Effect of Dietary Rumen-Protected L-Tryptophan Supplementation on Growth Performance, Blood Hematological and Biochemical Profiles, and Gene Expression in Korean Native Steers under Cold Environment
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Feeding Trial
2.2. Environmental Qualifications and Measurements
2.3. Blood Collection and Analysis
2.4. Tissue Collection and Analysis
2.5. Statistical Analysis
3. Results
3.1. Growth Performance During Cold Temperatures
3.2. Physiological Parameters in Blood During Cold Temperatures
3.3. Relative Gene Expression in Fat and Muscle Loin Tissues of Steers During Cold Temperatures
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Ethical Approval
References
- Ataallahi, M.; Ghassemi Nejad, J.; Takahashi, J.; Song, Y.H.; Sung, K.I.; Yun, J.I.; Park, K.H. Effects of environmental changes during different seasons on hair cortisol concentration as a biomarker of chronic stress in Korean native cattle. Int. J. Agri. Biol. 2019, 21, 1166–1172. [Google Scholar]
- Kang, H.J.; Lee, I.K.; Piao, M.Y.; Gu, M.J.; Yun, C.H.; Kim, K.H.; Baik, M. Effects of ambient temperature on growth performance, blood metabolites, and immune cell populations in Korean cattle steers. Asian Aust. J. Anim. Sci. 2016, 29, 436–443. [Google Scholar] [CrossRef] [PubMed]
- Piao, M.Y.; Baik, M. Seasonal variation in carcass characteristics of Korean cattle steers. Asian Aust. J. Anim. Sci. 2015, 28, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Dowing, M.M.; Nejadhashemi, A.P.; Harrigan, T.; Woznicki, S.A. Climate change and livestock: Impacts, adaptation, and mitigation. Clim. Risk Manag. 2017, 16, 145–163. [Google Scholar] [CrossRef]
- Young, B.A. Cold stress as it affects animal production. J. Anim. Sci. 1981, 52, 154–163. [Google Scholar] [CrossRef]
- Uetake, K.; Morita, S.; Sakagami, N.; Yamamoto, K.; Hashimura, S.; Tanaka, T. Hair cortisol levels of lactating dairy cows in cold-and warm-temperate regions in Japan. J. Anim. Sci. 2018, 89, 494–497. [Google Scholar] [CrossRef]
- Kang, H.J.; Lee, I.K.; Piao, M.Y.; Gu, M.J.; Yun, C.H.; Kim, K.H.; Baik, M. Effects of ambient temperature and dietary glycerol addition on growth performance, blood parameters and immune cell populations in Korean cattle steers. Asian Aust. J. Anim. Sci. 2017, 30, 505–513. [Google Scholar] [CrossRef]
- Lee, J.S.; Kacem, N.; Kim, W.S.; Peng, D.Q.; Kim, Y.J.; Joung, Y.G.; Lee, C.; Lee, H.G. Effect of Saccharomyces boulardii supplementation on performance and physiological traits of holstein calves under heat stress conditions. Animals 2019, 9, 510. [Google Scholar] [CrossRef]
- Kim, W.S.; Lee, J.S.; Jeon, S.W.; Peng, D.Q.; Kim, Y.S.; Bae, M.H.; Jo, Y.H.; Lee, H.G. Correlation between blood, physiological and behavioral parameters in beef calves under heat stress. Asian-Australas. J. Anim. Sci. 2018, 31, 919–925. [Google Scholar] [CrossRef]
- Delfino, J.G.; Mathison, G.W. Effects of cold environment and intake level on the energetic efficiency of feedlot steers. J. Anim. Sci. 1991, 69, 4577–4587. [Google Scholar] [CrossRef]
- Lee, S.B.; Lee, K.W.; Wang, T.; Lee, J.S.; Jung, U.S.; Nejad, J.G.; Oh, Y.K.; Baek, Y.C.; Kim, K.H.; Lee, H.G. Intravenous administration of L-tryptophan stimulates gastrointestinal hormones and melatonin secretions: Study on beef cattle. J. Anim. Sci. Technol. 2019, 61, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Le Floc’h, N.; Seve, B. Biological roles of tryptophan and its metabolism: Potential implications for pig feeding. Livest. Sci. 2007, 112, 23–32. [Google Scholar] [CrossRef]
- Ma, H.; Cheng, J.; Zhu, X.; Jia, Z. Effects of rumen-protected tryptophan on performance, nutrient utilization and plasma tryptophan in cashmere goats. Afr. J. Biotechnol. 2011, 10, 5806–5811. [Google Scholar]
- Leja-Szpak, A.; Jaworek, J.; Nawrot, K. Modulation of pancreatic enzyme secretion by melatonin and its precursor; L-tryptophan. Role of CCK and afferent nerves. J. Physiol. Pharmacol. 2004, 55, 441–451. [Google Scholar]
- Jaworek, J.; Nawrot, K.; Konturek, S.J.; Leja-Szpak, A.; Thor, P.; Pawlik, W.W. Melatonin and its precursor, L-tryptophan: Influence on pancreatic amylase secretion in vivo and in vitro. J. Pineal. Res. 2004, 36, 155–164. [Google Scholar] [CrossRef]
- Van, E.; Nolte, J.; Loest, C.; Ferreira, A.; Waggoner, J.; Mathis, C. Limiting amino acids for growing lambs fed a diet low in ruminally undegradable protein. J. Anim. Sci. 2008, 86, 2627–2641. [Google Scholar] [CrossRef]
- Reis, P.J.; Colebrook, W.F. The Utilization of abomasal supplements of proteins and amino acids by sheep with special reference to wool. growth. Aust. J. Biol. Sci. 1972, 25, 1057–1071. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Beef Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Peng, D.Q.; Lee, J.S.; Kim, W.S.; Kim, Y.S.; Bae, M.H.; Jo, Y.H.; Oh, Y.K.; Baek, Y.C.; Hwang, S.G.; Lee, H.G. Effect of vitamin A restriction on carcass traits and blood metabolites in Korean native steers. Anim. Prod. Sci. 2018, in press. [Google Scholar] [CrossRef]
- Nakanishi, Y.; Shigemori, K.; Yanagita, K.; Mieno, M.; Manda, M. Behavioural and growth effect of oral administration of rumen protected tryptophan on weanling beef calves. Mem. Fac. Agr. Kagoshima Univ. 1998, 34, 89–95. [Google Scholar]
- Hidiroglou, M.; Lessard, J.R. Some effects of fluctuating low ambient temperatures on beef cattle. Can. J. Anim. Sci. 1971, 51, 111–120. [Google Scholar] [CrossRef]
- Abeni, F.; Calamari, L.; Stefanini, L. Metabolic conditions of lactating Friesian cows during the hot season in the Po valley. 1. Blood indicators of heat stress. Int. J. Biometeorol. 2007, 52, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Chung, E.; Kim, W. Association of SNP marker in IGF-I and MYF5 candidate genes with growth traits in Korean cattle. Asian Australas. J. Anim. Sci. 2005, 18, 1061–1065. [Google Scholar] [CrossRef]
- Furuhashi, M.; Saitoh, S.; Shimamoto, K.; Miura, T. Fatty acid-binding protein 4 (FABP4): Pathophysiological insights and potent clinical biomarker of metabolic and cardiovascular diseases. Clin. Med. Insights Cardiol. 2014, 8, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Glatz, J.; Vork, M.; Cistola, D.; Van der Vusse, G. Cytoplasmic fatty acid binding protein: Significance for intracellular transport of fatty acids and putative role on signal transduction pathways. Prostaglandins Leukot. Eessent Fatty Acids 1993, 48, 33–41. [Google Scholar] [CrossRef]
- Pedersen, T.A.; Bereshchenko, O.; Garcia-Silva, S.; Ermakova, O.; Kurz, E.; Mandrup, S.; Porse, B.T.; Nerlov, C. Distinct C/EBPalpha motifs regulate lipogenic and gluconeogenic gene expression in vivo. EMBO J. 2007, 26, 1081–1093. [Google Scholar] [CrossRef] [PubMed]
- Matsusue, K.; Gavrilva, O.; Lambert, G.; Brewer, H.B., Jr.; Ward, J.M.; Inoue, Y.; LeRoith, D.; Gonzalez, F.J. Hepatic CCAAT/enhancer binding protein alpha mediates induction of lipogenesis and regulation of glucose homeostasis in leptin-deficient mice. Mol. Endocrinol. 2004, 18, 2751–2764. [Google Scholar] [CrossRef]
- Gulbagci, N.T.; Li, L.; Ling, B.; Gopinadhan, S.; Walsh, M.; Rossner, M.; Nave, K.A.; Taneja, R. SHARP1/DEC2 inhibits adipogenic differentiation by regulating the activity of C/EBP. EMBO Rep. 2009, 10, 79–86. [Google Scholar] [CrossRef]
- Matsunaga, N.; Inoue, M.; Kusunose, N.; Kakimoto, K.; Hamamura, K.; Hanada, Y.; Toi, A.; Yshiyama, Y.; Sato, F.; Fujimoto, K.; et al. Time-dependent interaction between differentiated embryo chondrocyte-2 and CCAAT/enhancer-binding protein a underlies the circadian expression of CYP2D6 in serum-shocked HepG2 cells. Mol. Phamacol. 2012, 81, 739–747. [Google Scholar] [CrossRef]
- Gerbens, F.; Verburg, F.J.; Van Moerkerk, H.T.B.; Engel, B.; Buist, W.; Veerkamp, J.H.; te Pas, M.F. Associations of heart and adipocyte fatty acid-binding protein gene expression with intramuscular fat content in pigs. J. Anim. Sci. 2001, 79, 347–354. [Google Scholar] [CrossRef]
- Hausman, G.J.; Dodson, M.V.; Ajuwon, K.; Azain, M.; Barnes, K.M.; Guan, L.L.; Jiang, Z.; Poulos, S.P.; Sainz, R.D.; Smith, S.; et al. The biology and regulation of preadipocytes and adipocytes in meat animals. J. Anim. Sci. 2009, 87, 1218–1246. [Google Scholar] [CrossRef]
- Takahashi, N.; Goto, T.; Kusudo, T.; Moriyama, T.; Kawada, T. The structures and functions of peroxisome proliferator-activated receptors (PPARs). Nihon Rinsho. 2005, 63, 557–564. [Google Scholar] [PubMed]
- Yang, C.; Liu, J.; Wu, X.; Bao, P.; Long, R.; Guo, X.; Ding, X.; Yan, P. The response of gene expression associated with lipid metabolism, fat deposition and fatty acid profile in the longissimus dorsi muscle of Gannan yaks to different energy levels of diets. PLoS ONE 2017, 12, e0187604. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.; Kim, N.K.; Park, H.S.; Lee, S.H.; Cho, Y.M.; Oh, S.J.; Kim, T.H.; Kim, H. Identification of candidate genes related to bovine marbling using protein-protein interaction networks. Int. J. Biol. 2011, 7, 992–1002. [Google Scholar] [CrossRef] [PubMed]
TMR 1 | |
---|---|
Chemical composition, % on a dry matter basis | |
Dry matter | 86.82 |
Crude protein | 15.05 |
Ether extract | 2.49 |
Crude fiber | 25.90 |
Crude ash | 6.75 |
Acid detergent fiber | 32.87 |
Neutral detergent fiber | 52.26 |
Amino acids, % on a dry matter basis | |
Tryptophan | 0.09 |
Methionine | 0.09 |
Niacin | 0.00 |
Lysine | 0.54 |
Aspartic acid | 1.20 |
Threonine | 0.48 |
Serine | 0.57 |
Glutamic acid | 2.04 |
Glycine | 0.61 |
Alanine | 0.79 |
Valine | 0.67 |
Isoleucine | 0.47 |
Leucine | 0.97 |
Tyrosine | 0.29 |
Phenylalanine | 0.55 |
Histidine | 0.29 |
Arginine | 0.71 |
Cystine | 0.12 |
Proline | 0.91 |
Period, Days | Temperature, °C | Relative Humidity, % | ||||
---|---|---|---|---|---|---|
Min | Max | AVG 1 | Min | Max | AVG | |
0 to 6 2 | −2.4 | 9.7 | 1.3 | 19.4 | 94.2 | 69.4 |
7 to 13 | −15.7 | 13.4 | −7.0 | 12.2 | 78.1 | 45.3 |
14 to 20 | −14.0 | 13.5 | −5.4 | 10.3 | 85.9 | 45.6 |
21 to 27 | −14.6 | 15.8 | −3.2 | 12.1 | 87.1 | 51.3 |
28 to 34 | −7.3 | 29.8 | 1.9 | 17.9 | 85.3 | 45.9 |
35 to 41 | −6.9 | 22.0 | 3.7 | 17.9 | 89.8 | 50.8 |
42 to 48 | −5.9 | 23.5 | 6.7 | 15.8 | 89.9 | 61.9 |
7 to 48 | −9.5 | 16.8 | −0.3 | 15.1 | 87.2 | 52.9 |
Control 1 | RPT 2 | SEM 3 | p-Value | |
---|---|---|---|---|
Day 0 | ||||
Body weight, kg | 278.5 | 279.7 | 7.69 | 0.950 |
Day 27 | ||||
Body weight, kg | 285.1 | 301.5 | 8.30 | 0.360 |
ADG 4, kg/day | 0.224 | 0.753 | 0.130 | 0.030 |
Feed conversion ratio 5 | 44.4 | 13.3 | 13.25 | 0.035 |
Day 48 | ||||
Body weight, kg | 290.9 | 315.7 | 4.72 | 0.194 |
ADG, kg/day | 0.262 | 0.766 | 0.1 | <0.001 |
Feed conversion ratio | 13.03 | 4.82 | 1.18 | <0.001 |
Period, days | Control 1 | RPT 2 | SEM 3 | p-Value |
---|---|---|---|---|
0 to 6 4 | 8.93 | 8.56 | 0.108 | 0.088 |
7 to 13 | 9.24 | 9.21 | 1.647 | 0.948 |
14 to 20 | 9.41 | 9.56 | 1.171 | 0.623 |
21 to 27 | 9.60 | 9.68 | 1.200 | 0.791 |
28 to 34 | 9.68 | 10.22 | 1.557 | 0.201 |
35 to 41 | 9.15 | 10.02 | 0.743 | 0.063 |
42 to 48 | 9.54 | 10.56 | 0.725 | 0.038 |
7 to 48 | 9.43 | 9.86 | 1.533 | 0.011 |
Items 4 | Control 1 | RPT 2 | SEM 3 | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
D 0 | D 27 | D 48 | D 0 | D 27 | D 48 | Treatment (T) | Days (D) | T × D | ||
Hematological parameters | ||||||||||
WBC | 9.28 | 9.44 | 8.92 | 8.66 | 8.70 | 9.34 | 0.335 | 0.6815 | 0.9841 | 0.7830 |
LYM | 6.07 | 6.25 | 5.26 | 5.55 | 6.55 | 5.98 | 0.234 | 0.7329 | 0.5086 | 0.3023 |
MON | 0.07 b | 0.08 b | 0.56 a | 0.06 | 0.07 | 0.12 | 0.043 | 0.0047 | 0.0002 | 0.0019 |
GRA | 2.98 | 2.94 | 3.44 | 3.01 | 2.09 | 3.29 | 0.214 | 0.4665 | 0.3074 | 0.4322 |
RBC | 10.33 | 9.97 | 9.00 | 10.70 | 10.34 | 10.08 | 0.266 | 0.2118 | 0.2050 | 0.6769 |
HGB | 13.33 | 13.73 | 12.65 | 13.60 | 14.20 | 13.68 | 0.237 | 0.2449 | 0.9520 | 0.4339 |
HCT | 34.57 | 34.12 | 31.66 | 35.00 | 34.64 | 33.88 | 0.584 | 0.3946 | 0.3787 | 0.7956 |
MCH | 13.03 | 13.85 | 14.10 | 12.83 | 13.80 | 13.70 | 0.248 | 0.6806 | 0.2577 | 0.9625 |
PLT | 398.5 | 455.8 | 367.5 | 378.0 | 476.8 | 379.5 | 15.39 | 0.8862 | 0.0360 | 0.8263 |
Biochemical parameters | ||||||||||
Glucose | 84.0 | 87.0 | 78.5 | 77.0 B | 86.3 A | 74.3 B | 1.32 | 0.0534 | 0.0015 | 0.4345 |
TP | 6.28 | 6.28 | 6.05 | 6.40 | 6.48 | 6.20 | 0.055 | 0.1524 | 0.1444 | 0.9577 |
BUN | 15.68 | 19.65 | 15.35 | 15.60 | 18.95 | 16.05 | 0.527 | 0.9773 | 0.0036 | 0.8052 |
Albumin | 3.65 | 3.58 | 3.53 | 3.50 | 3.60 | 3.45 | 0.033 | 0.3378 | 0.4384 | 0.5805 |
TG | 13.3 | 13.3 | 13.0 | 11.8 | 18.8 | 11.3 | 1.09 | 0.7354 | 0.3034 | 0.3293 |
Control 1 | RPT 2 | SEM 3 | p-Value | |
---|---|---|---|---|
PPARγ | 1.000 | 0.274 | 0.2302 | <0.000 |
C/EBPα | 1.000 | 0.293 | 0.2714 | <0.000 |
FABP4 | 1.000 | 0.233 | 0.2618 | <0.000 |
MYF6 | 1.000 | 0.834 | 0.1667 | 0.071 |
MyoD | 1.000 | 0.857 | 0.1822 | 0.676 |
Desmin | 1.000 | 0.871 | 0.1902 | 0.140 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-S.; Priatno, W.; Ghassemi Nejad, J.; Peng, D.-Q.; Park, J.-S.; Moon, J.-O.; Lee, H.-G. Effect of Dietary Rumen-Protected L-Tryptophan Supplementation on Growth Performance, Blood Hematological and Biochemical Profiles, and Gene Expression in Korean Native Steers under Cold Environment. Animals 2019, 9, 1036. https://doi.org/10.3390/ani9121036
Lee J-S, Priatno W, Ghassemi Nejad J, Peng D-Q, Park J-S, Moon J-O, Lee H-G. Effect of Dietary Rumen-Protected L-Tryptophan Supplementation on Growth Performance, Blood Hematological and Biochemical Profiles, and Gene Expression in Korean Native Steers under Cold Environment. Animals. 2019; 9(12):1036. https://doi.org/10.3390/ani9121036
Chicago/Turabian StyleLee, Jae-Sung, Wahyu Priatno, Jalil Ghassemi Nejad, Dong-Qiao Peng, Jin-Seung Park, Jun-Ok Moon, and Hong-Gu Lee. 2019. "Effect of Dietary Rumen-Protected L-Tryptophan Supplementation on Growth Performance, Blood Hematological and Biochemical Profiles, and Gene Expression in Korean Native Steers under Cold Environment" Animals 9, no. 12: 1036. https://doi.org/10.3390/ani9121036
APA StyleLee, J.-S., Priatno, W., Ghassemi Nejad, J., Peng, D.-Q., Park, J.-S., Moon, J.-O., & Lee, H.-G. (2019). Effect of Dietary Rumen-Protected L-Tryptophan Supplementation on Growth Performance, Blood Hematological and Biochemical Profiles, and Gene Expression in Korean Native Steers under Cold Environment. Animals, 9(12), 1036. https://doi.org/10.3390/ani9121036