Simple Summary
This study investigated bacteria resistant to antibiotics and heavy metals in Terra Nova Bay, Antarctica. During the 37th Italian Antarctic Expedition (2021–2022), researchers collected seawater, sediment and fish samples and isolated 50 bacterial strains. Many of these showed resistance to multiple antibiotics and heavy metals. Twelve particularly resistant isolates also carried specific resistance genes. The findings suggest that both natural selective pressures and local human activities contribute to the spread of these resistances, highlighting potential ecological and public health concerns even in remote Antarctic environments.
Abstract
This study examines the occurrence of bacteria resistant to antibiotics and heavy metals in Terra Nova Bay, a coastal area of the Ross Sea in Antarctica that is increasingly recognised as vulnerable to human influence. During the 37th Italian Antarctic Expedition (2021–2022), researchers collected seawater, sediment, and fish samples from the notothenioid species Trematomus bernacchii to evaluate microbial resistance in an environment once considered largely pristine. Fifty heterotrophic bacterial isolates were obtained and tested against twenty-eight antibiotics, revealing a notable presence of multidrug resistance. These multidrug-resistant isolates were then assessed for their tolerance to eight heavy metal salts to understand whether resistance traits extended beyond antimicrobials. Twelve isolates showing resistance to both antibiotics and metals were selected for further genetic screening, targeting key resistance genes linked to tetracycline, vancomycin, sulphonamides, and other antimicrobial classes. The detection of multiple resistance genes in genera such as Pseudomonas, Pseudoalteromonas, and Psychrobacter indicates that both natural selective pressures and local, human-related contamination may be shaping resistance patterns in this region. Overall, the study demonstrates that even remote Antarctic marine ecosystems can host bacteria with complex resistance profiles. While these ecosystems are largely isolated, human activities such as scientific research, tourism, and the introduction of pollutants may contribute to the dissemination of antibiotic resistance genes, raising important ecological and potential public health considerations regarding the spread of resistance in polar environments.