Next Article in Journal
Transport and Evolution of Supercritical Fluids During the Formation of the Erdenet Cu–Mo Deposit, Mongolia
Previous Article in Journal
A Method for Quantitative Interpretation of Stationary Thermal Fields for Layered Media
Open AccessArticle

Assessing Ecosystem Services of Atmospheric Calcium and Magnesium Deposition for Potential Soil Inorganic Carbon Sequestration

1
Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC 29634, USA
2
Department of Soil and Water Sciences, University of Tripoli, Tripoli 13538, Libya
3
Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA
*
Author to whom correspondence should be addressed.
Geosciences 2020, 10(5), 200; https://doi.org/10.3390/geosciences10050200
Received: 13 March 2020 / Revised: 8 May 2020 / Accepted: 18 May 2020 / Published: 25 May 2020
Many soil regulating ecosystem services (ES) are linked to Earth’s atmosphere, but associated monetary values often are unknown or difficult to quantify. Atmospheric deposition of calcium (Ca2+) and magnesium (Mg2+) are abiotic flows (wet, dry, and total) from the atmosphere to land surfaces, which potentially can become available to sequester carbon (C) as soil inorganic carbon (SIC). However, these processes typically have not been included in economic valuations of ecosystem services. The primary objective of this study was to demonstrate an approach for valuing non-constrained potential SIC sequestration from atmospheric Ca2+ and Mg2+ deposition based on the concept of the avoided social cost of carbon dioxide emissions (SC-CO2). Maximum monetary values associated with the non-constrained potential SIC sequestration were compiled for the contiguous United States (U.S.) by soil order, land resource region (LRR), state, and region using available deposition data from the National Atmospheric Deposition Program (NRSP-3). For the entire contiguous U.S., an average annual monetary value for the non-constrained potential SIC sequestration due to atmospheric Ca2+ and Mg2+ deposition was $135M (i.e., $135 million U.S. dollars, where M = million = 106). Mollisols, Alfisols, and Entisols were soil orders with the highest average annual monetary values for non-constrained potential SIC sequestration. When normalized by land area, however, Vertisols had the highest average annual monetary values followed by Alfisols and Mollisols for non-constrained potential SIC sequestration. From a more agricultural perspective, the LRRs with the highest average annual monetary values for non-constrained potential SIC sequestration were the Western Range and Irrigated Region (D), the Central Feed Grains and Livestock Region (M), and the Central Great Plains Winter Wheat and Range Region (H). When normalized by area, the LRRS with the highest average annual monetary values were the Southwest Plateaus and Plains Range and Cotton Region (I) and the Florida Subtropical Fruit, Truck Crop and Range Region (U). Among the U.S. states, the highest average annual monetary values for non-constrained potential SIC sequestration were Texas, Kansas, and New Mexico, but when normalized by area the highest values by state were Kansas, Iowa, and Texas. Geographical regions in the contiguous U.S. with the highest average annual monetary values for non-constrained potential SIC sequestration were the South Central, Midwest, and West; when normalized by area, the highest values by region were South Central, Midwest, and Northern Plains. Constraints on maximum monetary values, based on physical, chemical, biological, economic, social, and political limitations, need to be considered and quantified to obtain more precise and accurate accounting of the ES associated with SIC sequestration due to atmospheric Ca2+ and Mg2+ deposition. View Full-Text
Keywords: avoided social cost; ecosystem services; flow; regulating; social cost; stock; Sustainable Development Goals (SDGs) avoided social cost; ecosystem services; flow; regulating; social cost; stock; Sustainable Development Goals (SDGs)
Show Figures

Figure 1

MDPI and ACS Style

Mikhailova, E.A.; Zurqani, H.A.; Post, C.J.; Schlautman, M.A. Assessing Ecosystem Services of Atmospheric Calcium and Magnesium Deposition for Potential Soil Inorganic Carbon Sequestration. Geosciences 2020, 10, 200.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop