Next Article in Journal
Lying Postures of Dairy Cows in Cubicles and on Pasture
Next Article in Special Issue
Graded Incorporation of Defatted Yellow Mealworm (Tenebrio molitor) in Rainbow Trout (Oncorhynchus mykiss) Diet Improves Growth Performance and Nutrient Retention
Previous Article in Journal / Special Issue
Digestibility of Insect Meals for Nile Tilapia Fingerlings
Article Menu
Issue 4 (April) cover image

Export Article

Open AccessArticle

Effects of Killing Methods on Lipid Oxidation, Colour and Microbial Load of Black Soldier Fly (Hermetia illucens) Larvae

1
Département des Sciences Animales, Pavillon Paul-Comtois Université Laval, Quebec, QC G1V 0A6, Canada
2
Département des Sciences des Aliments, Pavillon Paul-Comtois Université Laval, Quebec, QC G1V 0A6, Canada
*
Author to whom correspondence should be addressed.
Animals 2019, 9(4), 182; https://doi.org/10.3390/ani9040182
Received: 6 March 2019 / Revised: 13 April 2019 / Accepted: 15 April 2019 / Published: 21 April 2019
(This article belongs to the Special Issue Insects: Alternative Protein Source for Animal Feed)
  |  
PDF [1185 KB, uploaded 21 April 2019]
  |  

Simple Summary

The projected global population growth by 2050 will require an increase in the production of high-quality food. Insects represent a promising alternative ingredient for feed with a lower environmental impact than conventional livestock such as poultry, swine and bovine species. In a context of commercial-scale production and considering the great diversity of insects, it is crucial to optimize the processing steps, including those used to kill insects. In addition to being able to maximize the nutritional and microbiological quality of the final product, insect killing methods should be rapid and effective. This project aims to optimize killing methods, i.e., blanching, desiccation, freezing (−20 °C; −40 °C; liquid nitrogen), high hydrostatic pressure, grinding and asphyxiation (CO2; N2; vacuum conditioning), and to evaluate their impact on the composition, lipid oxidation, colour and microbiological quality on the black soldier fly larvae. Blanching appears to be the most appropriate strategy since it is a rapid and effective killing method reducing larval moisture while minimizing lipid oxidation, microbial contamination and colour alteration. Ultimately, this work will help to establish a standardized protocol that meets the Canadian regulatory quality requirements for feed.

Abstract

Black soldier fly (BSF) larvae represent a promising alternative ingredient for animal feed. Post-production processing can, however, affect their quality. This project aimed to optimize larval killing by comparing the effects on the nutritional and microbiological quality of 10 methods, i.e., blanching (B = 40 s), desiccation (D = 60 °C, 30 min), freezing (F20 = −20 °C, 1 h; F40 = −40 °C, 1 h; N = liquid nitrogen, 40 s), high hydrostatic pressure (HHP = 3 min, 600 MPa), grinding (G = 2 min) and asphyxiation (CO2 = 120 h; N2 = 144 h; vacuum conditioning, V = 120 h). Some methods affected the pH (B, asphyxiation), total moisture (B, asphyxiation and D) and ash contents (B, p < 0.001). The lipid content (asphyxiation) and their oxidation levels (B, asphyxiation and D) were also affected (p < 0.001). Killing methods altered the larvae colour during freeze-drying and in the final product. Blanching appears to be the most appropriate strategy since it minimizes lipid oxidation (primary = 4.6 ± 0.7 mg cumen hydroperoxide (CHP) equivalents/kg; secondary = 1.0 ± 0.1 mg malondialdehyde/kg), reduces microbial contamination and initiates dehydration (water content = 78.1 ± 1.0%). We propose herein, an optimized protocol to kill BSF that meet the Canadian regulatory requirements of the insect production and processing industry. View Full-Text
Keywords: black soldier fly larvae; killing; food processing; pH; colour stability; chemical composition; lipid oxidation; microbial load; thermal and non-thermal technologies; dehydration black soldier fly larvae; killing; food processing; pH; colour stability; chemical composition; lipid oxidation; microbial load; thermal and non-thermal technologies; dehydration
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Larouche, J.; Deschamps, M.-H.; Saucier, L.; Lebeuf, Y.; Doyen, A.; Vandenberg, G.W. Effects of Killing Methods on Lipid Oxidation, Colour and Microbial Load of Black Soldier Fly (Hermetia illucens) Larvae. Animals 2019, 9, 182.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Animals EISSN 2076-2615 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top