Chemical Composition, In Vitro Digestibility and Rumen Fermentation Kinetics of Agro-Industrial By-Products
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Chemical Composition Analysis
3.2. In Vitro Gas Production and Fermentation Kinetics
3.3. In Vitro Digestibility
3.4. Cluster Analysis
3.5. Principal Components Analysis (PCA)
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations (UN). World Population Prospects: The 2017 Revision, Key Findings and Advance Tables. Available online: https://population.un.org/wpp/Publications/Files/WPP2017_KeyFindings.pdf (accessed on 15 October 2019).
- Ministerio de Agricultura, Pesca y Alimentación (MAPA). Avance del Anuario de Estadística 2018. Available online: https://www.mapa.gob.es/estadistica/pags/anuario/2018-Avance/avance/AvAE18.pdf (accessed on 15 October 2019).
- Eurostat. Agriculture, Forestry and Fishery Statistics, 2017 Edition; Publications Office of the European Union: Luxembourg, 2017; pp. 69–73. [Google Scholar]
- Goula, A.M.; Lazarides, H.N. Integrated processes can turn industrial food waste into valuable food by-products and/or ingredients: The cases of olive mill and pomegranate wastes. J. Food Eng. 2015, 167, 45–50. [Google Scholar] [CrossRef]
- Mirzaei-Aghsaghali, A.; Maheri-Sis, N. Nutritive value of some agro-industrial by-products for ruminants-A review. World J. Zool. 2008, 3, 40–46. [Google Scholar]
- Salami, S.A.; Luciano, G.; O’Grady, M.N.; Biondi, L.; Newbold, C.J.; Kerry, J.P.; Priolo, A. Sustainability of feeding plant by-products: A review of the implications for ruminant meat production. Anim. Feed Sci. Technol. 2019, 251, 37–55. [Google Scholar] [CrossRef]
- Oltjen, J.W.; Beckett, J.L. Role of ruminant livestock in sustainable agricultural systems. J. Anim. Sci. 1996, 74, 1406–1409. [Google Scholar] [CrossRef]
- Schader, C.; Muller, A.; El-Hage Scialabba, N.; Hecht, J.; Isensee, A.; Erb, K.H.; Smith, P.; Makkar, H.P.S.; Klocke, P.; Leiber, F.; et al. Impacts of feeding less food-competing feedstuffs to livestock on global food system sustainability. J. R. Soc. Interface 2015, 12, 20150891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasta, V.; Nudda, A.; Cannas, A.; Lanza, M.; Priolo, A. Alternative feed resources and their effects on the quality of meat and milk from small ruminants. Anim. Feed Sci. Technol. 2008, 147, 223–246. [Google Scholar] [CrossRef]
- Sol, C.; Castillejos, L.; López-Vergé, S.; Gasa, J. Prediction of the digestibility and energy contents of non-conventional by-products for pigs from their chemical composition and in vitro digestibility. Anim. Feed Sci. Technol. 2017, 234, 237–243. [Google Scholar] [CrossRef]
- Lashkari, S.; Taghizadeh, A. Nutrient digestibility and evaluation of protein and carbohydrate fractionation of citrus by-products. J. Anim. Physiol. Anim. Nutr. 2013, 97, 701–709. [Google Scholar] [CrossRef]
- Oltramari, C.E.; Nápoles, G.G.O.; De Paula, M.R.; Silva, J.T.; Gallo, M.P.C.; Soares, M.C.; Bittar, C.M.M. Performance and metabolism of dairy calves fed starter feed containing citrus pulp as a replacement for corn. Anim. Prod. Sci. 2016, 58, 561–567. [Google Scholar] [CrossRef]
- Abo-Zeid, H.M.; El-Zaiat, H.M.; Morsy, A.S.; Attia, M.F.A.; Abaza, M.A.; Sallam, S.M.A. Effects of replacing dietary maize grains with increasing levels of sugar beet pulp on rumen fermentation constituents and performance of growing buffalo calves. Anim. Feed Sci. Technol. 2017, 234, 128–138. [Google Scholar] [CrossRef]
- Molina-Alcaide, E.; Yáñez-Ruiz, D.R. Potential use of olive by-products in ruminant feeding: A review. Anim. Feed Sci. Technol. 2008, 147, 247–264. [Google Scholar] [CrossRef]
- Salman, F.M.; El-Nomeary, Y.A.A.; Abedo, A.A.; Abd El-rahman, H.H.; Mohamed, M.I.; Ahmed, S.M. Utilization of artichoke (Cynara scolymus) by-products in sheep feeding. Am. J. Agric. Environ. Sci. 2014, 14, 624–630. [Google Scholar]
- González, J.; Andrés, S. Rumen degradability of some feed legume seeds. Anim. Res. 2003, 52, 17–25. [Google Scholar] [CrossRef]
- Ružić-Muslić, D.; Petrović, M.P.; Petrović, M.M.; Bijelić, Z.; Caro-Petrović, V.; Maksimović, N.; Mandić, V. Protein source in diets for ruminant nutrition. Biotechnol. Anim. Husb. 2014, 30, 175–184. [Google Scholar] [CrossRef]
- López, S. In vitro and in situ techniques for estimating digestibility. In Quantitative Aspects of Ruminant Digestion and Metabolism; Dijkstra, J., Forbes, J.M., France, J., Eds.; CAB International: Wallingford, UK, 2005; pp. 87–121. [Google Scholar]
- Getachew, G.; Blümmel, M.; Makkar, H.P.S.; Becker, K. In vitro gas measuring techniques for assessment of nutritional quality of feeds: A review. Anim. Feed Sci. Technol. 1998, 72, 261–281. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 16th ed.; AOAC International: Gaithersburg, MD, USA, 1999. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Goering, M.K.; Van Soest, P.J. Forage Fiber Analyses (Apparatus, Reagents, Procedures, and Some Applications). In Agriculture Handbook No. 379; United States Department of Agriculture: Washington DC, USA, 1970. [Google Scholar]
- Ammar, H.; López, S.; Bochi-Brum, O.; García, R.; Ranilla, M.J. Composition and in vitro digestibility of leaves and stems of grasses and legumes harvested from permanent mountain meadows at different stages of maturity. J. Anim. Feed Sci. 1999, 8, 599–610. [Google Scholar] [CrossRef]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- Menke, K.H.; Stengass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- France, J.; Dijkstra, J.; Dhanoa, M.S.; Lopez, S.; Bannink, A. Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro: Derivation of models and other mathematical considerations. Br. J. Nutr. 2000, 83, 143–150. [Google Scholar] [CrossRef]
- Blümmel, M.; Makkar, H.P.S.; Becker, K. In vitro gas production: A technique revisited. J. Anim. Physiol. Anim. Nutr. 1997, 77, 24–34. [Google Scholar] [CrossRef]
- Everitt, B.S.; Landau, S.; Leese, M. Cluster Analysis, 4th ed.; Edward Arnold: London, UK, 2001. [Google Scholar]
- Abbeddou, S.; Rischkowsky, B.; Richter, E.K.; Hess, H.D.; Kreuzer, M. Modification of milk fatty acid composition by feeding forages and agro-industrial by-products from dry areas to Awassi sheep. J. Dairy Sci. 2011, 94, 4657–4668. [Google Scholar] [CrossRef] [PubMed]
- Gasa, J.; Castrillo, C.; Baucells, M.D.; Guada, J.A. By-products from the canning industry as feedstuff for ruminants: Digestibility and its prediction from chemical composition and laboratory bioassays. Anim. Feed Sci. Technol. 1989, 25, 67–77. [Google Scholar] [CrossRef]
- Spanghero, M.; Salem, A.Z.M.; Robinson, P.H. Chemical composition, including secondary metabolites, and rumen fermentability of seeds and pulp of Californian (USA) and Italian grape pomaces. Anim. Feed Sci. Technol. 2009, 152, 243–255. [Google Scholar] [CrossRef]
- Evans, E.; Messerschmidt, U. Review: Sugar beets as a substitute for grain for lactating dairy cattle. J. Anim. Sci. Biotechnol. 2017, 8, 25. [Google Scholar] [CrossRef]
- Bampidis, V.A.; Robinson, P.H. Citrus by-products as ruminant feeds: A review. Anim. Feed Sci. Technol. 2006, 128, 175–217. [Google Scholar] [CrossRef]
- Palangi, V.; Taghizadeh, A.; Sadeghzadeh, M.K. Determine of nutritive value of dried citrus pulp various using in situ and gas production techniques. J. Biodivers. Environ. Sci. 2013, 3, 8–16. [Google Scholar]
- Makkar, H.P.S.; Goodchild, A.V.; Abd El-Moneim, A.M.; Becker, K. Cell-constituents, tannin levels by chemical and biological assays and nutritional value of some legume foliage and straws. J. Sci. Food Agric. 1996, 71, 129–136. [Google Scholar] [CrossRef]
- López, S.; Davies, D.R.; Giráldez, F.J.; Dhanoa, M.S.; Dijkstra, J.; France, J. Assessment of nutritive value of cereal and legume straws based on chemical composition and in vitro digestibility. J. Sci. Food Agric. 2005, 85, 1550–1557. [Google Scholar] [CrossRef]
- Aberoumand, A. Evaluation of biochemical contents, trace elements, nutritive value and HPTLC. Profiling in two edible food plant based diets. Nutr. Food Sci. Res. 2014, 1, 57–61. [Google Scholar]
- Persia, M.E.; Parsons, C.M.; Schang, M.; Azcona, J. Nutritional evaluation of dried tomato seeds. Poult. Sci. 2003, 82, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Chouaibi, M.; Rezig, L.; Hamdi, S.; Ferrari, G. Chemical characteristics and compositions of red pepper seed oils extracted by different methods. Ind. Crops Prod. 2019, 128, 363–370. [Google Scholar] [CrossRef]
- Marcos, C.N.; de Evan, T.; Molina-Alcaide, E.; Carro, M.D. Nutritive value of tomato pomace for ruminants and its influence on in vitro methane production. Animals 2019, 9, 343. [Google Scholar] [CrossRef] [PubMed]
- Chumpawadee, S.; Chantiratikul, A.; Chantiratikul, P. Chemical compositions and nutritional evaluation of energy feeds for ruminant using in vitro gas production technique. Pakistan J. Nutr. 2007, 6, 607–612. [Google Scholar] [CrossRef]
By-Product | ID—Abbreviation | Location * |
---|---|---|
Sugar beet pulp (dehydrated) | SBPd | León |
Ensiled sugar beet pulp | SBPs | León |
Sugar beet tops and leaves | SBT | León |
Sugar beet rootlets, hairs, root tips and beet tails | SBR | León |
Grape seeds | GPS | La Rioja |
Olive tree leaves | OLV | Murcia |
Almond hulls | ALH | Murcia |
Broccoli stalk hay | BRH | Murcia |
Lettuce leaves | LTL | Murcia |
Asparagus rinds1 | ASP1 | Navarra |
Asparagus rinds2 | ASP2 | La Rioja |
Green bean haulms | GBH | La Rioja |
Mixture green bean haulms + sugar beet pulp | GBB | La Rioja |
Artichoke by-products (ensiled) | ARTs | Murcia |
Artichoke by-products (hay) | ARTd | Murcia |
Pea haulms | PHL | La Rioja |
Broad bean haulms | BBH | La Rioja |
Dried tomato pulp | TMP | Aragón |
Pepper by-products (cores) | PPC | Aragón |
Pepper by-products (skins) | PPS | Aragón |
Apple pomace | APL | Aragón |
Apple and pear pomace | APP | Aragón |
Citrus pulp (clementine) | CPC | Murcia |
Citrus pulp (lemon) | CPL | Murcia |
Citrus pulp (orange)1 | CPO1 | Murcia |
Citrus pulp (orange)2 | CPO2 | Aragón |
By-Product | OM | CP | EE | NDF | ADF | ADL | NSC | ME |
---|---|---|---|---|---|---|---|---|
Sugar beet pulp (dehydrated) | 869 | 116 | 3 | 460 | 237 | 40 | 291 | 10.1 |
Ensiled sugar beet pulp | 937 | 110 | 3 | 430 | 246 | 25 | 394 | 10.4 |
Sugar beet tops and leaves | 874 | 157 | 15 | 290 | 113 | 27 | 412 | 9.7 |
Sugar beet rootlets, hairs, root tips and beet tails | 879 | 103 | 4 | 435 | 215 | 87 | 337 | 8.0 |
Grape seeds | 960 | 116 | 52 | 682 | 584 | 437 | 110 | 4.7 |
Olive tree leaves | 842 | 98 | 47 | 529 | 345 | 231 | 168 | 6.3 |
Almond hulls | 914 | 53 | 18 | 322 | 224 | 110 | 520 | 8.0 |
Broccoli stalk hay | 899 | 155 | 66 | 556 | 349 | 54 | 122 | 8.4 |
Lettuce leaves | 823 | 184 | 23 | 224 | 158 | 34 | 392 | 8.6 |
Asparagus rinds1 | 912 | 206 | 16 | 455 | 293 | 67 | 235 | 8.1 |
Asparagus rinds2 | 941 | 226 | 20 | 305 | 169 | 24 | 390 | 10.1 |
Green bean haulms | 769 | 169 | 34 | 415 | 323 | 136 | 152 | 8.9 |
Mixture green bean haulms + sugar beet pulp | 879 | 152 | 17 | 361 | 231 | 44 | 350 | 9.6 |
Artichoke by-products (ensiled) | 921 | 126 | 19 | 591 | 404 | 110 | 185 | 7.4 |
Artichoke by-products (hay) | 948 | 177 | 41 | 678 | 467 | 76 | 51 | 8.2 |
Pea haulms | 902 | 199 | 32 | 282 | 146 | 14 | 389 | 10.2 |
Broad bean haulms | 902 | 173 | 21 | 335 | 185 | 18 | 373 | 10.0 |
Dried tomato pulp | 965 | 190 | 51 | 557 | 427 | 260 | 167 | 7.8 |
Pepper by-products (cores) | 893 | 192 | 67 | 311 | 222 | 55 | 323 | 8.9 |
Pepper by-products (skins) | 949 | 99 | 33 | 753 | 641 | 383 | 64 | 4.4 |
Apple pomace | 984 | 51 | 60 | 672 | 460 | 150 | 201 | 7.4 |
Apple and pear pomace | 987 | 48 | 27 | 683 | 460 | 129 | 229 | 6.9 |
Citrus pulp (clementine) | 972 | 73 | 20 | 139 | 96 | 2 | 740 | 11.3 |
Citrus pulp (lemon) | 957 | 76 | 77 | 247 | 171 | 3 | 558 | 12.6 |
Citrus pulp (orange)1 | 969 | 80 | 26 | 222 | 126 | 2 | 640 | 11.7 |
Citrus pulp (orange)2 | 940 | 110 | 25 | 308 | 233 | 14 | 496 | 9.1 |
By-Product | A | c | Lag | G24 | AR | t1/2 | PF |
---|---|---|---|---|---|---|---|
Sugar beet pulp (dehydrated) | 340 | 0.081 | 3.77 | 273 | 13.8 | 12.4 | 2.56 |
Ensiled sugar beet pulp | 356 | 0.074 | 2.62 | 283 | 14.9 | 12.0 | 2.56 |
Sugar beet tops and leaves | 297 | 0.075 | 1.72 | 241 | 13.5 | 11.0 | 3.06 |
Sugar beet rootlets, hairs, root tips and beet tails | 300 | 0.057 | 3.30 | 208 | 9.7 | 15.4 | 2.85 |
Grape seeds | 78 | 0.065 | 0.00 | 62 | 3.7 | 10.7 | 2.89 |
Olive tree leaves | 152 | 0.042 | 0.93 | 94 | 4.4 | 17.4 | 3.11 |
Almond hulls | 263 | 0.063 | 1.12 | 201 | 10.9 | 12.1 | 2.96 |
Broccoli stalk hay | 202 | 0.058 | 0.27 | 151 | 8.3 | 12.2 | 3.39 |
Lettuce leaves | 231 | 0.074 | 2.46 | 186 | 10.4 | 11.8 | 4.06 |
Asparagus rinds1 | 216 | 0.060 | 0.83 | 162 | 8.7 | 12.4 | 3.33 |
Asparagus rinds2 | 300 | 0.068 | 1.22 | 236 | 13.1 | 11.4 | 3.13 |
Green bean haulms | 252 | 0.067 | 2.20 | 193 | 10.0 | 12.6 | 3.22 |
Mixture green bean haulms + sugar beet pulp | 294 | 0.075 | 1.90 | 238 | 13.2 | 11.1 | 3.05 |
Artichoke by-products (ensiled) | 226 | 0.058 | 1.30 | 156 | 7.9 | 13.3 | 3.49 |
Artichoke by-products (hay) | 275 | 0.043 | 4.60 | 156 | 6.6 | 20.7 | 2.88 |
Pea haulms | 284 | 0.080 | 0.89 | 240 | 14.9 | 9.5 | 2.78 |
Broad bean haulms | 293 | 0.080 | 0.71 | 247 | 15.6 | 9.4 | 3.01 |
Dried tomato pulp | 200 | 0.065 | 1.62 | 153 | 8.1 | 12.3 | 2.72 |
Pepper by-products (cores) | 219 | 0.081 | 0.74 | 186 | 11.8 | 9.3 | 3.57 |
Pepper by-products (skins) | 129 | 0.036 | 2.77 | 69 | 2.9 | 22.0 | 2.81 |
Apple pomace | 218 | 0.070 | 1.80 | 171 | 9.3 | 11.7 | 2.40 |
Apple and pear pomace | 228 | 0.061 | 2.12 | 168 | 8.4 | 13.5 | 2.39 |
Citrus pulp (clementine) | 368 | 0.082 | 1.53 | 309 | 18.4 | 10.0 | 2.66 |
Citrus pulp (lemon) | 350 | 0.090 | 1.31 | 303 | 19.2 | 9.0 | 2.78 |
Citrus pulp (orange)1 | 374 | 0.082 | 1.70 | 314 | 18.5 | 10.1 | 2.62 |
Citrus pulp (orange)2 | 322 | 0.054 | 1.88 | 224 | 10.9 | 14.8 | 2.94 |
By-Product | IVDMD | IVNDFD | D144 | E |
---|---|---|---|---|
Sugar beet pulp (dehydrated) | 0.929 | 0.845 | 0.870 | 0.542 |
Ensiled sugar beet pulp | 0.940 | 0.860 | 0.910 | 0.575 |
Sugar beet tops and leaves | 0.957 | 0.851 | 0.904 | 0.589 |
Sugar beet rootlets, hairs, root tips and beet tails | 0.873 | 0.707 | 0.854 | 0.483 |
Grape seeds | 0.362 | 0.064 | 0.227 | 0.150 |
Olive tree leaves | 0.745 | 0.518 | 0.469 | 0.254 |
Almond hulls | 0.840 | 0.502 | 0.778 | 0.491 |
Broccoli stalk hay | 0.764 | 0.575 | 0.686 | 0.431 |
Lettuce leaves | 0.967 | 0.851 | 0.900 | 0.572 |
Asparagus rinds1 | 0.836 | 0.640 | 0.687 | 0.428 |
Asparagus rinds2 | 0.960 | 0.868 | 0.919 | 0.591 |
Green bean haulms | 0.859 | 0.660 | 0.809 | 0.501 |
Mixture green bean haulms + sugar beet pulp | 0.934 | 0.817 | 0.894 | 0.581 |
Artichoke by-products (ensiled) | 0.759 | 0.592 | 0.723 | 0.432 |
Artichoke by-products (hay) | 0.817 | 0.730 | 0.791 | 0.382 |
Pea haulms | 0.893 | 0.620 | 0.786 | 0.539 |
Broad bean haulms | 0.927 | 0.784 | 0.877 | 0.604 |
Dried tomato pulp | 0.683 | 0.431 | 0.544 | 0.340 |
Pepper by-products (cores) | 0.852 | 0.523 | 0.779 | 0.539 |
Pepper by-products (skins) | 0.432 | 0.245 | 0.363 | 0.172 |
Apple pomace | 0.566 | 0.355 | 0.523 | 0.333 |
Apple and pear pomace | 0.599 | 0.412 | 0.544 | 0.328 |
Citrus pulp (clementine) | 0.991 | 0.938 | 0.976 | 0.658 |
Citrus pulp (lemon) | 0.975 | 0.898 | 0.956 | 0.667 |
Citrus pulp (orange)1 | 0.989 | 0.949 | 0.979 | 0.658 |
Citrus pulp (orange)2 | 0.966 | 0.890 | 0.944 | 0.546 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Rodríguez, J.; Ranilla, M.J.; France, J.; Alaiz-Moretón, H.; Carro, M.D.; López, S. Chemical Composition, In Vitro Digestibility and Rumen Fermentation Kinetics of Agro-Industrial By-Products. Animals 2019, 9, 861. https://doi.org/10.3390/ani9110861
García-Rodríguez J, Ranilla MJ, France J, Alaiz-Moretón H, Carro MD, López S. Chemical Composition, In Vitro Digestibility and Rumen Fermentation Kinetics of Agro-Industrial By-Products. Animals. 2019; 9(11):861. https://doi.org/10.3390/ani9110861
Chicago/Turabian StyleGarcía-Rodríguez, Jairo, María José Ranilla, James France, Héctor Alaiz-Moretón, María Dolores Carro, and Secundino López. 2019. "Chemical Composition, In Vitro Digestibility and Rumen Fermentation Kinetics of Agro-Industrial By-Products" Animals 9, no. 11: 861. https://doi.org/10.3390/ani9110861
APA StyleGarcía-Rodríguez, J., Ranilla, M. J., France, J., Alaiz-Moretón, H., Carro, M. D., & López, S. (2019). Chemical Composition, In Vitro Digestibility and Rumen Fermentation Kinetics of Agro-Industrial By-Products. Animals, 9(11), 861. https://doi.org/10.3390/ani9110861