de Lamotte, D.F. The Mesozoic Margin of the Maghrebian Tethys in the Rif Belt (Morocco): Evidence for Polyphase Rifting and Related Magmatic Activity. Tectonics 2019, 38, 2894–2918. [Google Scholar] [CrossRef]
- Di Paolo, L.; Aldega, L.; Corrado, S.; Mastalerz, M. Maximum burial and unroofing of Mt. Judica recess area in Sicily: Implication for the Apenninic-Maghrebian wedge dynamics. Tectonophysics 2012, 530–531, 193–207. [Google Scholar] [CrossRef]
- Carlini, M.; Artoni, A.; Aldega, L.; Balestrieri, M.L.; Corrado, S.; Vescovi, P.; Bernini, M.; Torelli, L. Exhumation and reshaping of far-travelled/allochthonous tectonic units in mountain belts. New insights for the relationships between shortening and coeval extension in the western Northern Apennines (Italy). Tectonophysics 2013, 608, 267–287. [Google Scholar] [CrossRef]
- Caricchi, C.; Aldega, L.; Corrado, S. Reconstruction of maximum burial along the Northern Apennines thrust wedge (Italy) by indicators of thermal exposure and modeling. GSA Bull. 2015, 127, 428–442. [Google Scholar] [CrossRef]
- Balestra, M.; Corrado, S.; Aldega, L.; Morticelli, M.G.; Sulli, A.; Rudkiewicz, J.; Sassi, W. Thermal and structural modeling of the Scillato wedge-top basin source- to-sink system: Insights into Sicilian fold-and-thrust belt building (Italy). Geol. Soc. Am. 2019, 1–20. [Google Scholar] [CrossRef]
- Corrado, S.; Aldega, L.; Balestrieri, M.L.; Maniscalco, R.; Grasso, M. Structural evolution of the sedimentary accretionary wedge of the alpine system in Eastern Sicily: Thermal and thermochronological constraints. Bull. Geol. Soc. Am. 2009, 121, 1475–1490. [Google Scholar] [CrossRef]
- Bond, C.E.; Gibbs, A.D.; Shipton, Z.K.; Jones, S. What do you think this is? “Conceptual uncertainty” in geoscience interpretation. GSA Today 2007, 17, 4–10. [Google Scholar] [CrossRef]
- Bond, C.E.; Johnson, G.; Ellis, J.F. Structural model creation: The impact of data type and creative space on geological reasoning and interpretation. Geol. Soc. Spec. Publ. 2015, 421, 83–97. [Google Scholar] [CrossRef] [Green Version]
- Hardebol, N.J.; Callot, J.P.; Bertotti, G.; Faure, J.L. Burial and temperature evolution in thrust belt systems: Sedimentary and thrust sheet loading in the SE Canadian Cordillera. Tectonics 2009, 28, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Rosenbaum, G.; Lister, G.S. Formation of arcuate orogenic belts in the western Mediterranean region. Spec. Pap. Geol. Soc. Am. 2004, 383, 41–56. [Google Scholar] [CrossRef]
- Crespo-Blanc, A.; Comas, M.; Balanyá, J.C. Clues for a Tortonian reconstruction of the Gibraltar Arc: Structural pattern, deformation diachronism and block rotations. Tectonophysics 2016, 683, 308–324. [Google Scholar] [CrossRef]
- Docherty, C.; Banda, E. Evidence for the eastward migration of the Alboran Sea based on regional subsidence analysis: A case for basin formation by delamination of the subcrustal lithosphere? Tectonics 1995, 14, 804–818. [Google Scholar] [CrossRef]
- Pérouse, E.; Vernant, P.; Chéry, J.; Reilinger, R.; McClusky, S. Active surface deformation and sub-lithospheric processes in the western Mediterranean constrained by numerical models. Geology 2010, 38, 823–826. [Google Scholar] [CrossRef]
- Platt, J.P.; Behr, W.M.; Johanesen, K.; Williams, J.R. The Betic-Rif Arc and Its Orogenic Hinterland: A Review. Annu. Rev. Earth Planet Sci. 2013, 41, 313–357. [Google Scholar] [CrossRef] [Green Version]
- Van Hinsbergen, D.J.J.; Vissers, R.L.M.; Spakman, W. Origin and consequences of western Mediterranean subduction, rollback, and slab segmentation. Tectonics 2014, 33, 393–419. [Google Scholar] [CrossRef]
- Durand-Delga, M.; Fontboté, J.M. Le cadre structurale de la Méditerranée occidentale. In Les Chaines Alpines Issues de la Téthis, Proceedings of the 26e Congrès Géologique International, Paris, France, 7–17 July 1980; Broché: Paris, France, 1980. [Google Scholar]
- Chalouan, A.; Michard, A. The Alpine Rif belt (Morocco): A case of mountain building in a subduction-subduction-transform fault triple junction. Pure Appl. Geophys. 2004, 161, 489–519. [Google Scholar] [CrossRef]
- Kornprobst, J.; Durand-Delga, M. Carte Géologique du Rif, Sebta, Maroc. 1: 50000. In Notes et Mémoires N 291; Service géologique du Maroc: Rabat, Maroc, 1985. [Google Scholar]
- Kornprobst, J.; Durand-Delga, M.; Faure-Muret, A.; Griffon, J.C.; Uttinger, J.; Leikine, M.; Raoult, J.F. Carte géologique du Rif, Tetouan-Ras Mazari, Maroc. 1: 50000. In Notes et Mémoires N 292; Service géologique du Maroc: Rabat, Maroc, 1985. [Google Scholar]
- Durand-Delga, M.; Didon, J. Carte géologique du Rif, Ksar Es Srhir, Maroc. 1: 50000. In Notes et Mémoires N 295; Service géologique du Maroc: Rabat, Maroc, 1984. [Google Scholar]
- Durand-Delga, M. Carte géologique du Rif, Melloussa, Maroc. 1: 50000. In Notes et Mémoires N 296; Service géologique du Maroc: Rabat, Maroc, 1984. [Google Scholar]
- Durand-Delga, M.; Didon, J.; Médioni, R.; Wernli, R.; Suter, G. Carte géologique du Rif, Tanger-Al Manzla, Maroc. 1: 50000. In Notes et Mémoires N 294; Service géologique du Maroc: Rabat, Maroc, 1985. [Google Scholar]
- Favre, P.; Stampfli, G.M. From rifting to passive margin: The examples of the Red Sea, Central Atlantic and Alpine Tethys. Tectonophysics 1992, 215, 69–97. [Google Scholar] [CrossRef]
- de Lamotte, D.F.; Raulin, C.; Mouchot, N.; Wrobel-Daveau, J.-C.; Blanpied, C.; Ringenbach, J.-C. The southernmost margin of the Tethys realm during the Mesozoic and Cenozoic: Initial geometry and timing of the inversion processes. Tectonics 2011, 30. [Google Scholar] [CrossRef]
- Bouillin, J. Le “bassin maghrebin”; une ancienne limite entre l’Europe et l’Afrique a l’ouest des Alpes. Bull. Soc. Géol. Fr. 1986, 2, 547–558. [Google Scholar] [CrossRef]
- Milliard, Y. Les massifs métamorphiques et ultrabasiques de la zone paléo-zoïque interne du Rif. Notes Mem. Serv. Géol. Maroc 1959, 18, 125–160. [Google Scholar]
- Kornprobst, J. Signification structurale des peridotites dans l’orogene betico-rifain; arguments tires de l’etude des detritus observes dans les sediments paleozoiques. Bull. Soc. Géol. Fr. 1976, 7, 607–618. [Google Scholar] [CrossRef]
- Rossetti, F.; Theye, T.; Lucci, F.; Bouybaouene, M.L.; Dini, A.; Gerdes, A.; Phillips, D.; Cozzupoli, D. Timing and modes of granite magmatism in the core of the Alboran Domain, Rif chain, northern Morocco: Implications for the Alpine evolution of the western Mediterranean. Tectonics 2010, 29. [Google Scholar] [CrossRef]
- Wildi, W. La chaîne tello-rifaine (Algérie, Maroc, Tunisie): Structure, stratigraphie et évolution du Trias au Miocène. Rev. Geogr. Phys. Geol. Dyn. 1983, 24, 201–297. [Google Scholar]
- Chalouan, A. Les Nappes Ghomarides (Rif Septentrional, Maroc). Un Terrain Varisque dans la Chaîne Alpine. Ph.D. Thesis, Université Louis Pasteur de Strasbourg, Strasbourg, France, 1986. [Google Scholar]
- Chalouan, A.; Michard, A. The Ghomarides nappes, Rif coastal range, Morocco: A variscan chip in the Alpine belt. Tectonics 1990, 9, 1565–1583. [Google Scholar] [CrossRef]
- Zaghloul, M.N.; Di Staso, A.; Hlila, R.; Perrone, V.; Perrotta, S. The oued dayr formation: First evidence of a new miocene late-orogenic cycle on the ghomaride complex (Internal domains of the rifian maghrebian chain, Morocco). Geodin. Acta 2010, 23, 185–194. [Google Scholar] [CrossRef]
- Negro, F.; Beyssac, O.; Goffé, B.; Saddiqi, O.; Bouybaouène, M.L. Thermal structure of the Alboran Domain in the Rif (northern Morocco) and the Western Betics (southern Spain). Constraints from Raman spectroscopy of carbonaceous material. J. Metamorph. Geol. 2006, 24, 309–327. [Google Scholar] [CrossRef]
- Wildi, W.; Nold, M.; Uttinger, J. La Dorsale calcaire entre Tetouan et Assifane (Rif interne, Maroc). Ecol. Geol. Helv. 1977, 70, 371–415. [Google Scholar]
- El Kadiri, K.; Linares, A.; Oloriz, F. La Dorsale calcaire rifaine (Maroc septentrional): Evolution stratigraphique et géodynamique durant le Jurassique-Crétacé. Notes Mém. Serv. Géol. 1992, 366, 217–265. [Google Scholar]
- Guerrera, F.; Martín-Martín, M.; Perrone, V.; Tramontana, M. Tectono-sedimentary evolution of the southern branch of the Western Tethys (Maghrebian Flysch Basin and Lucanian Ocean): Consequences for Western Mediterranean geodynamics. Terra Nov. 2005, 17, 358–367. [Google Scholar] [CrossRef]
- De Capoa, P.; D’errico, M.; Di Staso, A.; Perrone, V.; Zaghloul, M.N. Biostratigraphic constraints for the paleogeographic and tectonic evolution of the Alpine central-western Mediterranean chains (Betic, Maghrebian and Apenninic chains); CINECA IRIS: Bari, Italy, 2013. [Google Scholar]
- Durand-Delga, M.; Rossi, P.; Olivier, P.; Puglisi, D. Situation structurale et nature ophiolitique de roches basiques jurassiques associees aux flyschs maghrebins du Rif (Maroc) et de Sicile (Italie). C. R. Acad. Sci. 2000, 331, 29–38. [Google Scholar] [CrossRef]
- Zaghloul, M.N.; Di Staso, A.; De Capoa, P.; Perrone, V. Occurrence of upper Burdigalian silexite beds within the Beni Ider Flysch Fm. in the Ksar-es-Seghir area (Maghrebian Flysch Basin, Northern Rif, Morocco): Stratigraphic correlations and geodynamic implications. Boll. Soc. Geol. Ital. 2007, 126, 223–239. [Google Scholar]
- Azdimousa, A.; Jabaloy-sánchez, A.; Talavera, C.; Asebriy, L.; González-lodeiro, F.; Evans, N.J. Detrital zircon U-Pb ages in the Rif Belt (northern Morocco): Paleogeographic implications. Gondwana Res. 2019, 70, 133–150. [Google Scholar] [CrossRef] [Green Version]
- Bouillin, J.P.; Durand-Delga, M.; Gelard, J.P.; Leikine, M.; Raoult, J.F.; Raymond, D.; Tefiani, M.; Vila, J.M. Définition d’un flysch massylien et d’un flysch maurétanien au sein des flyschs allochtones de l’Algérie. C. R. Acad. Sci. Paris 1970, 270, 2249–2252. [Google Scholar]
- Dercourt, J.; Zonenshain, L.P.; Ricou, L.E.; Kazmin, V.G.; Le Pichon, X.; Knipper, A.L.; Grandjacquet, C.; Sbortshikov, I.M.; Geyssant, J.; Lepvrier, C.; et al. Geological evolution of the tethys belt from the atlantic to the pamirs since the LIAS. Tectonophysics 1986, 123, 241–315. [Google Scholar] [CrossRef]
- Durand-Delga, M.; Gardin, S.; Olivier, P. Datation des flyschs eocretaces mauretaniens des Maghrebides: La formation du jbel Tisirene (Rif, Maroc). C. R. Acad. Sci. 1999, 328, 701–709. [Google Scholar] [CrossRef]
- Gübeli, A.A.; Hochuli, P.A.; Wildi, W. Lower Cretaceous turbiditic sediments from the Rif chain (Northern Marocco)—Palynology, stratigraphy and palaeogeographic setting. Geol. Rundschau 1984, 73, 1081–1114. [Google Scholar] [CrossRef]
- Didon, J. Les séries a faciès mixte, numidien et gréso-micacé, dans le Rif occidental (Maroc). Bull. Soc. Geol. Fr. 1978, 6, 304–307. [Google Scholar]
- Lustrino, M.; Duggen, S.; Rosenberg, C.L. The Central-Western Mediterranean: Anomalous igneous activity in an anomalous collisional tectonic setting. Earth-Sci. Rev. 2011, 104, 1–40. [Google Scholar] [CrossRef]
- Guerrera, F.; Martín-Algarra, A.; Martín-Martín, M. Tectono-sedimentary evolution of the “Numidian Formation” and Lateral Facies (southern branch of the western Tethys): Constraints for central-western Mediterranean geodynamics. Terra Nov. 2012, 24, 34–41. [Google Scholar] [CrossRef]
- Chalouan, A.; El Mrihi, A.; El Kadiri, K.; Bahmad, A.; Salhi, F.; Hlila, R. Mauretanian flysch nappe in the northwestern Rif Cordillera (Morocco): Deformation chronology and evidence for a complex nappe emplacement. Geol. Soc. Spec. Publ. 2006, 262, 161–175. [Google Scholar] [CrossRef]
- Michard, A.; Mokhtari, A.; Chalouan, A.; Saddiqi, O.; Rossi, P.; Rjimati, E.C. New ophiolite slivers in the External Rif belt, and tentative restoration of a dual Tethyan suture in the western Maghrebides. Bull. Soc. Geol. Fr. 2014, 185, 313–328. [Google Scholar] [CrossRef] [Green Version]
- Andrieux, J. La Structure du Rif Central: Étude des Relations entre la Tectonique de Compression et les Nappes de Glissement dans un Tronçon de la Chaîne Alpine; Editions du Service géologique du Maroc: Rabat, Maroc, 1971; Volume 235. [Google Scholar]
- Vidal, J.C. Present structure and evolution of the Rif chain (southern part of the arc of Gibraltar) since the Miocene. Bull. Soc. Géol. Fr. 1977, 7, 789–796. [Google Scholar] [CrossRef]
- Crespo-Blanc, A.; de Lamotte, D.F. Structural evolution of the external zones derived from the Flysch trough and the South Iberian and Maghrebian paleomargins around the Gibraltar arc: A comparative study. Bull. Soc. Geol. Fr. 2006, 177, 267–282. [Google Scholar] [CrossRef]
- Balsamo, F.; Aldega, L.; De Paola, N.; Faoro, I.; Storti, F. The signature and mechanics of earthquake ruptures along shallow creeping faults in poorly lithified sediments. Geology 2014, 42, 435–438. [Google Scholar] [CrossRef] [Green Version]
- Bustin, R.M.; Barnes, M.A.; Barnes, W.C. Determining levels of organic diagenesis in sediments and fossil fuels. In Diagenesis: Geosciences Canada Reprint, Fourth Series; Geological Association of Canada: St. John’s, NL, Canada, 1990; pp. 205–226. [Google Scholar]
- Borrego, A.G.; Araujo, C.V.; Balke, A.; Cardott, B.; Cook, A.C.; David, P.; Flores, D.; Hámor-Vidó, M.; Hiltmann, W.; Kalkreuth, W. Influence of particle and surface quality on the vitrinite reflectance of dispersed organic matter: Comparative exercise using data from the qualifying system for reflectance analysis working group of ICCP. Int. J. Coal Geol. 2006, 68, 151–170. [Google Scholar] [CrossRef]
- Beyssac, O.; Goffé, B.; Chopin, C.; Rouzaud, J.N. Raman spectra of carbonaceous material in metasediments: A new geothermometer—Beyssac—2002—Journal of Metamorphic Geology—Wiley Online Library. J. Metamorph. Geol. 2002, 20, 859–871. [Google Scholar] [CrossRef]
- Beyssac, O.; Goffé, B.; Petitet, J.P.; Froigneux, E.; Moreau, M.; Rouzaud, J.N. On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. In Spectrochimica Acta—Part A: Molecular and Biomolecular Spectroscopy, Proceedings of the Fifth International Conference on Raman Spectroscopy Applied to the Earth Sciences, Prague, Czech Republic, 12–15 June 2002; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Lahfid, A.; Beyssac, O.; Deville, E.; Negro, F.; Chopin, C.; Goffé, B. Evolution of the Raman spectrum of carbonaceous material in low-grade metasediments of the Glarus Alps (Switzerland). Terra Nov. 2010, 22, 354–360. [Google Scholar] [CrossRef]
- Guedes, A.; Valentim, B.; Prieto, A.C.; Rodrigues, S.; Noronha, F. Micro-Raman spectroscopy of collotelinite, fusinite and macrinite. Int. J. Coal Geol. 2010, 83, 415–422. [Google Scholar] [CrossRef]
- Hinrichs, R.; Brown, M.T.; Vasconcellos, M.A.Z.; Abrashev, M.V.; Kalkreuth, W. Simple procedure for an estimation of the coal rank using micro-Raman spectroscopy. Int. J. Coal Geol. 2014, 136, 52–58. [Google Scholar] [CrossRef]
- Wilkins, R.W.T.; Boudou, R.; Sherwood, N.; Xiao, X. Thermal maturity evaluation from inertinites by Raman spectroscopy: The “RaMM” technique. Int. J. Coal Geol. 2014, 128–129, 143–152. [Google Scholar] [CrossRef]
- Zhou, Q.; Xiao, X.; Pan, L.; Tian, H. The relationship between micro-Raman spectral parameters and reflectance of solid bitumen. Int. J. Coal Geol. 2014, 121, 19–25. [Google Scholar] [CrossRef]
- Ferralis, N.; Matys, E.D.; Knoll, A.H.; Hallmann, C.; Summons, R.E. Rapid, direct and non-destructive assessment of fossil organic matter via microRaman spectroscopy. Carbon N. Y. 2016, 108, 440–449. [Google Scholar] [CrossRef] [Green Version]
- Lünsdorf, N.K. Raman spectroscopy of dispersed vitrinite—Methodical aspects and correlation with reflectance. Int. J. Coal Geol. 2016, 153, 75–86. [Google Scholar] [CrossRef]
- Schmidt Mumm, A.; Inan, S. Microscale organic maturity determination of graptolites using Raman spectroscopy. Int. J. Coal Geol. 2016, 162, 96–107. [Google Scholar] [CrossRef]
- Lupoi, J.S.; Fritz, L.P.; Parris, T.M.; Hackley, P.C.; Solotky, L.; Eble, C.F.; Schlaegle, S. Assessment of thermal maturity trends in Devonian–Mississippian source rocks using Raman spectroscopy: Limitations of peak-fitting method. Front. Energy Res. 2017, 5, 24. [Google Scholar] [CrossRef] [Green Version]
- Schito, A.; Romano, C.; Corrado, S.; Grigo, D.; Poe, B. Diagenetic thermal evolution of organic matter by Raman spectroscopy. Org. Geochem. 2017, 106, 57–67. [Google Scholar] [CrossRef]
- Henry, D.G.; Jarvis, I.; Gillmore, G.; Stephenson, M.; Emmings, J.F. Assessing low-maturity organic matter in shales using Raman spectroscopy: Effects of sample preparation and operating procedure. Int. J. Coal Geol. 2018, 191, 135–151. [Google Scholar] [CrossRef]
- Henry, D.G.; Jarvis, I.; Gillmore, G.; Stephenson, M. A rapid method for determining organic matter maturity using Raman spectroscopy: Application to Carboniferous organic-rich mudstones and coals. Int. J. Coal Geol. 2019, 203, 87–98. [Google Scholar] [CrossRef]
- Tuinstra, F.; Koenig, J.L. Raman Spectrum of Graphite. J. Chem. Phys. 1970, 53, 1126–1130. [Google Scholar] [CrossRef] [Green Version]
- Friedel, R.A.; Carlson, G.L. Difficult carbonaceous materials and their infra-red and Raman spectra. Reassignments for coal spectra. Fuel 1972, 51, 194–198. [Google Scholar] [CrossRef]
- Reich, S.; Thomsen, C. Raman spectroscopy of graphite. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2004, 362, 2271–2288. [Google Scholar] [CrossRef]
- Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S.; Cançado, L.G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1291. [Google Scholar] [CrossRef]
- Pócsik, I.; Hundhausen, M.; Koós, M.; Ley, L. Origin of the D peak in the Raman spectrum of microcrystalline graphite. J. Non. Cryst. Solids 1998, 227–230, 1083–1086. [Google Scholar] [CrossRef]
- Negri, F.; Castiglioni, C.; Tommasini, M.; Zerbi, G. A computational study of the Raman spectra of large polycyclic aromatic hydrocarbons: Toward molecularly defined subunits of graphite. J. Phys. Chem. A 2002, 106, 3306–3317. [Google Scholar] [CrossRef]
- Negri, F.; di Donato, E.; Tommasini, M.; Castiglioni, C.; Zerbi, G.; Müllen, K. Resonance Raman contribution to the D band of carbon materials: Modeling defects with quantum chemistry. J. Chem. Phys. 2004, 120, 11889–11900. [Google Scholar] [CrossRef]
- Di Donato, E.; Tommasini, M.; Fustella, G.; Brambilla, L.; Castiglioni, C.; Zerbi, G.; Simpson, C.D.; Müllen, K.; Negri, F. Wavelength-dependent Raman activity of D2h symmetry polycyclic aromatic hydrocarbons in the D-band and acoustic phonon regions. Chem. Phys. 2004, 301, 81–93. [Google Scholar] [CrossRef]
- Li, C.Z. Some recent advances in the understanding of the pyrolysis and gasification behaviour of Victorian brown coal. Fuel 2007, 86, 1664–1683. [Google Scholar] [CrossRef]
- Beny-Bassez, C.; Rouzaud, J.N. Characterization of carbonaceous materials by correlated electron and optical microscopy and Raman microspectroscopy. Scan. Electron. Microsc. 1985, 1, 119–132. [Google Scholar]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Am. Phys. Soc. 2000, 61, 14095. [Google Scholar] [CrossRef] [Green Version]
- Castiglioni, C.; Tommasini, M.; Zerbi, G. Raman spectroscopy of polyconjugated molecules and materials: Confinement effect in one and two dimensions. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2004, 362, 2425–2459. [Google Scholar] [CrossRef] [PubMed]
- Schito, A.; Corrado, S. An automatic approach for characterization of the thermal maturity of dispersed organic matter Raman spectra at low diagenetic stages. Geol. Soc. Lond. Spec. Publ. 2018, 484. [Google Scholar] [CrossRef]
- Sclater, J.G.; Christie, P.A.F. Continental stretching: An explanation of the post-mid-Cretaceous subsidence of the central North Sea basin. J. Geophys. Res. Solid Earth 1980, 85, 3711–3739. [Google Scholar] [CrossRef]
- Endignoux, L.; Wolf, S.; Letouzey, J. Thermal and kinematic evolution of thrust basins: A 2D numerical model. Pet. Tecton. Mob. Belts Paris Ed. Tech. 1990, 47, 181–192. [Google Scholar]
- Burnham, A.K.; Sweeney, J.J. A chemical kinetic model of vitrinite maturation and reflectance. Geochim. Cosmochim. Acta 1989, 53, 2649–2657. [Google Scholar] [CrossRef]
- Sweeney, J.J.; Burnham, A.K. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. Am. Assoc. Pet. Geol. Bull. 1990, 74, 1559–1570. [Google Scholar]
- Rimi, A. Mantle heat flow and geotherms for the main geologic domains in Morocco. Earth Sci. 1999, 458–466. [Google Scholar] [CrossRef]
- Rimi, A.; Zeyen, H.; Zarhloule, Y.; Correia, A.; Carneiro, J.; Cherkaoui, T. Structure Thermique de la Lithosphère à Travers la Limite des Plaques Ibérie—Afrique par Modélisation Intégrée du Flux de Chaleur, de la Densité et de la Topographie le Long d ’un Transect N-S à 3 Ouest; Bulletin de l’Institut Scientifique, section Sciences de la Terre: Rabat, Maroc, 2008; pp. 29–37. [Google Scholar]
- Butler, R.W.H. Hydrocarbon maturation, migration and tectonic loading in the Western Alpine foreland thrust belt. Geol. Soc. Lond. Spec. Publ. 1991, 59, 227–244. [Google Scholar] [CrossRef]
- Tissot, B.P.; Welte, D.H. Petroleum Formation and Occurrence, 2nd ed.; Science & Business Media: Berlin/Heidelberg, Germany, 1984; p. 699. [Google Scholar]
- Corrado, S.; Chiara Invemizzi, C.; Marzzoli, S. Tectonic burial and exhumation in a foreland fold and thrust belt: The Monte Alpi case history (Southern Apennines, Italy). Geodin. Acta 2002, 15, 159–177. [Google Scholar] [CrossRef]
- Liu, D.H.; Xiao, X.M.; Tian, H.; Min, Y.S.; Zhou, Q.; Cheng, P.; Shen, J.G. Sample maturation calculated using Raman spectroscopic parameters for solid organics: Methodology and geological applications. Chinese Sci. Bull. 2013, 58, 1285–1298. [Google Scholar] [CrossRef] [Green Version]
- Jubb, A.M.; Botterell, P.J.; Birdwell, J.E.; Burruss, R.C.; Hackley, P.C.; Valentine, B.J.; Hatcherian, J.J.; Wilson, S.A. High microscale variability in Raman thermal maturity estimates from shale organic matter. Int. J. Coal Geol. 2018, 199, 1–9. [Google Scholar] [CrossRef]
- Schito, A.; Corrado, S.; Aldega, L.; Grigo, D. Overcoming pitfalls of vitrinite reflectance measurements in the assessment of thermal maturity: The case history of the lower Congo basin. Mar. Pet. Geol. 2016, 74, 59–70. [Google Scholar] [CrossRef]
- Guerrera, F.; Martín-Martín, M.; Tramontana, M. Evolutionary geological models of the central-western peri-Mediterranean chains: A review. Int. Geol. Rev. 2019. [Google Scholar] [CrossRef]
- Marshak, S. Salients, recesses, arcs, oroclines, and syntaxes—A review of ideas concerning the formation of map-view curves in fold-thrust belts. AAPG Mem. 2005, 82, 131–156. [Google Scholar]
- Leblanc, D.; Olivier, P. Role of strike-slip faults in the Betic-Rifian orogeny. Tectonophysics 1984. [Google Scholar] [CrossRef]
- Leon, J.T. de Signification de la limite Jebha-Arbaoua (Maroc nord-occidental): Une rampe latérale au-dessus d’une discontinuité crustale héritée de la période de rifting. J. Afr. Earth Sci. 1997. [Google Scholar] [CrossRef]
- Benmakhlouf, M.; Galindo-Zaldívar, J.; Chalouan, A.; Sanz de Galdeano, C.; Ahmamou, M.; López-Garrido, A.C. Inversion of transfer faults: The Jebha-Chrafate fault (Rif, Morocco). J. Afr. Earth Sci. 2012, 73–74, 33–43. [Google Scholar] [CrossRef]
- Vitale, S.; Zaghloul, M.N.; El Ouaragli, B.; Tramparulo, F.D.A.; Ciarcia, S. Polyphase deformation of the Dorsale Calcaire Complex and the Maghrebian Flysch Basin Units in the Jebha area (Central Rif, Morocco): New insights into the Miocene tectonic evolution of the Central Rif belt. J. Geodyn. 2015, 90, 14–31. [Google Scholar] [CrossRef]
UNIT | SAMPLES | COORDINATES | AGES | Ro% | Sd. (±) | Nr. Fr | Ro% eq. | Sd. (±) |
---|---|---|---|---|---|---|---|---|
MAURETANIAN | E1 | 35.80055556; −5.480833333 | Aptian | 0.64 | 0.08 | 9 | _ | _ |
E5 | 35.78333333; −5.535833333 | Oligocene | 0.92 | 0.08 | 16 | _ | _ | |
E7 | 35.775963; −5.566249111 | Eocene | 0.65 | 0.08 | 12 | _ | _ | |
E9 | 35.79361111; −5.592222222 | Barremian | 0.75 | 0.07 | 23 | _ | _ | |
E11 | 35.77958303; −5.610247222 | Miocene | 1.00 | 0.08 | 40 | _ | _ | |
E13 | 35.78833333; −5.639166667 | Campanian | 0.84 | 0.04 | 8 | 0.86 | 0.08 | |
E16 | 35.72027778; −5.635833333 | Barremian | 0.98 | 0.05 | 29 | _ | _ | |
MASSYLIAN | E15 | 35.77277778; −5.663611111 | Aptian | 1.01 | 0.07 | 18 | 1.00 | 0.08 |
E14 | 35.80676; −5.696666 | U. Cretaceous | 0.77 | 0.06 | 20 | _ | _ | |
E17 | 35.70777778; −5.654166667 | Albian | 1.00 | 0.05 | 28 | 0.98 | 0.07 | |
E19 | 35.69285255; −5.658765111 | Aptian | 0.82 | 0.06 | 33 | 0.90 | 0.10 | |
INTRARIF | E20 | 35.68888889; −5.671944444 | Campanian | 1.02 | 0.06 | 30 | 1.06 | 0.06 |
E24 | 35.705; −5.792777778 | Campanian | 0.87 | 0.09 | 24 | 0.88 | 0.10 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atouabat, A.; Corrado, S.; Schito, A.; Haissen, F.; Gimeno-Vives, O.; Mohn, G.; Frizon de Lamotte, D. Validating Structural Styles in the Flysch Basin Northern Rif (Morocco) by Means of Thermal Modeling. Geosciences 2020, 10, 325. https://doi.org/10.3390/geosciences10090325
Atouabat A, Corrado S, Schito A, Haissen F, Gimeno-Vives O, Mohn G, Frizon de Lamotte D. Validating Structural Styles in the Flysch Basin Northern Rif (Morocco) by Means of Thermal Modeling. Geosciences. 2020; 10(9):325. https://doi.org/10.3390/geosciences10090325
Chicago/Turabian StyleAtouabat, Achraf, Sveva Corrado, Andrea Schito, Faouziya Haissen, Oriol Gimeno-Vives, Geoffroy Mohn, and Dominique Frizon de Lamotte. 2020. "Validating Structural Styles in the Flysch Basin Northern Rif (Morocco) by Means of Thermal Modeling" Geosciences 10, no. 9: 325. https://doi.org/10.3390/geosciences10090325
APA StyleAtouabat, A., Corrado, S., Schito, A., Haissen, F., Gimeno-Vives, O., Mohn, G., & Frizon de Lamotte, D. (2020). Validating Structural Styles in the Flysch Basin Northern Rif (Morocco) by Means of Thermal Modeling. Geosciences, 10(9), 325. https://doi.org/10.3390/geosciences10090325