The New Seismotectonic Atlas of Greece (v1.0) and Its Implementation
Abstract
:1. Introduction
2. Design and Implementation of the New Seismotectonic Atlas
2.1. GIS Mapping
2.2. Active Faults: The NOA Database (NOAFaults)
2.3. Volcanism and Plutonism
- The Hellenic Volcanic Arc, a.k.a. South Aegean active Volcanic Arc (SAVA) of Plio-Quaternary age. Extensive and detailed information can be found in the topical volume edited by [36]. It extends from Sousaki/Methana in the west, to Milos and Santorini in the center and Nisyros to the east, and is characterized by calc-alkaline and high-K calc-alkaline activity (Figure 3).
2.4. Seismicity
- The SHARE European Earthquake Catalogue for the period 1000–1899 (SHEEC 1000–1899—https://www.emidius.eu/SHEEC/sheec_1000_1899.html);
- The SHARE European Earthquake Catalogue for the period 1900–2006 (SHEEC 1900–2006—https://www.gfz-potsdam.de/sheec);
- The MKK catalogue for the period 1900–2009 [64];
- The ISC Bulletin for the period 1964–2017 [65];
- The ISC-EHB catalogue for the period 1964–2016 [66];
- The ISC-GEM catalogue for the period 1904–2016 [67];
- The GI-NOA catalogue for the period of January–May 2018 (http://bbnet.gein.noa.gr/HL/databases/database);
- The NKUA-SL (2020) catalogue for the period of June 2018–June 2020 (http://www.geophysics.geol.uoa.gr/stations/gmapv3_db/index.php?lang=en).
2.5. Focal Mechanisms, Stress and Strain-Rate Field
- The distribution of the stress field is consistent with the faulting style observed for major faults.
- Transtensional stress is observed in the Aegean, the Corinth Rift and W. Greece.
- Transpressional stress predominates in NW Greece, the Hellenic Arc and Crete.
- In the Aegean, the SAVA roughly marks a zone of transition, across which the stress field rotates by 90°: The S1 axis changes from almost E–W to the north of approximately 36.5° N to almost N–S to the south of that parallel. It also coincides with a sharp contrast in the crustal stress-shape (Figure 7) and a deflection in the orientation of SKS and Rayleigh wave anisotropy [43; references therein]. An analogous transition can be observed in the Peloponnese relative to approximately 37° N, with the difference that field there is mainly N-S extensional to the north of this parallel and mainly E-W extensional to the south; this effect is highlighted by high stress-shape values R = 1 − (σ2 − σ3)/(σ1 − σ3), where σ1, σ2, σ3 are the magnitudes of the principal stress axes, with σ1 > σ2 > σ3).
- These abovementioned observations are in good agreement with the strain-rate field of the Global Strain Rate Model [126]. Surface Strain Rate (SSR; Figure 8) appears compatible with seismicity (Figure 4). High shortening rate is observed along the Hellenic Arc, whereas high extensional deformation rate is observed along a line that connects CTF and NW Peloponnese with NAT, an area that has been suggested to constitute the boundary between the continental and oceanic slab of the HSS [43,84]. An interesting implication is the consistency between stress and strain-rate, regarding the inferred faulting type, particularly apparent in areas of complex tectonics, i.e., transpressional or transtensional. Low strain-rate can be observed at regions where the seismicity is also low, i.e., in central Aegean and northern Greece (see also Figure 4).
2.6. Tsunamis
2.7. Magnetic Field
2.8. Gravity Field
2.9. Isostatic Anomalies
3. Summary and Conclusions
- Introduction of geological and geotechnical data (physical and mechanical rock properties, VS30 estimates wherever available, etc.). This may enable the rapid classification of soils and could be used in the realistic quantitative estimation of seismic hazard and risk. VS30 and site amplification data have already been obtained by SL-NKUA through microtremor and geophysical surveys for specific urban areas [140,141,142,143].
- Introduction of total crustal deformation data, in the form of InSAR PS velocities, GNNS-based horizontal and vertical velocity vectors and strain distribution patterns. Given the large number of GNSS stations currently operating in Greece, this would enable the evaluation of seismic versus aseismic deformation at deca- to hecto-kilometric scales, and would afford additional insight into the nature and geographical distribution of non-seismic geological hazards in Greece.
- Introduction of recent and current seismicity information from the real-time seismicity database of the SL-NKUA (http://www.geophysics.geol.uoa.gr/stations/maps/recent.html).
- Incorporation of critical infrastructures, i.e., power plants, electricity networks, etc., and enrichment/update of the ones currently available.
- Introduction of EMS-98 vulnerability indexes of residential buildings [147].
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McKenzie, D. Active tectonics of the Alpine—Himalayan belt: The Aegean Sea and surrounding regions. Geophys. J. Int. 1978, 55, 217–254. [Google Scholar] [CrossRef] [Green Version]
- Mercier, J.L.; Carey-Gailhardis, E.; Mouyaris, N.; Simeakis, K.; Roundoyannis, T.; Anghelidhis, C. Structural analysis of recent and active faults and regional state of stress in the epicentral area of the 1978 Thessaloniki earthquakes (N. Greece). Tectonics 1983, 2, 577–600. [Google Scholar] [CrossRef]
- Ambraseys, N.; Jackson, J. Seismicity and associated strain of central Greece between 1890 and 1988. Geophys. J. Int. 1990, 101, 663–708. [Google Scholar] [CrossRef] [Green Version]
- Roberts, S.; Jackson, J. Active normal faulting in Central Greece: An overview. In The Geometry of Normal Faults; Roberts, A.M., Yielding, G., Freeman, B., Eds.; The Geological Society of London: London, UK, 1991; Volume 56, pp. 125–142. Available online: https://jgs.lyellcollection.org/content/jgs/147/1/185.full.pdf (accessed on 6 November 2020).
- Taymaz, T.; Jackson, J.; McKenzie, D. Active tectonics of the north and central Aegean Sea. Geophys. J. Int. 1991, 106, 433–490. [Google Scholar] [CrossRef]
- Armijo, R.; Lyon-Caen, H.; Papanastassiou, D. East-west extension and Holocene normal fault scarps in the Hellenic arc. Geology 1992, 20, 491–494. [Google Scholar] [CrossRef]
- Jackson, J. Active tectonics of the Aegean region. Annu. Rev. Earth Planet Sci. 1994, 22, 239–271. [Google Scholar] [CrossRef]
- Roberts, G.P.; Ganas, A. Fault-slip directions in central and southern Greece measured from striated and corrugated fault planes: Comparison with focal mechanism and geodetic data. JGR 2000, 105, 23443–23462. [Google Scholar] [CrossRef]
- Lekkas, E. The Athens earthquake (7 September 1999): Intensity distribution and controlling factors. Eng. Geol. 2001, 59, 297–311. [Google Scholar] [CrossRef]
- Goldsworthy, M.; Jackson, J.; Haines, J. The continuity of active fault systems in Greece. Geophys. J. Int. 2002, 148, 596–618. [Google Scholar] [CrossRef] [Green Version]
- Caputo, R.; Chatzipetros, A.; Pavlides, S.; Sboras, S. The Greek Database of Seismogenic Sources (GreDaSS): State-of-the-art for northern Greece. Ann. Geophys. 2012, 55, 859–894. [Google Scholar] [CrossRef]
- Kapetanidis, V.; Kassaras, I. Contemporary crustal stress of the Greek region deduced from earthquake focal mechanisms. J. Geodyn. 2019, 123, 55–82. [Google Scholar] [CrossRef]
- Zoback, M.L. First- and second-order patterns of stress in the lithosphere: The World Stress Map Project. JGR 1992, 97, 11703–11728. [Google Scholar] [CrossRef]
- IGME (Institute of Geological and Mining Research). Seismotectonic Map of Greece; Scale 1:500,000; IGME: Athens, Greece, 1989. [Google Scholar]
- Ganas, A.; Oikonomou, I.; Tsimi, C. NOAfaults: A digital database for active faults in Greece. BGSG 2013, 47, 518–530. [Google Scholar] [CrossRef] [Green Version]
- Ganas, A.; Tsironi, V.; Kollia, E.; Delagas, M.; Tsimi, C.; Oikonomou, A. Recent upgrades of the NOA database of active faults in Greece (NOAFAULTs). In Proceedings of the 19th General Assembly of WEGENER, Grenoble, France, 10–13 September 2018. [Google Scholar]
- Ganas, A. NOAFAULTS KMZ layer Version 2.1 (2019 update) (Version V2.1) [Data set]. Zenodo 2019. [Google Scholar] [CrossRef]
- Ganas, A.; Roberts, G.P.; Memou, T. Segment boundaries, the 1894 ruptures and strain patterns along the Atalanti Fault, Central Greece. J. Geodyn. 1998, 26, 461–486. [Google Scholar] [CrossRef]
- Pavlides, S.B.; Valkaniotis, S.; Ganas, A.; Keramydas, D.; Sboras, S. The Atalanti active fault: Re-evaluation using new geological data. BGSG 2004, 36, 1560–1567. [Google Scholar] [CrossRef] [Green Version]
- Ganas, A.; Pavlides, S.B.; Sboras, S.; Valkaniotis, S.; Papaioannou, S.; Alexandris, G.A.; Plessa, A.; Papadopoulos, G.A. Active Fault Geometry and Kinematics in Parnitha Mountain, Attica, Greece. J. Struct. Geol. 2004, 26, 2103–2118. [Google Scholar] [CrossRef]
- Ganas, A.; Pavlides, S.; Karastathis, V. DEM-based morphometry of range-front escarpments in Attica, Central Greece, and its relation to fault slip rates. Geomorphology 2005, 65, 301–319. [Google Scholar] [CrossRef]
- Karamitros, I.; Ganas, A.; Chatzipetros, A.; Valkaniotis, S. Non-planarity, scale-dependent roughness and kinematic properties of the Pidima active normal fault scarp (Messinia, Greece) using high-resolution terrestrial LiDAR data. J. Struct. Geol. 2020, 136, 104065. [Google Scholar] [CrossRef]
- Kokkalas, S.; Pavlides, S.; Koukouvelas, I.; Ganas, A.; Stamatopoulos, L. Paleoseismicity of the Kaparelli fault (eastern Corinth Gulf): Evidence for earthquake recurrence and fault behaviour. Boll. Soc. Geol. Ital. 2007, 126, 387–395. [Google Scholar]
- Palyvos, N.; Pavlopoulos, K.; Froussou, E.; Kranis, H.; Pustovoytov, K.; Forman, S.L.; Minos-Minopoulos, D. Paleoseismological investigation of the oblique-normal Ekkara ground rupture zone accompanying the M 6.7–7.0 earthquake on 30 April 1954 in Thessaly, Greece: Archaeological and geochronological constraints on ground rupture recurrence. JGR 2010, 115, B06301. [Google Scholar] [CrossRef]
- Jackson, J.; McKenzie, D. A hectare of fresh striations on the Arkitsa fault, Central Greece. J. Struct. Geol. 1999, 21, 1–6. [Google Scholar] [CrossRef]
- Koukouvelas, I.; Stamatopoulos, L.; Katsonopoulou, D.; Pavlides, S. A palaeoseismological and geoarchaeological investigation of the Eliki fault, Gulf of Corinth, Greece. J. Struct. Geol. 2001, 23, 531–543. [Google Scholar] [CrossRef]
- Wells, D.L.; Coppersmith, K.J. New empirical relationships among magnitude, rupture width, rupture area, and surface displacement. BSSA 1994, 84, 974–1002. [Google Scholar]
- Ambraseys, N.N.; Jackson, J.A. Faulting associated with historical and recent earthquakes in the Eastern Mediterranean region. Geophys. J. Int. 1998, 133, 390–406. [Google Scholar] [CrossRef] [Green Version]
- Pavlides, S.; Caputo, R. Magnitude versus faults’ surface parameters: Quantitative relationships from the Aegean Region. Tectonophysics 2004, 380, 159–188. [Google Scholar] [CrossRef]
- Parsons, T. Recalculated probability of M ≥ 7 earthquakes beneath the Sea of Marmara, Turkey. JGR 2004, 109, B05304. [Google Scholar] [CrossRef] [Green Version]
- Ganas, A.; Parsons, T.; Segou, M. Fault-based Earthquake Rupture Forecasts for Western Gulf of Corinth, Greece. In Proceedings of the AGU 2014 Fall Meeting, San Francisco, CA, USA, 15–19 December 2014. [Google Scholar]
- Murru, M.; Akinci, A.; Falcone, G.; Pucci, S.; Console, R.; Parsons, T. M ≥ 7 earthquake rupture forecast and time-dependent probability for the sea of Marmara region, Turkey. JGR 2016, 121, 2679–2707. [Google Scholar] [CrossRef] [Green Version]
- Jacobshagen, V.; Diirr, S.; Kockel, F.; Kopp, K.-O.; Kowalczyk, G. Structure and geodynamic evolution of the Aegean Region. In Alps, Apennines, Hellenides; Closs, H., Roeder, D., Schmidt, K., Eds.; Schweizerbart: Stuttgart, Germany, 1978; pp. 537–564. [Google Scholar]
- Kahle, H.G.; Cocard, M.; Peter, Y.; Geiger, A.; Reilenger, R.; Barka, A.; Veis, G. GPS-derived strain rate field within the boundary zones of the Eurasian, African, and Arabian Plates. JGR 2000, 105, 23353–23370. [Google Scholar] [CrossRef]
- Papanikolaou, D.; Bargathi, H.; Dabovski, C.; Dimitriu, R.; El-Hawat, A.; Ioane, D.; Kranis, H.; Obeidi, A.; Oaie, G.; Seghedi, A.; et al. TRANSMED Transect VII: East European Craton–Scythian Platform–Dobrogea–Balkanides–Rhodope Massif–Hellenides–East Mediterranean–Cyrenaica. In The TRANSMED Atlas. The Mediterranean Region from Crust to Mantle; Cavazza, W., Roure, F., Spakman, W., Stampfli, G., Ziegler, P., Eds.; Spinger: Berlin, Germany, 2004. [Google Scholar]
- Fytikas, M.; Vougioukalakis, G. (Eds.) The South Aegean Volcanic Arc: Present Knowledge and future perspectives. In Developments in Volcanology; Elsevier: Amsterdam, The Netherlands, 2005; p. 398. ISBN 9780444520463. [Google Scholar]
- Fytikas, M.; Innocenti, F.; Manetti, P.; Mazzuoli, R.; Peccerillo, A.; Villari, L. Tertiary to Quaternary evolution of volcanism in the Aegean region. The Geological Evolution of the Eastern Mediterranean. Geol. Soc. Spec. Publ. 1985, 17, 687–699. [Google Scholar] [CrossRef]
- Mountrakis, D. The Pelagonian zone in Greece. A polyphase-deformed fragment of the Cimmerian continent and its role in the geotectonic evolution of the eastern Mediterranean. J. Geol. 1986, 94, 335–347. [Google Scholar] [CrossRef]
- Kouli, M.; Seymour, K. Plagioclase Microtextures and their importance for magma chamber dynamics-examples from Lesvos, Hellas and Teide, Canary Islands. NeuesJahrbuch Mineral. Mh. 2006, 182, 323–336. [Google Scholar] [CrossRef] [PubMed]
- Kitsopoulos, K. Immobile trace elements discrimination diagramms with zeolitized volcaniclastics from the Evros—Thrace—Rhodope Volcanic Terrain. BGSG 2010, 43, 2455–2464. [Google Scholar] [CrossRef] [Green Version]
- Pe-Piper, G.; Piper, D.J.W. The Igneous Rocks of Greece. The Anatomy of an Orogen. Beitr. Reg. Geol. Erde 2002, xvi, 573. [Google Scholar] [CrossRef]
- Tzanis, A.; Efstathiou, A.; Chailas, S.; Stamatakis, M. Evidence of recent plutonic magmatism beneath Northeast Peloponnesus (Greece) and its relationship to regional tectonics. Geophys. J. Int. 2018, 212, 1600–1626. [Google Scholar] [CrossRef]
- Kassaras, I.; Kapetanidis, V.; Karakonstantis, A.; Papadimitriou, P. Deep structure of the Hellenic lithosphere from teleseismic Rayleigh-wave tomography. Geophys. J. Int. 2020, 221, 205–230. [Google Scholar] [CrossRef]
- Dietrich, V.; Gaitanakis, P. Geological Map of Methana Peninsula (Greece); ETH Zürich: Zürich, Switzerland, 1995. [Google Scholar]
- Pe-Piper, G.; Piper, D.J.W. The effect of changing regional tectonics on an arc volcano: Methana, Greece. J. Volcanol. 2013, 260, 146–163. [Google Scholar] [CrossRef]
- Tzanis, A.; Efstathiou, A.; Chailas, S.; Lagios, E.; Stamatakis, M. The Methana Volcano–Geothermal Resource, Greece, and its relationship to regional tectonics. J. Volcanol. 2020, 404, 107035. [Google Scholar] [CrossRef]
- Fytikas, M.; Giuliani, O.; Innocenti, F.; Kolios, N.; Manetti, P.; Mazzuoli, R. The Plio-Quaternary volcanism of Saronikos area (western part of the active Aegean volcanic Arc). Ann. Geol. Pays. Hell. 1986, 33, 23–45. [Google Scholar]
- Vougioukalakis, G.; Fytikas, M. Volcanic hazards in the Aegean area, relative risk evaluation, monitoring and present state of the active volcanic centers. Dev. Volcanol. 2005, 7, 161–183. [Google Scholar] [CrossRef]
- Principe, C.; Arias, A.; Zoppi, U. Hydrothermal explosions on Milos: From debris avalanches to debris flows deposits. In The South Aegean Active Volcanic Arc: Present Knowledge and Future Perspectives International Conference; Book of Abstracts 95; Milos: Birmingham, AL, USA, 2003. [Google Scholar]
- Druitt, T.H.; Francaviglia, V. Caldera formation on Santorini and the physiography of the islands in the late Bronze Age. Bull. Volcanol. 1992, 54, 484–493. [Google Scholar] [CrossRef]
- Druitt, T.H.; Mellors, R.A.; Pyle, D.M.; Sparks, R.S.J. Explosive volcanism on Santorini, Greece. Geol. Mag. 1989, 126, 95–126. [Google Scholar] [CrossRef]
- Fytikas, M.; Kolios, N.; Vougioukalakis, G.E. Post-Minoan volcanic activity of the Santorini volcano, volcanic hazard and risk, forecasting possibilities. In Thera and the Aegean World III; Hardy, D.A., Keller, J., Galanopoulos, V.P., Flemming, N.C., Druitt, T.H., Eds.; The Thera Foundation: London, UK, 1990; Volume 2, pp. 183–198. [Google Scholar]
- Lagios, E.; Sakkas, V.; Novali, F.; Belloti, F.; Ferretti, A.; Vlachou, K.; Dietrich, V. SqueeSAR™ and GPS ground deformation monitoring of Santorini Volcano (1992–2012): Tectonic implications. Tectonophysics 2013, 594, 38–59. [Google Scholar] [CrossRef]
- Papadimitriou, P.; Kapetanidis, V.; Karakonstantis, A.; Kaviris, G.; Voulgaris, N.; Makropoulos, K. The Santorini Volcanic Complex: A detailed multi-parameter seismological approach with emphasis on the 2011–2012 unrest period. J. Geodyn. 2015, 85, 32–57. [Google Scholar] [CrossRef]
- Tzanis, A.; Chailas, S.; Sakkas, V.; Lagios, E. Tectonic deformation in the Santorini volcanic complex (Greece) as inferred by joint analysis of gravity, magnetotelluric and DGPS observations. Geophys. J. Int. 2020, 220, 461–489. [Google Scholar] [CrossRef]
- Dietrich, V.J.; Lagios, E. (Eds.) Nisyros Volcano: The Kos—Yali—Nisyros Volcanic Field; Springer: Berlin, Germany, 2018. [Google Scholar] [CrossRef]
- Tzanis, A.; Sakkas, V.; Lagios, E. Magnetotelluric Reconnaissance of the Nisyros Caldera and Geothermal Resource (Greece). In Nisyros Volcano: The Kos—Yali—Nisyros Volcanic Field; Dietrich, V.J., Lagios, E., Eds.; Springer: Berlin, Germany, 2018; pp. 203–225. [Google Scholar] [CrossRef]
- Fytikas, M.; Kolios, N. Preliminary heat flow map of Greece. In Terrestrial Heat Flow in Europe; Cermak, V., Rybach, L., Eds.; Springer: Berlin, Germany, 1979; pp. 197–205. [Google Scholar] [CrossRef]
- Gioni-Stavropoulou, G. Inventory of thermal and mineral springs of Greece, I., Aegean Sea. In Hydrological and Hydrogeological Investigation Report No. 39; IGME: Athens, Greece, 1983. (In Greek) [Google Scholar]
- Karastathis, V.K.; Papoulia, J.; Di Fiore, B.; Makris, J.; Tsambas, A.; Stampolidis, A.; Papadopoulos, G.A. Deep structure investigations of the geothermal field of the North Euboean Gulf, Greece, using 3-D local earthquake tomography and Curie Point Depth analysis. J. Volcanol. 2011, 206, 106–120. [Google Scholar] [CrossRef]
- Siebert, L.; Simkin, T. Volcanoes of the World: An Illustrated Catalog of Holocene Volcanoes and Their Eruptions, Smithsonian Institution, Global Volcanism Program Digital Information Series. GVP-3. 2002. Available online: http://www.volcano.si.edu (accessed on 6 November 2020).
- Serpen, U.; Aksoy, N.; Tahir, O. 2010 to present status of geothermal energy in Turkey. In Proceedings of the 35th Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 1–3 February 2010; Available online: https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2010/serpen.pdf (accessed on 6 November 2020).
- Erkan, K. Geothermal investigations in western Anatolia using equilibrium temperatures from shallow boreholes. Solid Earth 2015, 6, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Makropoulos, K.; Kaviris, G.; Kouskouna, V. An updated and extended earthquake catalogue for Greece and adjacent areas since 1900. Nat. Hazards Earth Syst. Sci. 2012, 12, 1425–1430. [Google Scholar] [CrossRef] [Green Version]
- International Seismological Centre (ISC). On-Line Bull. 2020. [CrossRef]
- Engdahl, E.R.; Di Giacomo, D.; Sakarya, B.; Gkarlaouni, C.G.; Harris, J.; Storchak, D.A. ISC-EHB 1964–2016, an improved data set for studies of Earth structure and global seismicity. Earth Space Sci. 2020, 7, e2019EA000897. [Google Scholar] [CrossRef] [Green Version]
- ISC-GEM Earthquake Catalogue. International Seismological Centre, Pipers Lane, Thatcham, Berkshire, RG19 4NS, United Kingdom 2020. [CrossRef]
- Papazachos, B.C.; Papazachou, C.B. The Earthquakes of Greece; Ziti Editions: Thessaloniki, Greece, 1997; p. 304. [Google Scholar]
- Kaviris, G.; Papadimitriou, P.; Makropoulos, K. Magnitude Scales in Central Greece. BGSG 2007, 40, 1114–1124. [Google Scholar] [CrossRef] [Green Version]
- Mignan, A.; Chouliaras, G. Fifty Years of Seismic Network Performance in Greece (1964–2013): Spatiotemporal Evolution of the Completeness Magnitude. SRL 2004, 85, 657–667. [Google Scholar] [CrossRef]
- Woessner, J.; Laurentiu, D.; Giardini, D.; Crowley, H.; Cotton, F.; Grünthal, G.; Valensise, G.; Arvidsson, R.; Basili, R.; Demircioglu, M.B.; et al. The 2013 European Seismic Hazard Model: Key components and results. Bull. Earthq. Eng. 2015, 13, 3553–3596. [Google Scholar] [CrossRef] [Green Version]
- Papadimitriou, P.; Kaviris, G.; Makropoulos, K. The Mw=6.3 2003 Lefkada Earthquake (Greece) and induced transfer changes. Tectonophysics 2006, 423, 73–82. [Google Scholar] [CrossRef]
- Papadimitriou, P.; Chousianitis, K.; Agalos, A.; Moshou, A.; Lagios, E.; Makropoulos, K. The spatially extended 2006 April Zakynthos (Ionian Islands, Greece) seismic sequence and evidence for stress transfer. Geophys. J. Int. 2012, 190, 1025–1040. [Google Scholar] [CrossRef]
- Ganas, A.; Cannavo, F.; Chousianitis, K.; Kassaras, I.; Drakatos, G. Displacements recorded on continuous GPS stations following the 2014 M6 Cephalonia (Greece) earthquakes: Dynamic characteristics and kinematic implications. Acta Geodyn. Geomater. 2015, 12, 5–27. [Google Scholar] [CrossRef] [Green Version]
- Melgar, D.; Ganas, A.; Geng, J.; Liang, C.; Fielding, E.J.; Kassaras, I. Source characteristics of the 2015 Mw6.5 Lefkada, Greece, strike-slip earthquake. JGR 2017, 122, 2260–2273. [Google Scholar] [CrossRef]
- Kassaras, I.; Kazantzidou-Firtinidou, D.; Ganas, A.; Tonna, S.; Pomonis, A.; Karakostas, C.; Papadatou-Giannopoulou, C.; Psarris, D.; Lekkas, E.; Makropoulos, K. On the Lefkas (Ionian Sea) November 17, 2015 Mw=6.5 Earthquake Macroseismic Effects. J. Earthq. Eng. 2018. [Google Scholar] [CrossRef]
- Ganas, A.; Briole, P.; Bozionelos, G.; Barberopoulou, A.; Elias, P.; Tsironi, V.; Valkaniotis, S.; Moshou, A.; Mintourakis, I. The 25 October 2018 Mw= 6.7 Zakynthos earthquake (Ionian Sea, Greece): A low-angle fault model based on GNSS data, relocated seismicity, small tsunami and implications for the seismic hazard in the west Hellenic Arc. J. Geodyn. 2020, 137, 101731. [Google Scholar] [CrossRef]
- Papadimitriou, P.; Kapetanidis, V.; Karakonstantis, A.; Spingos, I.; Pavlou, K.; Kaviris, G.; Kassaras, I.; Sakkas, V.; Voulgaris, N. The 25 October, 2018 Zakynthos (Greece) earthquake: Seismic activity at the transition between a transform fault and a subduction zone. Geophys. J. Int. under review.
- Piromallo, C.; Morelli, A. P wave tomography of the mantle under the Alpine-Mediterranean area. JGR 2003, 108, 148–227. [Google Scholar] [CrossRef]
- Spakman, W.; Nolet, G. Imaging algorithms, accuracy and resolution in delay time tomography. In Mathematical Geophysics: A Survey of Recent Developments in Seismology and Geodynamics; Vlaar, N.J., Nolet, G., Wortel, M.J.R., Cloetingh, S.A.P., Eds.; Springer: Berlin, Germany, 1988; pp. 155–187. [Google Scholar] [CrossRef]
- Govers, R.; Wortel, M.J.R. Lithosphere tearing at STEP faults: Response to edges of subduction zones. Earth Planet. Sci. Lett. 2005, 236, 505–523. [Google Scholar] [CrossRef]
- Suckale, J.; Rondenay, S.; Sachpazi, M.; Charalampakis, M.; Hosa, A.; Royden, L.H. High-resolution seismic imaging of the western Hellenic subduction zone using teleseismic scattered waves. Geophys. J. Int. 2009, 178, 775–791. [Google Scholar] [CrossRef] [Green Version]
- Royden, L.H.; Papanikolaou, D.J. Slab segmentation and late Cenozoic disruption of the Hellenic arc. Geochem. Geophys. Geosyst. 2011, 12, Q03010. [Google Scholar] [CrossRef]
- Halpaap, F.; Rondenay, S.; Ottemöller, L. Seismicity, deformation and metamorphism in the western Hellenic subduction zone: New constraints from tomography. JGR 2018, 123, 3000–3026. [Google Scholar] [CrossRef] [Green Version]
- Pearce, F.D.; Rondenay, S.; Sachpazi, M.; Charalampakis, M.; Royden, L.H. Seismic investigation of the transition from continental to oceanic subduction along the western Hellenic Subduction Zone. JGR 2012, 117, B07306. [Google Scholar] [CrossRef]
- Jolivet, L.; Faccenna, C.; Huet, B.; Labrousse, L.; Le Pourhiet, L.; Lacombe, O.; Lecomte, E.; Burov, E.; Denèle, Y.; Brun, J.-P.; et al. Aegean tectonics: Strain localisation, slab tearing and trench retreat. Tectonophysics 2013, 597–598, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Bocchini, G.M.; Brüstle, A.; Becker, D.; Meier, T.; van Keken, P.E.; Ruscic, M.; Papadopoulos, G.A.; Rische, M.; Friederich, W. Tearing, segmentation, and backstepping of subduction in the Aegean: New insights from seismicity. Tectonophysics 2018, 734–735, 96–118. [Google Scholar] [CrossRef]
- Haddad, A.; Ganas, A.; Kassaras, I.; Lupi, M. Seismicity and geodynamics of western Peloponnese and central Ionian Islands: Insights from a local seismic deployment. Tectonophysics 2020, 778, 228353. [Google Scholar] [CrossRef]
- Sachpazi, M.; Laigle, M.; Charalampakis, M.; Diaz, J.; Kissling, E.; Gesret, A.; Becel, A.; Flueh, E.; Miles, P.; Hirn, A. Segmented Hellenic slab rollback driving Aegean deformation and seismicity. GRL 2016, 43, 651–658. [Google Scholar] [CrossRef] [Green Version]
- Govers, R.; Fichtner, A. Signature of slab fragmentation beneath Anatolia from full-waveform tomography. Earth Planet. Sci. Lett. 2016, 450, 10–19. [Google Scholar] [CrossRef]
- van Hinsbergen, D.; Kaymakci, N.; Spakman, W.; Torsvik, T.H. Reconciling the geological history of western Turkey with plate circuits and mantle tomography. Earth Planet. Sci. Lett. 2010, 297, 674–686. [Google Scholar] [CrossRef]
- Biryol, C.B.; Beck, S.L.; Zandt, G.; Ozacar, A.A. Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography. Geophys. J. Int. 2011, 184, 1037–1057. [Google Scholar] [CrossRef] [Green Version]
- Legendre, C.P.; Meier, T.; Lebedev, S.; Friederich, W.; Viereck-Götte, L. A shear wave velocity model of the European upper mantle from automated inversion of seismic shear and surface waveforms. Geophys. J. Int. 2012, 191, 282–304. [Google Scholar] [CrossRef]
- Faccenna, C.; Thorsten, B.W.; Auer, L.; Billi, A.; Boschi, L.; Brun, J.-P.; Capitanio, F.A.; Funiciello, F.; Horvàth, F.; Jolivet, L.; et al. Mantle dynamics in the Mediterranean. Rev. Geophys. 2014, 52, 283–332. [Google Scholar] [CrossRef] [Green Version]
- Ganas, A.; Elias, P.; Kapetanidis, V.; Valkaniotis, S.; Briole, P.; Kassaras, I.; Argyrakis, P.; Barberopoulou, A.; Moshou, A. The July 20, 2017 M6.6 Kos Earthquake: Seismic and Geodetic Evidence for an Active North-Dipping Normal Fault at the Western End of the Gulf of Gökova (SE Aegean Sea). PAGEOPH 2019, 176, 4177–4211. [Google Scholar] [CrossRef]
- Nomikou, P.; Hübscher, C.; Papanikolaou, D.; Farangitakis, P.G.; Ruhnau, M.; Lampridou, D. Expanding extension, subsidence and lateral segmentation within the Santorini—Amorgos basins during Quaternary: Implications for the 1956 Amorgos events, central-south Aegean Sea, Greece. Tectonophysics 2018, 722, 138–153. [Google Scholar] [CrossRef]
- Papadimitriou, E.E.; Sourlas, G.; Karakostas, V.G. Seismicity variations in southern Aegean, Greece, before and after the large (Mw7.7) 1956 Amorgos earthquake due to the evolving stress. PAGEOPH 2005, 162, 783–804. [Google Scholar] [CrossRef]
- Karakonstantis, A.; Papadimitriou, P.; Millas, C.; Spingos, I.; Fountoulakis, I.; Kaviris, G. Tomographic imaging of the NW edge of the Hellenic volcanic arc. J. Seismol. 2019, 23, 995–1016. [Google Scholar] [CrossRef]
- Kapetanidis, V.; Karakonstantis, A.; Papadimitriou, P.; Pavlou, K.; Spingos, I.; Kaviris, G.; Voulgaris, N. The 19 July 2019 earthquake in Athens, Greece: A delayed major aftershock of the 1999 Mw = 6.0 event, or the activation of a different structure? J. Geodyn. 2020, 139, 101766. [Google Scholar] [CrossRef]
- Kouskouna, V.; Ganas, A.; Kleanthi, M.; Kassaras, I.; Sakellariou, N.; Sakkas, G.; Valkaniotis, S.; Manousou, E.; Bozionelos, G.; Tsironi, V.; et al. Evaluation of macroseismic intensity, strong ground motion pattern and fault model of the Athens 19/07/2019 Mw5.1 earthquake. J. Seismol. 2020. under review. [Google Scholar]
- Papadimitriou, P.; Voulgaris, N.; Kassaras, I.; Kaviris, G.; Delibasis, N.; Makropoulos, K. The Mw=6.0, 7 September 1999 Athens earthquake. Nat. Hazards 2002, 27, 15–33. [Google Scholar] [CrossRef]
- Armijo, R.; Meyer, B.; King, G.C.P.; Rigo, A.; Papanastassiou, D. Quaternary evolution of the Corinth Rift and its implications for the Late Cenozoic evolution of the Aegean. Geophys. J. Int. 1996, 126, 11–53. [Google Scholar] [CrossRef] [Green Version]
- Benetatos, C.; Roumelioti, Z.; Kiratzi, A.; Melis, N. Source parameters of the M 6.5 Skyros island (North Aegean Sea) earthquake of July 26, 2001. Ann. Geophys. 2002, 45, 513–526. [Google Scholar] [CrossRef]
- Papadopoulos, G.; Ganas, A.; Plessa, A. The Skyros earthquake (Mw6.5) of 26 July 2001 and precursory seismicity patterns in the North Aegean Sea. BSSA 2002, 92, 1141–1145. Available online: https://ui.adsabs.harvard.edu/#abs/2002EGSGA..27.3710P/abstract (accessed on 6 November 2020).
- Ganas, A.; Drakatos, G.; Pavlides, S.B.; Stavrakakis, G.N.; Ziazia, M.; Sokos, E.; Karastathis, V.K. The 2001 Mw = 6.4 Skyros earthquake, conjugate strike-slip faulting and spatial variation in stress within the central Aegean Sea. J. Geodyn. 2005, 39, 61–77. [Google Scholar] [CrossRef] [Green Version]
- Rhoades, D.A.; Papadimitriou, E.E.; Karakostas, V.G.; Console, R.; Murru, M. Correlation of static stress changes and earthquake occurrence in the North Aegean Region. PAGEOPH 2010, 167, 1049–1066. [Google Scholar] [CrossRef]
- Karakostas, V.G.; Papadimitriou, E.E.; Tranos, M.D.; Papazachos, C.B. Active seismotectonic structures in the area of Chios Island, North Aegean Sea, revealed from microseismicity and fault plane solutions. BGSG 2010, XLIII, 2064–2074. [Google Scholar] [CrossRef] [Green Version]
- Leptokaropoulos, K.M.; Papadimitriou, E.E.; Orlecka–Sikora, B.; Karakostas, V.G. Seismicity rate changes in association with evolution of the stress transfer in the Northern Aegean Sea, Greece. Geophys. J. Int. 2012, 188, 1322–1338. [Google Scholar] [CrossRef] [Green Version]
- Ganas, A.; Roumelioti, Z.; Karastathis, V.; Chousianitis, K.; Moshou, A.; Mouzakiotis, E. The Lemnos 8 January 2013 (Mw = 5.7) earthquake: Fault slip, aftershock properties and static stress transfer modeling in the north Aegean Sea. J. Seismol. 2014, 18, 433–455. [Google Scholar] [CrossRef]
- Kiratzi, A.; Tsakiroudi, E.; Benetatos, C.; Karakaisis, G. The 24 May 2014 (Mw6. 8) earthquake (North Aegean Trough): Spatiotemporal evolution, source and slip model from teleseismic data. Phys. Chem. Earth 2016, 95, 85–100. [Google Scholar] [CrossRef]
- Papadimitriou, P.; Kassaras, I.; Kaviris, G.; Tselentis, G.-A.; Voulgaris, N.; Lekkas, E.; Chouliaras, G.; Evangelidis, C.; Pavlou, K.; Kapetanidis, V.; et al. The 12th June 2017 Mw=6.3 Lesvos earthquake from detailed seismological observations. J. Geodyn. 2017, 115, 23–42. [Google Scholar] [CrossRef]
- Kiratzi, A. The 12 June 2017 Mw 6.3 Lesvos Island (Aegean Sea) earthquake: Slip model and directivity estimated with finite-fault inversion. Tectonophysics 2018, 724, 1–10. [Google Scholar] [CrossRef]
- Kassaras, I.; Kapetanidis, V.; Kaviris, G.; Papadimitriou, P.; Voulgaris, N.; Makropoulos, K.; Popandopoulos, G.; Moshou, A. The April–June 2007 Trichonis Lake earthquake swarm (W. Greece): New implications toward the causative fault zone. J. Geodyn. 2014, 73, 60–80. [Google Scholar] [CrossRef]
- Kassaras, I.; Kapetanidis, V.; Karakonstantis, A. On the spatial distribution of seismicity and the 3D tectonic stress field in western Greece. Phys. Chem. Earth 2016, 95, 50–72. [Google Scholar] [CrossRef]
- Hatzfeld, D.; Kassaras, I.; Panagiotopoulos, D.; Amorese, D.; Makropoulos, K.; Karakaisis, G.; Coutant, O. Microseismicity and strain pattern in northwestern Greece. Tectonics 1995, 14, 773–785. [Google Scholar] [CrossRef]
- Ganas, A.; Elias, P.; Briole, P.; Cannavo, F.; Valkaniotis, S.; Tsironi, V.; Partheniou, E.I. Ground Deformation and Seismic Fault Model of the M6.4 Durres (Albania) Nov. 26, 2019 Earthquake, Based on GNSS/INSAR Observations. Geosciences 2020, 10, 210. Available online: https://www.mdpi.com/2076-3263/10/6/210/htm (accessed on 6 November 2020). [CrossRef]
- Vannucci, G.; Gasperini, P. The new release of the database of earthquake mechanisms of the Mediterranean area (EMMA Version 2). Ann. Geophys. 2004, 47, 307–317. [Google Scholar] [CrossRef]
- Kassaras, I.; Kapetanidis, V.; Karakonstantis, A.; Kouskouna, V.; Ganas, A.; Chouliaras, G.; Drakatos, G.; Moshou, A.; Mitropoulou, V.; Argyrakis, P.; et al. Constraints on the dynamics and spatio-temporal evolution of the 2011 Oichalia seismic swarm (SW Peloponnesus, Greece). Tectonophysics 2014, 614, 100–127. [Google Scholar] [CrossRef]
- Kiratzi, A.; Sokos, E.; Ganas, A.; Tselentis, A.; Benetatos, C.; Roumelioti, Z.; Serpetsidaki, A.; Andriopoulos, G.; Galanis, O.; Petrou, P. The April 2007 earthquake swarm near Lake Trichonis and implications for active tectonics in western Greece. Tectonophysics 2008, 452, 51–65. [Google Scholar] [CrossRef]
- Feng, L.; Newman, A.V.; Farmer, G.T.; Psimoulis, P.; Stiros, S.C. Energetic rupture, coseismic and post-seismic response of the 2008 M W 6.4 Achaia-Elia Earthquake in northwestern Peloponnese, Greece: An indicator of an immature transform fault zone. Geophys. J. Int. 2010, 183, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Karakostas, V.; Mirek, K.; Mesimeri, M.; Papadimitriou, E.; Mirek, J. The Aftershock Sequence of the 2008 Achaia, Greece, Earthquake: Joint Analysis of Seismicity Relocation and Persistent Scatterers Interferometry. PAGEOPH 2017, 174, 151–176. [Google Scholar] [CrossRef]
- Kapetanidis, V.; Papadimitriou, P. Estimation of arrival-times in intense seismic sequences using a Master-Events methodology based on waveform similarity. Geophys. J. Int. 2011, 187, 889–917. [Google Scholar] [CrossRef] [Green Version]
- Kapetanidis, V.; Deschamps, A.; Papadimitriou, P.; Matrullo, E.; Karakonstantis, A.; Bozionelos, G.; Kaviris, G.; Serpetsidaki, A.; Lyon-Caen, H.; Voulgaris, N.; et al. The 2013 earthquake swarm in Helike, Greece: Seismic activity at the root of old normal faults. Geophys. J. Int. 2015, 202, 2044–2073. [Google Scholar] [CrossRef] [Green Version]
- Chouliaras, G.; Kassaras, I.; Kapetanidis, V.; Petrou, P.; Drakatos, G. Seismotectonic analysis of the 2013 seismic sequence at the western Corinth Rift. J. Geodyn. 2015, 90, 42–57. [Google Scholar] [CrossRef]
- Bott, M.H.P. The mechanics of oblique slip faulting. Geol. Mag. 1959, 96, 109–117. [Google Scholar] [CrossRef]
- Kreemer, C.; Blewitt, G.; Klein, E.C. A geodetic plate motion and Global Strain Rate Model. Geochem. Geophys. Geosyst. 2014, 15, 3849–3889. [Google Scholar] [CrossRef]
- Papadopoulos, G.A. Tsunamis in the east Mediterranean: 1. A catalogue for the area of Greece and adjacent seas. In Proceedings of the Joint IOC—IUGG International Workshop: Tsunami Risk Assessment Beyond 2000: Theory, Practice and Plans, Moscow, Russia, 14–16 June 2000; pp. 34–43. [Google Scholar]
- Ambraseys, N.N. Data for the investigation of seismic sea waves in the Eastern Mediterranean. BSSA 1962, 52, 895–913. [Google Scholar]
- Iida, K. Catalog of Tsunamis in Japan and Its Neighbouring Countries; Dept. of Civil Engin., Aichi Institute of Technology: Toyohashi, Japan, 1984; p. 52. [Google Scholar]
- Papadopoulos, G.A.; Tselentis, G.A.; Charalampakis, M. The Hellenic national tsunami warning center: Research, operational and training activities. BGSG 2016, 50, 1100–1109. [Google Scholar] [CrossRef]
- Chailas, S.; Tzanis, A.; Kranis, H.; Karmis, P. Compilation of a Unified and Homogeneous Aeromagnetic Map of the Greek Mainland. 12th Int. BGSG 2010, XLIII, 1919–1929. [Google Scholar]
- Chailas, S.; Tzanis, A. A new improved version of the Aeromagnetic Map of Greece. BGSG 2019, 7, 289–290. Available online: https://ejournals.epublishing.ekt.gr/index.php/geosociety/issue/view/1265 (accessed on 6 November 2020).
- ABEM. Final Report on an Airborne Geophysical Survey Carried out for the Greek Institute for Geology and Subsurface Research during the Year 1966; ABEM-AB Elektrisk Malmletning: Stockholm, Sweden, 1967. [Google Scholar]
- Pavlakis, P.; Makris, J.; Alexandrie, M. In Proceedings of the Marine Geophysical Mapping of Aegean Sea, 2nd International Congress, Hellenic Geophysical Union, Florina, Greece, 5–7 May 1993; pp. 400–411.
- Xia, J.; Sprowl, D.R.; Adkins-Heljeson, D. Correction of topographic distortions in potential-field data: A fast and accurate approach. Geophysics 1993, 58, 515–523. [Google Scholar] [CrossRef]
- Lagios, E.; Chailas, S.; Hipkin, R.G. Gravity and topographic data banks of Greece. Geophys. J. Int. 1996, 126, 287–290. [Google Scholar] [CrossRef] [Green Version]
- Swain, C.J.; Aftab Khan, M. Gravity measurements in Kenya. Geophys. J. Int. 1978, 53, 427–429. [Google Scholar] [CrossRef] [Green Version]
- Lagios, E. Gravity and Other Geophysical Studies Relating to the Crustal Structure of South-East Scotland. Ph.D. Thesis, Edinburgh University, Edinburgh, UK, 1979. [Google Scholar]
- Chailas, S.; Hipkin, R.G.; Lagios, E. Isostatic studies in the Hellenides. Geophys. In Proceedings of the 2nd Congress of the Hellenic Geophysical Union, Florina, Greece, 5–7 May 1993; Volume 2, pp. 492–504. [Google Scholar]
- Kassaras, I.; Kalantoni, D.; Benetatos, C.; Kaviris, G.; Michalaki, K.; Sakellariou, N.; Makropoulos, K. Seismic damage scenarios in Lefkas old town (W Greece). Bull. Earthq. Eng. 2015, 13, 3669–3711. [Google Scholar] [CrossRef]
- Giannaraki, G.; Kassaras, I.; Roumelioti, Z.; Kazantzidou-Firtinidou, D.; Ganas, A. Deterministic seismic risk assessment in the city of Aigion (W. Corinth Gulf, Greece) and juxtaposition with real damage due to the 1995 Mw6.4 earthquake. Bull. Earthq. Eng. 2018, 17, 603–634. [Google Scholar] [CrossRef]
- Kazantzidou-Firtinidou, D.; Kassaras, I.; Ganas, A. Empirical seismic vulnerability, deterministic risk and monetary loss assessment in Fira (Santorini, Greece). Nat. Hazards 2018. [Google Scholar] [CrossRef]
- Kassaras, I.; Kazantzidou-Firtinidou, D.; Kapetanidis, V.; Sakkas, G.; Vassilopoulou, S.; Hadjiefthymiades, S.; Papadimitriou, P. A GIS platform for Rapid Seismic Risk Assessment in Greece–Case study Cephalonia Isl. BGSG2019. In Proceedings of the 15th International Congress, Athens, Greece, 22–24 May 2019. [Google Scholar]
- EAK-2000. Greek National Building Code, Earthquake Protection and Planning Organization of Greece (EPPO-ITSAK); EPPO-ITSAK Publications: Athens, Greece, 2003. [Google Scholar]
- EL.STAT. Population—Housing Census, Hellenic Statistical Authority. 2011. Available online: https://www.statistics.gr/en/home/ (accessed on 10 October 2020).
- EPANTYK. Development of GIS Software for the Representation of the Structural Wealth of the Municipalities of the Country and of Its Structural Vulnerability in Buildings Block Level; YP.ES.A, H.D, KEDKE, TEE: Athens, Greece, 2009; p. 39. (In Greek) [Google Scholar]
- Giovinazzi, S.; Lagomarsino, S. A macroseismic method for the vulnerability assessment of buildings. In Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, 1–6 August 2004. [Google Scholar]
SHEEC 1000–1899 | SHEEC 1900–2006 | MKK | ISC | ISC-EHB | ISC-GEM | NOA | NKUA-SL | |
---|---|---|---|---|---|---|---|---|
Events | 665 | 7706 | 7352 | 55075 | 2550 | 918 | 4737 | 30816 |
Period | 1000–1899 | 1900–2006 | 1901–2009 | 1964–2017 | 1964–2016 | 1904–2016 | January–May 2018 | June 2018–June 2020 |
Depth | 0–150 | 0–200 | 0–215 | 0–260 | 0–174 | 0-153 | 2–186 | 0–147 |
Mw | 4.6–8.3 | 4.0–7.7 | 4.1–7.6 | 2.3–7.5 | 4.6–7.6 | 5.0-7.7 | 1.0–5.2 | 1–6.8 |
Number of Events | 160 | RI | Counts |
---|---|---|---|
Period | 1628 BCE–2000 CE | 1 | 22 |
Latitude Range | 35.2° N–42.6° N | 2 | 33 |
Longitude Range | 18.1° E–29.3° E | 3 | 60 |
Region | Greece and adjacent areas | 4 | 45 |
Cause | Counts | Cause | Counts | Cause | Counts |
---|---|---|---|---|---|
Earthquake | 143 | Volcanic Activity | 5 | Slumps | 3 |
EA | 8 | VO | 3 | GS | 3 |
EL | 4 | VA | 1 | ||
ER | 129 | VL | 0 | ||
ES | 2 | VS | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kassaras, I.; Kapetanidis, V.; Ganas, A.; Tzanis, A.; Kosma, C.; Karakonstantis, A.; Valkaniotis, S.; Chailas, S.; Kouskouna, V.; Papadimitriou, P. The New Seismotectonic Atlas of Greece (v1.0) and Its Implementation. Geosciences 2020, 10, 447. https://doi.org/10.3390/geosciences10110447
Kassaras I, Kapetanidis V, Ganas A, Tzanis A, Kosma C, Karakonstantis A, Valkaniotis S, Chailas S, Kouskouna V, Papadimitriou P. The New Seismotectonic Atlas of Greece (v1.0) and Its Implementation. Geosciences. 2020; 10(11):447. https://doi.org/10.3390/geosciences10110447
Chicago/Turabian StyleKassaras, Ioannis, Vasilis Kapetanidis, Athanassios Ganas, Andreas Tzanis, Chrysanthi Kosma, Andreas Karakonstantis, Sotirios Valkaniotis, Stylianos Chailas, Vasiliki Kouskouna, and Panayotis Papadimitriou. 2020. "The New Seismotectonic Atlas of Greece (v1.0) and Its Implementation" Geosciences 10, no. 11: 447. https://doi.org/10.3390/geosciences10110447
APA StyleKassaras, I., Kapetanidis, V., Ganas, A., Tzanis, A., Kosma, C., Karakonstantis, A., Valkaniotis, S., Chailas, S., Kouskouna, V., & Papadimitriou, P. (2020). The New Seismotectonic Atlas of Greece (v1.0) and Its Implementation. Geosciences, 10(11), 447. https://doi.org/10.3390/geosciences10110447