Effect of Slat and Gap Width of Slatted Concrete Flooring on Sow Gait Using Kinematics Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Treatments
2.3. Experimental Design
2.4. Kinematics Measurements
2.5. Statistical Analyses
3. Results
3.1. Gait Characteristics of Sound Gilts and Lame Sows on Control Floors
3.2. Effects of Slat and Gap Width on Gait Characteristics of the Animals
3.2.1. Slat and Gap Width Effects on Sound Gilts
3.2.2. Slat and Gap Width Effects on Lame Sows
4. Discussion
4.1. Gait Characteristics of Sound Gilts and Lame Sows
4.2. Effects of Slats and Gaps Width on Gait Characteristics of the Animals
4.3. Impact of other Factors
4.3.1. Differences between Front and Rear Limbs
4.3.2. Differences between Parallel and Perpendicular Orientations of the Slats
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- National Farm Animal Care Council. Code of Practice for the Care and Handling of Pigs; Canadian Pork Council: Ottawa, ON, Canada, 2014. [Google Scholar]
- Anil, S.S.; Anil, L.; Deen, J.; Baidoo, S.K.; Walker, R.D. Factors associated with claw lesions in gestating sows. J. Swine Health Prod. 2007, 15, 78–83. [Google Scholar]
- Gjein, H.; Larssen, R.B. Housing of pregnant sows in loose and confined systems--a field study. 3. The impact of housing factors on claw lesions. Acta Vet. Scand. 1995, 36, 443–450. [Google Scholar] [PubMed]
- Heinonen, M.; Oravainen, J.; Orro, T.; Seppa-Lassila, L.; Ala-Kurikka, E.; Virolainen, J.; Tast, A.; Peltoniemi, O.A.T. Lameness and fertility of sows and gilts in randomly selected loose-housed herds in finland. Vet. Rec. 2006, 159, 383–387. [Google Scholar] [CrossRef]
- Cador, C.; Pol, F.; Hamoniaux, M.; Dorenlor, V.; Eveno, E.; Guyomarc’h, C.; Rose, N. Risk factors associated with leg disorders of gestating sows in different group-housing systems: A cross-sectional study in 108 farrow-to-finish farms in france. Prev. Vet. Med. 2014, 116, 102–110. [Google Scholar] [CrossRef]
- KilBride, A.L.; Gillman, C.E.; Green, L.E. A cross-sectional study of prevalence and risk factors for foot lesions and abnormal posture in lactating sows on commercial farms in england. Anim. Welf. 2010, 19, 473–480. [Google Scholar]
- Jørgensen, B. Influence of floor type and stocking density on leg weakness, osteochondrosis and claw disorders in slaughter pigs. Anim. Sci. 2003, 77, 439–449. [Google Scholar] [CrossRef]
- Aarnink, A.J.A.; Van Den Berg, A.J.; Keen, A.; Hoeksma, P.; Verstegen, M.W.A. Effect of slatted floor area on ammonia emission and on the excretory and lying behaviour of growing pigs. J. Agric. Eng. Res. 1996, 64, 299–310. [Google Scholar] [CrossRef]
- Vermeij, I.; Enting, J.; Spoolder, H.A.M. Effect of Slatted and Solid Floors and Permeability of Floors in Pig Houses on Environment, Animal Welfare and Health and Food Safety; a Review of Literature; Rapport 186; Animal Science Group, Wageningen UR: Lelystad, The Netherlands, 2009. [Google Scholar]
- Aarnink, A.J.A.; Swierstra, D.; Van Den Berg, A.J.; Speelman, L. Effect of type of slatted floor and degree of fouling of solid floor on ammonia emission rates from fattening piggeries. J. Agric. Eng. Res. 1997, 66, 93–102. [Google Scholar] [CrossRef]
- Ye, Z.; Zhang, G.; Seo, I.H.; Kai, P.; Saha, C.K.; Wang, C.; Li, B. Airflow characteristics at the surface of manure in a storage pit affected by ventilation rate, floor slat opening, and headspace height. Biosyst. Eng. 2009, 104, 97–105. [Google Scholar] [CrossRef]
- Courboulay, V.; Eugène, A.; Delarue, E. Welfare assessment in 82 pig farms: Effect of animal age and floor type on behaviour and injuries in fattening pigs. Anim. Welf. 2009, 18, 515–521. [Google Scholar]
- Broom, D.M.; Gunn, M.; Edwards, S.; Wechsler, B.; Algers, B.; Spoolder, H.; Madec, F.; Von Borell, E.; Olsson, O. The Welfare of Weaners and Rearing Pigs: Effects of Different Space Allowances and Floor Types; EFSA-Q-2004-077; Scientific Panel on Animal Health and Welfare, European Food Safety Authority: Parma, Italy, 2005; p. 129. [Google Scholar]
- Jensen, P.; Von Borell, E.; Broom, D.M.; Csermely, D.; Dijkhuizen, A.A.; Hylkema, S.; Edwards, S.A.; Madec, F.; Stamataris, C. The Welfare of Intensively Kept Pigs; Doc XXIV/B3/ScVC/0005/1997; Commission of the European Communities; Scientific Veterinary Committee: Brussels, Belgium, 1997; p. 190. [Google Scholar]
- Rähse, E.; Hoy, S. Investigations on frequency and severity of different claw lesions in fattening pigs with regard to housing conditions. Prakt. Tierarzt 2007, 88, 40–47. [Google Scholar]
- Falke, A.; Friedli, K.; Gygax, L.; Wechsler, B.; Sidler, X.; Weber, R. Effect of rubber mats and perforation in the lying area on claw and limb lesions of fattening pigs. Animal 2018, 12, 2130–2137. [Google Scholar] [CrossRef]
- Council of the European Union. Council Directive 2008/120/ec of 18 December 2008 on Laying Down Minimum Standards for the Protection of Pigs; Official Journal of the European Union: Brussels, Belgium, 2008; pp. L47/45–L47/13. [Google Scholar]
- Webb, N.G. Compressive stresses on, and the strength of the inner and outer digits of pigs’ feet, and the implications for injury and floor design. J. Agric. Eng. Res. 1984, 30, 71–80. [Google Scholar] [CrossRef]
- Young, M.G.; Tokach, M.D.; Aherne, F.X.; Main, R.G.; Dritz, S.S.; Goodband, R.D.; Nelssen, J.L. Effect of sow parity and weight at service on target maternal weight and energy for gain in gestation. J. Anim. Sci. 2005, 83, 255–261. [Google Scholar] [CrossRef]
- European Food Safety Authority. Opinion of the scientific panel on animal health and welfare (ahaw) on a request from the commission related to welfare of weaners and rearing pigs: Effects of different space allowances and floor. Efsa J. 2005, 268, 1–19. [Google Scholar]
- Sasaki, Y.; Ushijima, R.; Sueyoshi, M. Field study of hind limb claw lesions and claw measures in sows. Anim. Sci. J. 2015, 86, 351–357. [Google Scholar] [CrossRef]
- Tubbs, R.C. Lameness in sows: Solving a preventable problem. Vet. Med. 1988, 83, 610–616. [Google Scholar]
- Canadian Council on Animal Care. Guidelines on the Care and Use of Farm Animals in Research, Teaching and Testing; Canadian Council on Animal Care: Ottawa, ON, Canada, 2009; ISBN 978-0-919087-50-7. [Google Scholar]
- Main, D.C.J.; Clegg, J.; Spatz, A.; Green, L.E. Repeatability of a lameness scoring system for finishing pigs. Vet. Rec. 2000, 147, 574–576. [Google Scholar] [CrossRef] [PubMed]
- Conte, S.; Bergeron, R.; Gonyou, H.; Brown, J.; Rioja-Lang, F.C.; Connor, L.; Devillers, N. Measure and characterization of lameness in gestating sows using force plate, kinematic, and accelerometer methods. J. Anim. Sci. 2014, 92, 5693–5703. [Google Scholar] [CrossRef] [PubMed]
- Grégoire, J.; Bergeron, R.; D’Allaire, S.; Meunier-Salaün, M.-C.; Devillers, N. Assessment of lameness in sows using gait, footprints, postural behaviour and foot lesion analysis. Animal 2013, 7, 1163–1173. [Google Scholar] [CrossRef] [Green Version]
- Anil, S.S.; Anil, L.; Deen, J. Evaluation of patterns of removal and associations among culling because of lameness and sow productivity traits in swine breeding herds. J. Am. Vet. Med Assoc. 2005, 226, 956–961. [Google Scholar] [CrossRef] [PubMed]
- Stavrakakis, S.; Guy, J.H.; Syranidis, I.; Johnson, G.R.; Edwards, S.A. Pre-clinical and clinical walking kinematics in female breeding pigs with lameness: A nested case-control cohort study. Vet. J. 2015, 205, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Heinonen, M.; Peltoniemi, O.; Valros, A. Impact of lameness and claw lesions in sows on welfare, health and production. Livest. Sci. 2013, 156, 2–9. [Google Scholar] [CrossRef]
- Mohling, C.M.; Johnson, A.K.; Coetzee, J.F.; Karriker, L.A.; Abell, C.E.; Millman, S.T.; Stalder, K.J. Kinematics as objective tools to evaluate lameness phases in multiparous sows. Livest. Sci. 2014, 165, 120–128. [Google Scholar] [CrossRef] [Green Version]
- von Wachenfelt, H.; Pinzke, S.; Nilsson, C. Gait and force analysis of provoked pig gait on clean and fouled concrete surfaces. Biosyst. Eng. 2009, 104, 534–544. [Google Scholar] [CrossRef] [Green Version]
- Thorup, V.M.; Tøgersen, F.A.; Jørgensen, B.; Jensen, B.R. Biomechanical gait analysis of pigs walking on solid concrete floor. Animal 2007, 1, 708–715. [Google Scholar] [CrossRef]
- von Wachenfelt, H.; Pinzke, S.; Nilsson, C.; Olsson, O.; Ehlorsson, C.-J. Gait analysis of unprovoked pig gait on clean and fouled concrete surfaces. Biosyst. Eng. 2008, 101, 376–382. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, A.C.; Moore, D.A.; Vanegas, J.; Wenz, J.R. Association of abnormal hind-limb postures and back arch with gait abnormality in dairy cattle. J. Dairy Sci. 2014, 97, 2178–2185. [Google Scholar] [CrossRef] [PubMed]
- Flower, F.C.; De Passillé, A.M.; Weary, D.M.; Sanderson, D.J.; Rushen, J. Softer, higher-friction flooring improves gait of cows with and without sole ulcers. J. Dairy Sci. 2007, 90, 1235–1242. [Google Scholar] [CrossRef]
- Franco-Gendron, N.; Bergeron, R.; Curilla, W.; Conte, S.; DeVries, T.; Vasseur, E. Investigation of dairy cattle ease of movement on new methyl methacrylate resin aggregate floorings. J. Dairy Sci. 2016, 99, 8231–8240. [Google Scholar] [CrossRef]
- Kramer, J.; Keegan, K.G.; Wilson, D.A.; Smith, B.K.; Wilson, D.J. Kinematics of the hind limb in trotting horses after induced lameness of the distal intertarsal and tarsometatarsal joints and intra-articular administration of anesthetic. Am. J. Vet. Res. 2000, 61, 1031–1036. [Google Scholar] [CrossRef]
- Buchner, H.H.F.; Savelberg, H.H.C.M.; Schamhardt, H.C.; Barneveld, A. Limb movement adaptations in horses with experimentally induced fore- or hindlimb lameness. Equine Vet. J. 1996, 28, 63–70. [Google Scholar] [CrossRef]
- Clayton, H.M. Horse species symposium: Biomechanics of the exercising horse. J. Anim. Sci. 2016, 94, 4076–4086. [Google Scholar] [CrossRef]
- Hodson, E.; Clayton, H.M.; Lanovaz, J.L. The hindlimb in walking horses: 1. Kinematics and ground reaction forces. Equine Vet. J. 2001, 33, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Hodson, E.; Clayton, H.M.; Lanovaz, J.L. The forelimb in walking horses: 1. Kinematics and ground reaction forces. Equine Vet. J. 2000, 32, 287–294. [Google Scholar] [CrossRef]
- Thorup, V.M.; Laursen, B.; Jensen, B.R. Net joint kinetics in the limbs of pigs walking on concrete floor in dry and contaminated conditions. J. Anim. Sci. 2008, 86, 992–998. [Google Scholar] [CrossRef] [PubMed]
- Applegate, A.L.; Curtis, S.E.; Groppel, J.L.; McFarlane, J.M.; Widowski, T.M. Footing and gait of pigs on different concrete surfaces. J. Anim. Sci. 1988, 66, 334–341. [Google Scholar] [CrossRef] [PubMed]
- von Wachenfelt, H.; Pinzke, S.; Nilsson, C.; Olsson, O.; Ehlorsson, C.J. Force analysis of unprovoked pig gait on clean and fouled concrete surfaces. Biosyst. Eng. 2009, 104, 250–257. [Google Scholar] [CrossRef] [Green Version]
- Tanida, H.; Miura, A.; Tanaka, T.; Yoshimoto, T. Behavioral responses of piglets to darkness and shadows. Appl. Anim. Behav. Sci. 1996, 49, 173–183. [Google Scholar] [CrossRef]
- Grandin, T. Design of loading facilities and holding pens. Appl. Anim. Behav. Sci. 1990, 28, 187–201. [Google Scholar] [CrossRef] [Green Version]
Characteristic | Modalities | Sound Gilts | Lame Sows |
---|---|---|---|
Parity | Nulliparous | 7 | 0 |
Primiparous | 5 | 5 | |
Multiparous | 0 | 7 | |
Stage of gestation | Non-pregnant animals | 5 | 1 |
1st week of gestation | 7 | 6 | |
>6 weeks of gestation | 0 | 5 | |
Age a | (days) | 370 ± 92 | 673 ± 175 |
Conformation a | Body weight (kg) | 172 ± 29 | 229 ± 35 |
Body length (cm) b | 98 ± 5 | 110 ± 9 | |
Body height (cm) c | 87 ± 3 | 97 ± 5 | |
Lameness | Mean visual score (Minimum–maximum) | 0.08BBBB (0–1) | 1.83BBBB (1–3) |
Replication I | Replication II | Replication III | Replication IV | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | 1 | 2 | 3 | D | 1 | 4 | 7 | G | 1 | 5 | 9 | J | 1 | 8 | 6 |
B | 4 | 5 | 6 | E | 2 | 5 | 8 | H | 7 | 2 | 6 | K | 4 | 2 | 9 |
C | 7 | 8 | 9 | F | 3 | 6 | 9 | I | 4 | 8 | 3 | L | 7 | 5 | 3 |
Measurement | Sound Gilts | Lame Sows | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
Week 1 | Week 2 | Week 1 | Week 2 | Group | Week | Interaction | ||
Animal | ||||||||
Walking speed, m.s−1 | 0.85 | 0.90 | 0.76 | 0.83 | 0.04 | 0.075 | 0.040 | 0.67 |
Mean back angle, ° | 172 | 172 | 165 | 167 | 1.6 | 0.011 | 0.25 | 0.16 |
Front limbs | ||||||||
Stride length, cm | 88.0 | 91.0 | 88.8 | 91.8 | 3.6 | 0.88 | 0.018 | 0.98 |
Foot height, cm | 4.4 | 5.0 | 4.7 | 4.9 | 0.31 | 0.73 | 0.10 | 0.31 |
Swing time, ms | 430 | 416 | 446 | 422 | 12 | 0.49 | 0.019 | 0.53 |
Stance time, ms | 604 | 591 | 726 | 657 | 31 | 0.019 | 0.079 | 0.22 |
Swing carpal angle, ° | 171 | 166 | 172 | 169 | 1.8 | 0.30 | 0.006 | 0.57 |
Stance carpal angle, ° | 197 | 193 | 199 | 196 | 1.7 | 0.18 | 0.035 | 0.52 |
Swing carpal angle amplitude, ° | 58 | 60 | 52 | 52 | 3.0 | 0.11 | 0.37 | 0.47 |
Stance carpal angle amplitude, ° | 12.8 | 13.0 | 13.7 | 13.4 | 0.8 | 0.53 | 0.99 | 0.64 |
Rear limbs | ||||||||
Stride length, cm | 87.5 | 89.6 | 88.2 | 91.4 | 3.4 | 0.79 | 0.055 | 0.68 |
Foot height, cm | 5.2 | 5.3 | 5.1 | 4.9 | 0.38 | 0.58 | 0.85 | 0.52 |
Swing time, ms | 442 | 423 | 439 | 423 | 11 | 0.91 | 0.088 | 0.89 |
Stance time, ms | 593 | 587 | 731 | 662 | 29 | 0.008 | 0.054 | 0.098 |
Swing tarsal angle, ° | 162 | 162 | 157 | 164 | 2.1 | 0.61 | 0.003 | 0.010 |
Stance tarsal angle, ° | 158 | 158 | 151 | 157 | 2.1 | 0.15 | 0.013 | 0.010 |
Swing tarsal angle amplitude, ° | 29 | 29 | 31 | 31 | 1.7 | 0.43 | 0.82 | 0.98 |
Stance tarsal angle amplitude, ° | 11.9 | 13.2 | 12.5 | 10.8 | 0.8 | 0.40 | 0.66 | 0.013 |
Slat Width, mm | 85 | 105 | 125 | SEM | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gap Width, mm | 19 | 22 | 25 | 19 | 22 | 25 | 19 | 22 | 25 | Slat | Gap | Slat × Gap | |
Parallel orientation | |||||||||||||
Animal | |||||||||||||
Walking speed, m.s-1 | 0.92 | 0.82 | 0.90 | 0.95 | 0.88 | 0.90 | 0.94 | 0.83 | 0.89 | 0.05 | 0.70 | 0.07 | 0.98 |
Front limbs | |||||||||||||
Foot height a, cm | 4.1 | 5.3 | 4.5 | 6.1 | 5.8 | 4.3 | 4.0 | 4.3 | 4.9 | 0.46 | 0.047 | 0.35 | 0.06 |
Stance time b, ms | 524 | 597 | 539 | 538 | 582 | 566 | 520 | 601 | 558 | 35 | 0.95 | 0.08 | 0.96 |
Swing carpal angle amplitude, ° | 58.7 | 58.7 | 56.9 | 60.4 | 59.7 | 53.7 | 55.5 | 54.4 | 61.8 | 3.0 | 0.91 | 0.93 | 0.08 |
Stance carpal angle amplitude, ° | 14.1 | 14.5 | 12.8 | 10.7 | 14.2 | 11.4 | 12.8 | 14.0 | 13.3 | 1.0 | 0.048 | 0.031 | 0.34 |
Rear limbs | |||||||||||||
Stride length c, cm | 84 | 85 | 90 | 92 | 89 | 84 | 87 | 84 | 89 | 3.8 | 0.021 | 0.063 | 0.012 |
Foot height d, cm | 4.9 | 5.6 | 6.3 | 5.8 | 6.9 | 6.0 | 6.0 | 5.2 | 5.0 | 0.68 | 0.035 | 0.16 | 0.017 |
Stance time, ms | 535 | 615 | 562 | 531 | 577 | 543 | 526 | 571 | 532 | 31 | 0.49 | 0.07 | 0.97 |
Perpendicular orientation | |||||||||||||
Animal | |||||||||||||
Mean back angle, ° | 171 | 169 | 170 | 172 | 171 | 169 | 173 | 170 | 170 | 1.3 | 0.58 | 0.040 | 0.44 |
Front limbs | |||||||||||||
Stride length, cm | 88.6 | 85.7 | 89.1 | 92.9 | 88.7 | 85.3 | 90.5 | 86.5 | 90.2 | 2.89 | 0.69 | 0.095 | 0.25 |
Foot height, cm | 4.8 | 5.0 | 4.2 | 6.2 | 5.9 | 5.0 | 4.7 | 4.5 | 4.9 | 0.49 | 0.014 | 0.28 | 0.39 |
Swing time, ms | 410 | 393 | 389 | 421 | 434 | 410 | 402 | 402 | 429 | 14 | 0.07 | 0.98 | 0.20 |
Swing carpal angle a, ° | 171 | 175 | 167 | 166 | 165 | 169 | 172 | 171 | 171 | 3.0 | 0.05 | 0.72 | 0.22 |
Stance carpal angle a, ° | 198 | 201 | 196 | 194 | 192 | 196 | 198 | 197 | 196 | 2.8 | 0.06 | 0.94 | 0.47 |
Rear limbs | |||||||||||||
Stance tarsal angle amplitude, ° | 10.0 | 11.3 | 9.8 | 12.3 | 12.3 | 9.9 | 12.2 | 12.6 | 10.4 | 1.0 | 0.21 | 0.06 | 0.83 |
Slat Width, mm | 85 | 105 | 125 | SEM | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gap Width, mm | 19 | 22 | 25 | 19 | 22 | 25 | 19 | 22 | 25 | Slat | Gap | Slat × Gap | |
Parallel orientation | |||||||||||||
Animal | |||||||||||||
Mean back angle, ° | 164 | 167 | 165 | 167 | 164 | 166 | 168 | 165 | 164 | 2.3 | 0.88 | 0.35 | 0.08 |
Rear limbs | |||||||||||||
Swing time a, ms | 425 | 396 | 400 | 407 | 413 | 418 | 435 | 424 | 417 | 13 | 0.08 | 0.27 | 0.33 |
Perpendicular orientation | |||||||||||||
Front limbs | |||||||||||||
Foot height, cm | 3.6 | 4.7 | 5.7 | 4.8 | 4.4 | 5.4 | 4.5 | 4.8 | 4.8 | 0.45 | 0.75 | 0.018 | 0.13 |
Swing carpal angle, ° | 177 | 174 | 170 | 170 | 175 | 171 | 167 | 174 | 175 | 2.9 | 0.77 | 0.32 | 0.097 |
Stance carpal angle, ° | 204 | 204 | 196 | 199 | 201 | 196 | 192 | 200 | 201 | 2.8 | 0.26 | 0.25 | 0.06 |
Swing carpal angle amplitude, ° | 53.6 | 54.6 | 55.7 | 51.2 | 45.6 | 50.3 | 57.7 | 60.2 | 50.9 | 4.8 | 0.027 | 0.76 | 0.21 |
Rear limbs | |||||||||||||
Swing tarsal angle amplitude, ° | 33.2 | 35.1 | 31.7 | 30.8 | 27.6 | 29.2 | 35.1 | 33.4 | 33.6 | 2.5 | 0.015 | 0.62 | 0.68 |
Stance tarsal angle amplitude, ° | 9.7 | 13.1 | 9.9 | 12.7 | 12.2 | 11.8 | 9.7 | 13.1 | 9.8 | 1.3 | 0.18 | 0.022 | 0.30 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Devillers, N.; Janvier, E.; Delijani, F.; Méthot, S.; Dick, K.J.; Zhang, Q.; Connor, L. Effect of Slat and Gap Width of Slatted Concrete Flooring on Sow Gait Using Kinematics Analysis. Animals 2019, 9, 206. https://doi.org/10.3390/ani9050206
Devillers N, Janvier E, Delijani F, Méthot S, Dick KJ, Zhang Q, Connor L. Effect of Slat and Gap Width of Slatted Concrete Flooring on Sow Gait Using Kinematics Analysis. Animals. 2019; 9(5):206. https://doi.org/10.3390/ani9050206
Chicago/Turabian StyleDevillers, Nicolas, Emmanuel Janvier, Farhoud Delijani, Steve Méthot, Kristopher J. Dick, Qiang Zhang, and Laurie Connor. 2019. "Effect of Slat and Gap Width of Slatted Concrete Flooring on Sow Gait Using Kinematics Analysis" Animals 9, no. 5: 206. https://doi.org/10.3390/ani9050206
APA StyleDevillers, N., Janvier, E., Delijani, F., Méthot, S., Dick, K. J., Zhang, Q., & Connor, L. (2019). Effect of Slat and Gap Width of Slatted Concrete Flooring on Sow Gait Using Kinematics Analysis. Animals, 9(5), 206. https://doi.org/10.3390/ani9050206