Attitudes and Beliefs Towards Ration Planning Among German Organic Pig and Poultry Farmers
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Acquisition of Farms
2.2. Farm Characteristics and Feeding Strategies
2.3. Need-Based Feeding
2.4. Attitudes and Beliefs Towards Need-Based Feeding and Ration Planning
2.5. Principal Component Analysis
2.6. Hierarchical Cluster Analysis
2.7. Description of Sample
3. Results
3.1. Importance of the Farm Branch
3.2. Need-Based Feeding
3.3. Attitudes Toward Need-Based Feeding
3.4. Groups of Farmers with Similar Attitudes
4. Discussion
4.1. Recommendations, Knowledge, and Beliefs
4.2. Feeding Management to Meet Animals’ Needs
4.3. Groups of Farmers
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CL | Cluster |
GfE | German Society for Nutritional Physiology |
KMO | Kaiser-Meyer-Olkin criterion |
PCA | Principal component analysis |
References
- Wu, G. Nutrition and Metabolism: Foundations for Animal Growth, Development, Reproduction, and Health. Adv. Exp. Med. Biol. 2022, 1354, 1–24. [Google Scholar] [CrossRef]
- Wu, G.; Li, P. The “ideal protein” concept is not ideal in animal nutrition. Exp. Biol. Med. 2022, 247, 1191–1201. [Google Scholar] [CrossRef]
- Kim, J.W.; Koo, B.; Nyachoti, C.M. Pigs weighing less than 20 kg are unable to adjust feed intake in response to dietary net energy density regardless of diet composition. Can. J. Anim. Sci. 2021, 101, 118–125. [Google Scholar] [CrossRef]
- Regulation (EU) 2018/848. Regulation (EU) 2018/848 of the European Parliament and of the Council of 30 May 2018 on organic production and labelling of organic products and repealing Council Regulation (EC) No 834/2007. Off. J. Eur. Union 2018, 61, 1–92. [Google Scholar]
- van der Heide, M.E.; Stødkilde, L.; Værum Nørgaard, J.; Studnitz, M. The Potential of Locally-Sourced European Protein Sources for Organic Monogastric Production: A Review of Forage Crop Extracts, Seaweed, Starfish, Mussel, and Insects. Sustainability 2021, 13, 2303. [Google Scholar] [CrossRef]
- Dorca-Preda, T.; Kongsted, A.G.; Andersen, H.M.-L.; Kristensen, T.; Theil, P.K.; Knudsen, M.T.; Mogensen, L. Refining life cycle nutrient modeling in organic pig production. An analysis focusing on feeding strategies in organic Danish pig farming. Livest. Sci. 2023, 272, 105248. [Google Scholar] [CrossRef]
- Rodrigues, L.A.; Koo, B.; Nyachoti, M.; Columbus, D.A. Formulating Diets for Improved Health Status of Pigs: Current Knowledge and Perspectives. Animals 2022, 12, 2877. [Google Scholar] [CrossRef]
- Minussi, I.; Gerrits, W.J.J.; Jansman, A.J.M.; Gerritsen, R.; Lambert, W.; Zonderland, J.J.; Bolhuis, J.E. Amino acid supplementation counteracts negative effects of low protein diets on tail biting in pigs more than extra environmental enrichment. Sci. Rep. 2023, 13, 19268. [Google Scholar] [CrossRef]
- Mens, A.; van Krimpen, M.M.; Kwakkel, R.P. Nutritional approaches to reduce or prevent feather pecking in laying hens: Any potential to intervene during rearing? World’s Poult. Sci. J. 2020, 76, 591–610. [Google Scholar] [CrossRef]
- Zollitsch, W.; Kristensen, T.; Krutzinna, C.; MacNaeihde, F.; Younie, D. Feeding for health and welfare: The challenge of formulating well-balanced rations in organic livestock production. In Animal Health and Welfare in Organic Agriculture; Vaarst, M., Roderick, S., Lund, V., Lockeretz, W., Eds.; CABI Publishing: Wallingford, UK, 2004; pp. 329–356. ISBN 9780851996684. [Google Scholar]
- Quander-Stoll, N.; Bautze, D.; Zollitsch, W.; Leiber, F.; Früh, B. Effects of 100% organic feeding on performance, carcass composition and fat quality of fattening pigs. Biol. Agric. Hortic. 2022, 38, 271–284. [Google Scholar] [CrossRef]
- Blume, L.; Hoischen-Taubner, S.; Möller, D.; Sundrum, A. Status quo der nutritiven und ökonomischen Situation sowie Potentiale des Einsatzes heimischer Proteinträger auf ökologisch wirtschaftenden Geflügel-und Schweinebetrieben. Berichte Über Landwirtsch. 2021, 99, 1–37. [Google Scholar] [CrossRef]
- Jakobsen, K.; Hermansen, J. Organic farming—A challenge to nutritionists. J. Anim. Feed Sci. 2001, 10, 29–42. [Google Scholar] [CrossRef]
- Sundrum, A. Managing amino acids in organic pig diets. In Proceedings of the 4th NAHWOA-Workshop, Wageningen, NL, USA, 24–27 March 2001; Hovi, M., Baars, T., Eds.; 2001. pp. 181–191. [Google Scholar]
- LimeSurvey GmbH. LimeSurvey: An Open Source Survey Tool. Available online: https://www.limesurvey.org (accessed on 28 May 2024).
- Naumann, C.; Bassler, R. VDLUFA-Methodenbuch Band III. Die chemische Untersuchung von Futtermitteln: Gesamtwerk (Grundwerk einschl. 1–8. Ergänzungslieferung); VDLUFA-Verlag: Darmstadt, Germany, 2012. [Google Scholar]
- Spiekers, H.; Pohl, C.; Staudacher, W. Leitfaden zur Berechnung des Energiegehaltes bei Einzel- und Mischfuttermitteln für die Schweine- und Rinderfütterung; DLG Verlag: Frankfurt am Main, Germany, 2013. [Google Scholar]
- GfE. Empfehlungen zur Energie- und Nährstoffversorgung von Schweinen [Recommendations for the Energy and Nutrient Supply of Pigs]; DLG-Verlag: Frankfurt am Main, Germany, 2006; ISBN 3-7690-0683-6. [Google Scholar]
- GfE. Empfehlungen zur Energie- und Nährstoffversorgung der Legehennen und Masthühner (Broiler) [Recommendations for the Energy and Nutrient Supply of Laying Hens and Broilers]; DLG-Verl.: Frankfurt am Main, Germany, 1999; ISBN 978-3-7690-0577-6. [Google Scholar]
- DLG. Empfehlungen zur Sauen- und Ferkelfütterung [Recommendations for Sow and Piglet Feeding]; DLG Verlag: Frankfurt am Main, Germany, 2008; ISBN 978-3-7690-0724-4. [Google Scholar]
- Bellof, G.; Schmidt, E.; Ristic, M. Effect of graded essential amino acids to energy ratios in diets for organic chicken production on fattening performance and carcass yield. Eur. Poult. Sci. 2005, 69, 252–260. [Google Scholar]
- Bellof, G.; Andersson, R. Geflügelernährung in der Ökologischen Landwirtschaft: Tierernährung im Ökolandbau-Fütterungspraxis. Okol. Landbau 2008, 2, 28–30. [Google Scholar]
- Bellof, G.; Brandl, M.; Schmidt, E. Ökologische Putenmast: Abstimmung von Genotyp, Haltung und Fütterung [Organic Turkey Production: Adjustment of Genotype, Outdoor-Keeping and Feeding]: Schlussbericht Projekt 06OE234. Available online: http://orgprints.org/18771/ (accessed on 29 January 2025).
- LfL. Fütterungsfibel. Ökologische Schweinehaltung. 2011. Available online: https://www.lfl.bayern.de/mam/cms07/publikationen/daten/informationen/p_34976.pdf (accessed on 29 January 2025).
- Weltin, J.; Carrasco Alarcon, L.S.; Berger, U.; Bellof, G. Luzernesilage aus spezieller Nutzung und technologischer Aufbereitung in der ökologischen Geflügel- und Schweinefütterung [Alfalfa-Silage Silage After Suitable Preparation in Organic Poultry and Pig Feeding]: Schlussbericht Projekt 11OE077. Available online: https://orgprints.org/26279/1/26279-11OE077-hswt-bellof-2014-luzernesilage-tierernaehrung.pdf (accessed on 6 January 2025).
- Revelle, W. psych: Procedures for Personality and Psychological Research: R Package Version 2.4.3. Available online: https://CRAN.R-project.org/package=psych (accessed on 28 May 2024).
- Howard, M.C. A Review of Exploratory Factor Analysis Decisions and Overview of Current Practices: What We Are Doing and How Can We Improve? Int. J. Hum.-Comput. Interact. 2016, 32, 51–62. [Google Scholar] [CrossRef]
- Kaiser, H.F. An index of factorial simplicity. Psychometrika 1974, 39, 31–36. [Google Scholar] [CrossRef]
- Hofmann, R.J. Complexity and simplicity as objective indices descriptive of factor solutions. Multivar. Behav. Res. 1978, 13, 247–250. [Google Scholar] [CrossRef]
- Lu, Y.; Phillips, C.A.; Langston, M.A. A robustness metric for biological data clustering algorithms. BMC Bioinform. 2019, 20, 503. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 6 January 2025).
- Kassambara, A.; Mundt, F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses: R Package Version 1.0.7. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 28 May 2024).
- Zeileis, A.; Hothorn, T. Diagnostic Checking in Regression Relationships. R News 2002, 2, 7–10. [Google Scholar]
- Zeileis, A.; Köll, S.; Graham, N. Various Versatile Variances: An Object-Oriented Implementation of Clustered Covariances in R. J. Stat. Softw. 2020, 95, 1–36. [Google Scholar] [CrossRef]
- Zeileis, A. Econometric Computing with HC and HAC Covariance Matrix Estimators. J. Stat. Softw. 2004, 11, 1–17. [Google Scholar] [CrossRef]
- Kassambara, A. rstatix: Pipe-Friendly Framework for Basic Statistical Tests: R Package Version 0.7.2. Available online: https://CRAN.R-project.org/package=rstatix (accessed on 28 May 2024).
- Blair, R. A Practical Guide to the Feeding of Organic Farm Animals: Pigs, Poultry, Cattle, Sheep and Goats; 5m Books Ltd.: Sheffield, UK, 2017; ISBN 9781912178025. [Google Scholar]
- Thielen, C.; Kienzle, E. Die Fütterung des “Bioschweins”—Eine Feldstudie [The feeding of “organic swine”—A field study]. Tierarztl. Prax. 1994, 22, 450–459. [Google Scholar]
- Alarcon, P.; Wieland, B.; Mateus, A.L.P.; Dewberry, C. Pig farmers’ perceptions, attitudes, influences and management of information in the decision-making process for disease control. Prev. Vet. Med. 2014, 116, 223–242. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Poultry, 9. rev. ed., 3. pr; National Academy Press: Washington, DC, USA, 1994; ISBN 978-0-309-04892-7. [Google Scholar]
- NRC. Nutrient Requirements of SWINE; National Academies Press: Washington, DC, USA, 2012; ISBN 978-0-309-22423-9. [Google Scholar]
- Blair, R. Nutrition and Feeding of Organic Pigs, 2nd ed.; CABI: Wallingford, UK; Boston, MA, USA, 2018; ISBN 9781780647913. [Google Scholar]
- Blair, R. Nutrition and Feeding of Organic Poultry, 2nd ed.; CABI: Wallingford, UK; Boston, MA, USA, 2018; ISBN 9781786392992. [Google Scholar]
- Baldinger, L.; Bussemas, R.; Höinghaus, K.; Renger, A.; Weißmann, F. Effect of six 100 % organic feeding strategies differing in external input demand on animal performance and production costs of piglets before and after weaning. Org. Agric. 2017, 7, 267–279. [Google Scholar] [CrossRef]
- Kyntäjä, S.; Partanen, K.; Siljander-Rasi, H.; Jalava, T. Tables of Composition and Nutritional Values of Organically Produced Feed Materials for Pigs and Poultry: MTT Raportti 164; Jokioinen, Finnland. 2014. Available online: http://jukuri.luke.fi/handle/10024/484922 (accessed on 9 March 2025).
- Witten, S.; Böhm, H.; Aulrich, K. Effect of variety and environment on the contents of crude nutrients and amino acids in organically produced cereal and legume grains. Org. Agric. 2020, 10, 199–219. [Google Scholar] [CrossRef]
- Sundrum, A.; Nicholas, P.; Padel, S. Organic Farming: Challenges for Farmers and Feed Suppliers. In Proceedings of the Recent Advances in Animal Nutrition 2007, University of Nottingham Feed Conference, Nottingham, UK, 4–6 September 2007; Garnsworthy, P.C., Wiseman, J., Eds.; Nottingahm University Press: Nottingham, UK, 2008; pp. 239–260, ISBN 9781904761037. [Google Scholar]
- van der Peet-Schwering, C.; Jongbloed, A.; Aarnink, A. Nitrogen and phosphorus consumption, utilisation and losses in pig production: The Netherlands. Livest. Prod. Sci. 1999, 58, 213–224. [Google Scholar] [CrossRef]
- Sundrum, A.; Bütfering, L.; Henning, M.; Hoppenbrock, K.H. Effects of on-farm diets for organic pig production on performance and carcass quality. J. Anim. Sci. 2000, 78, 1199–1205. [Google Scholar] [CrossRef]
- Bee, G.; Kragten, S.A.; Früh, B.; Girard, M. Impact of 100% organic diets on pig performance, carcass composition and carcass nutrient deposition efficiency. Org. Agric. 2021, 11, 421–433. [Google Scholar] [CrossRef]
- EFSA. The risks associated with tail biting in pigs and possible means to reduce the need for tail docking considering the different housing and husbandry systems—Scientific Opinion of the Panel on Animal Health and Welfare. EFSA J. 2007, 5, 611. [Google Scholar] [CrossRef]
- Elwinger, K.; Tufvesson, M.; Lagerkvist, G.; Tauson, R. Feeding layers of different genotypes in organic feed environments. Br. Poult. Sci. 2008, 49, 654–665. [Google Scholar] [CrossRef]
- Lindberg, J.E. Review: Nutrient and energy supply in monogastric food producing animals with reduced environmental and climatic footprint and improved gut health. Animal 2023, 17 (Suppl. S3), 100832. [Google Scholar] [CrossRef] [PubMed]
- Zollitsch, W. Challenges in the nutrition of organic pigs. J. Sci. Food Agric. 2007, 87, 2747–2750. [Google Scholar] [CrossRef]
- Früh, B.; Schlatter, B.; Isensee, A.; Maurer, V.; Willer, H. Report on Organic Protein Availability and Demand in Europe, Aarhus. 2015. Available online: http://orgprints.org/28067/3/FINAL-REPORT-ICOPP-2015-02-08.pdf (accessed on 22 December 2017).
- Leiber, F.; Gelencsér, T.; Stamer, A.; Amsler, Z.; Wohlfahrt, J.; Früh, B.; Maurer, V. Insect and legume-based protein sources to replace soybean cake in an organic broiler diet: Effects on growth performance and physical meat quality. Renew. Agric. Food Syst. 2017, 32, 21–27. [Google Scholar] [CrossRef]
- Maurer, V.; Holinger, M.; Amsler, Z.; Früh, B.; Wohlfahrt, J.; Stamer, A.; Leiber, F. Replacement of soybean cake by Hermetia illucens meal in diets for layers. J. Insects Food Feed 2016, 2, 83–90. [Google Scholar] [CrossRef]
- Blume, L.; Hoischen-Taubner, S.; Sundrum, A. Alfalfa—A regional protein source for all farm animals. J. Sustain. Org. Agric. Syst. 2021, 71, 1–13. [Google Scholar] [CrossRef]
- Blume, L.; Hoischen-Taubner, S.; Sundrum, A. Effects of alfalfa leaf mass as a part of organic feeding strategies on growth and slaughtering performance of dual-purpose roosters: A preliminary study. Eur. Poult. Sci. 2021, 85, 1–17. [Google Scholar] [CrossRef]
- Rosenfelder, P.; Eklund, M.; Mosenthin, R. Nutritive value of wheat and wheat by-products in pig nutrition: A review. Anim. Feed Sci. Technol. 2013, 185, 107–125. [Google Scholar] [CrossRef]
- Sundrum, A.; Schneider, K.; Richter, U. Possibilities and Limitations of Protein Supply in Organic Poultry and Pig Production; Final Project Report EEC 2092/91 (Organic) Revision. 2005. Available online: http://orgprints.org/10983 (accessed on 29 January 2025).
- Früh, B.; Bochicchio, D.; Edwards, S.; Hegelund, L.; Leeb, C.; Sundrum, A.; Werne, S.; Wiberg, S.; Prunier, A. Description of organic pig production in Europe. Org. Agric. 2014, 4, 83–92. [Google Scholar] [CrossRef]
- Jeroch, H.; Lipiec, A.; Abel, H.; Zentek, J.; Grela, E.R.; Bellof, G. Körnerleguminosen als Futter- und Nahrungsmittel, 2. aktualisierte Auflage; DLG Verlag: Frankfurt am Main, Germany, 2016; ISBN 9783769008401. [Google Scholar]
- Zollitsch, W.; Wagner, E.; Wlcek, S. Ökologische Schweine-, Geflügelfütterung [Organic Pig and Poultry Feeding]; Österreichischer Agrarverl.: Leopoldsdorf, Austria, 2002; ISBN 3704019151. [Google Scholar]
- Wüstholz, J.; Carrasco, S.; Berger, U.; Sundrum, A.; Bellof, G. Silage of young harvested alfalfa (Medicago sativa) as home-grown protein feed in the organic feeding of laying hens. Org. Agric. 2017, 7, 153–163. [Google Scholar] [CrossRef]
- Carrasco, S.; Wüstholz, J.; Hahn, G.; Bellof, G. How does feeding organic broilers high levels of alfalfa silage affect the meat quality? Org. Agric. 2018, 8, 185–193. [Google Scholar] [CrossRef]
- Elwinger, K.; Tauson, R. Low methionine diets is a potential health risk in organic egg production. In Proceedings of the European Symposium on Poultry Nutrition, Edinburgh, UK, 23–27 August 2009. [Google Scholar]
- van Krimpen, M.M.; Leenstra, F.; Maurer, V.; Bestman, M. How to fulfill EU requirements to feed organic laying hens 100% organic ingredients. J. Appl. Poult. Res. 2016, 25, 129–138. [Google Scholar] [CrossRef]
- Griese, S.; Ebert, U.; Fischinger, S.; Geier, U.; Lenz, A.; Schäfer, F.; Spiegel, A.; Vogt-Kaute, W.; Wilbois, K.-P. Strategieoptionen zur Realisierung einer 100%igen Biofütterung bei Monogastriern im ökologischen Landbau: Übersichtsdossier. 2014. Available online: http://orgprints.org/28395/1/100Biofuetterung_Dossier.pdf (accessed on 29 January 2025).
- Blume, L.; Hoischen-Taubner, S.; Kötter-Jürß, M.; Löning, J.; Renger, A.; Vogt, L.; Sundrum, A. Mangelnde Datenverfügbarkeit als Hemmnis für passgenaue Optimierung der Proteinversorgung von Monogastriern [Insufficient Data Availability is an Obstacle in Optimizing Protein Supply in Monogastric animals]. In Proceedings of the Innovatives Denken für eine nachhaltige Land- und Ernährungswirtschaft: Beiträge zur 15, Wissenschaftstagung Ökologischer Landbau, Kassel, Germany, 5–8 March 2019; Mühlrath, D., Albrecht, J., Finckh, M.R., Hamm, U., Heß, J., Knierim, U., Möller, D., Eds.; Verlag Dr. Köster: Berlin, Germany, 2019. [Google Scholar]
- Michie, S.; van Stralen, M.M.; West, R. The behaviour change wheel: A new method for characterising and designing behaviour change interventions. Implement. Sci. 2011, 6, 42. [Google Scholar] [CrossRef] [PubMed]
- Carroll, G.A.; Groarke, J.M. The Importance of the Social Sciences in Reducing Tail Biting Prevalence in Pigs. Animals 2019, 9, 591. [Google Scholar] [CrossRef] [PubMed]
- Krieger, M.; Jones, P.J.; Blanco-Penedo, I.; Duval, J.E.; Emanuelson, U.; Hoischen-Taubner, S.; Sjöström, K.; Sundrum, A. Improving Animal Health on Organic Dairy Farms: Stakeholder Views on Policy Options. Sustainability 2020, 12, 3001. [Google Scholar] [CrossRef]
- Crawford, P.E.; Hamer, K.; Lovatt, F.; Behnke, M.C.; Robinson, P.A. Flock health planning: How to move from a plan to a reflective planning process in Northern Irish sheep flocks? Ann. Appl. Biol. 2024, 184, 339–351. [Google Scholar] [CrossRef]
- Graat, E.A.M.; Vanden Hole, C.; Rodenburg, T.B.; Giersberg, M.F.; Tuyttens, F.A.M. Can a Digital Application for Animal Welfare Self-Assessments by Farmers Help Improve the Welfare of Free-Range and Organic Pigs? Animals 2024, 14, 3374. [Google Scholar] [CrossRef]
- Evonik. AMINODat 4.0–50 Years Amino Acid Analysis; Evonik Degussa GmbH: Essen, Germany, 2010. [Google Scholar]
- Boisen, S.; Fernández, J.A. Prediction of the apparent ileal digestibility of protein and amino acids in feedstuffs and feed mixtures for pigs by in vitro analyses. Anim. Feed Sci. Technol. 1995, 51, 29–43. [Google Scholar] [CrossRef]
- de Winter, J.C.F.; Dodou, D.; Wieringa, P.A. Exploratory Factor Analysis with Small Sample Sizes. Multivar. Behav. Res. 2009, 44, 147–181. [Google Scholar] [CrossRef]
- Mundfrom, D.J.; Shaw, D.G.; Ke, T.L. Minimum Sample Size Recommendations for Conducting Factor Analyses. Int. J. Test. 2005, 5, 159–168. [Google Scholar] [CrossRef]
- Preacher, K.J.; MacCallum, R.C. Exploratory factor analysis in behavior genetics research: Factor recovery with small sample sizes. Behav. Genet. 2002, 32, 153–161. [Google Scholar] [CrossRef]
Animals | Crude Protein (%) | Energy (MJ ME/kg) | Source 1 |
---|---|---|---|
Sows from first litter | [18,20,24] | ||
Sows gestating | 12.0 | 11.5 | |
Sows lactating | 18.0 | 13.5 | |
Piglets up to 30 kg | [18,20,24] | ||
Prestarter (2–10 kg) | 20.0 | 13.6 | |
Piglet feed I (10–20 kg) | 18.0 | 13.0 | |
Piglet feed II (20–30 kg) | 17.0 | 13.8 | |
Fattening pigs from 30 kg | [18,24] | ||
Starter (30–60 kg) | 18.5–20.0 | 13.0 | |
Grower (60–90 kg) | 16.0 | 13.0 | |
Finisher (90–120 kg) | 14.0 | 12.5 | |
Laying hens from start of lay | [19,25] | ||
Layer I (up to peak lay) | 18.0 | 10.9 | |
Layer II (from peak lay) | 16.0 | 10.7 | |
Broilers | [21] | ||
Starter | 21.5 | 12.0 | |
Grower | 20.0 | 11.3 | |
Finisher | 18.0 | 11.0 | |
Turkeys | [20] | ||
Starter (7–12 weeks) | 26.4 | 12.0 | |
Grower (13–17 weeks) | - | - | |
Finisher (18+ weeks) | 18.0 | 12.0 |
Component 1 | Component 2 | Component 3 | Component 4 | |
---|---|---|---|---|
Sums of squared loadings | 3.29 | 2.54 | 2.58 | 2.30 |
Proportion variance | 0.22 | 0.17 | 0.17 | 0.15 |
Cumulative variance | 0.22 | 0.39 | 0.56 | 0.71 |
Proportion explained | 0.31 | 0.24 | 0.24 | 0.22 |
Cumulative proportion | 0.31 | 0.54 | 0.78 | 1.00 |
Component correlations | ||||
Component 1 | 1 | 0.23 | 0.36 | 0.03 |
Component 2 | 0.23 | 1 | 0.27 | −0.31 |
Component 3 | 0.36 | 0.27 | 1 | 0.03 |
Component 4 | 0.03 | −0.31 | 0.03 | 1 |
Item | Item (Statement) | Component Loading | h2 | u2 | com | |||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||||
14 | Regular ration reviews and adjustments are economically imperative. | 0.90 | 0.13 | −0.03 | −0.02 | 0.87 | 0.13 | 1.0 |
15 | Individual components must be regularly analysed and rations recalculated. | 0.87 | 0.06 | −0.01 | −0.01 | 0.78 | 0.22 | 1.0 |
11 | Feed rations often have to be recalculated because the ingredients of the batches used change. | 0.84 | 0.02 | 0.01 | 0.17 | 0.75 | 0.25 | 1.1 |
6 | I am willing to spend additional time to optimize the feeding of my animals according to their needs. | 0.61 | −0.27 | 0.30 | −0.08 | 0.54 | 0.46 | 1.9 |
13 | Only the analyses of the single feedstuffs used allow for a good ration design. | 0.58 | −0.06 | 0.35 | −0.20 | 0.60 | 0.40 | 1.9 |
2 | Animals are able to compensate even with insufficient supply. | 0.01 | 0.79 | 0.02 | 0.04 | 0.61 | 0.39 | 1.0 |
3 | Good performance is possible even with a feed supply below the animals’ needs. | 0.19 | 0.75 | −0.07 | 0.00 | 0.63 | 0.37 | 1.2 |
5 | Savings in feed purchases maintain the economic advantage, even when animals cannot deliver their maximum performance. | 0.03 | 0.74 | 0.05 | −0.06 | 0.62 | 0.38 | 1.0 |
16 | Nutrient deficiencies do not harm the animals because they adapt their performance level to the feed offered. | −0.05 | 0.69 | 0.36 | −0.15 | 0.80 | 0.20 | 1.6 |
4 | The health of the animals is endangered by a supply that does not meet their needs. | 0.03 | 0.12 | 0.82 | −0.09 | 0.77 | 0.23 | 1.1 |
8 | Animals of all ages must be fed according to their needs so that they perform at the best possible level. | 0.09 | −0.02 | 0.82 | 0.11 | 0.74 | 0.26 | 1.1 |
7 | Providing animals of all ages according to their needs is important for their health. | 0.05 | 0.12 | 0.76 | 0.15 | 0.70 | 0.30 | 1.1 |
10 | The exact needs of the animals are difficult to determine. | 0.08 | 0.07 | −0.16 | 0.89 | 0.77 | 0.23 | 1.1 |
17 | There are no uniform supply recommendations for organically reared animals. | −0.17 | −0.05 | 0.24 | 0.86 | 0.82 | 0.18 | 1.2 |
9 | The supply recommendations of the GfE 1 are guideline values that are not adapted to organic animal husbandry. | 0.16 | −0.19 | 0.05 | 0.75 | 0.72 | 0.28 | 1.2 |
Sows | Fatteners | Layers | Broilers | Turkeys | ||
---|---|---|---|---|---|---|
n | 17 | 19 | 9 | 5 | 6 | |
Herd size (places) | Mean | 126 | 529 | 3736 | 1485 | 1437 |
Min–Max | 40–450 | 200–1300 | 375–15,000 | 200–4800 | 220–2700 | |
Agricultural area (ha) | Total | 71 | 297 | 165 | 191 | 65 |
Arable | 64 | 246 | 109 | 127 | 46 | |
Grassland | 10 | 45 | 17 | 64 | 42 | |
Feeding strategy | Self-mixing | 4 | 17 | 5 | - | 1 |
Purchase | 5 | 2 | 4 | 1 | 2 | |
Both | 6 | - | - | 1 | 3 | |
Unknown | 2 | - | - | 3 | - |
Parameter | Median | Min | Max | |
---|---|---|---|---|
Piglet producers (n = 17) | Herd size | 76 | 40 | 450 |
Piglets born alive | 13.0 | 12.0 | 15.0 | |
Weaned piglets per litter | 10.5 | 9.0 | 11.5 | |
Weaned piglets per sow and year | 21.0 | 18.0 | 24.3 | |
Feed amount per sow and year (kg) | 2280 | 1820 | 3680 | |
Preweaning death loss (%) | 20.0 | 11.0 | 30.0 | |
Postweaning death loss (%) | 2.0 | 0.5 | 5.0 | |
Replacement rate (%) | 40.0 | 20.0 | 50.0 | |
Pig fattening units (n = 19) | Herd size | 485 | 200 | 1300 |
Fattening period (days) | 122 | 106 | 300 | |
Final fattening weight (live weight, kg) | 126 | 117 | 150 | |
Daily weight gain (g) | 790 | 433 | 850 | |
Feed conversion | 3.1 | 2.8 | 4.8 | |
Feed use (kg/pig) | 303 | 256 | 628 | |
Death loss (%) | 1.8 | 0.5 | 8.0 | |
Egg producers (n = 9) | Hens per laying period | 4800 | 375 | 15,000 |
Residence period (days) | 425 | 365 | 567 | |
Hen-Housed Egg Production (eggs) | 296 | 260 | 403 | |
Hen-Housed Egg Production (%) | 76 | 66 | 90 | |
Egg mass (kg/hen housed) | 19 | 17 | 26 | |
Feed use (kg/hen housed) | 55 | 50 | 77 | |
Death loss (%) | 8.0 | 1.0 | 15.0 | |
Broiler farms (n = 5) | Broilers per fattening period | 500 | 200 | 4800 |
Fattening period (days) | 84 | 65 | 112 | |
Final fattening weight (live weight, kg) | 2.5 | 2.3 | 3.4 | |
Daily weight gain (g) | 37.2 | 20.9 | 40.3 | |
Feed conversion | 2.8 | 2.1 | 3.6 | |
Death loss (%) | 3.0 | 1.5 | 5.0 | |
Turkey farms (n = 6) | Turkeys per fattening period | 1600 | 220 | 2700 |
Fattening period of toms (days) | 140 | 126 | 140 | |
Fattening period of hens (days) | 104 | 98 | 140 | |
Final fattening weight mixed (live weight, kg) | 12.3 | 10.6 | 13.9 | |
Feed use hens (kg/hen housed) | 24 | - | - | |
Death loss (%) | 4.0 | 2.0 | 15.0 |
Component | n | Crude Protein in % | Energy in MJ ME/kg | ||
---|---|---|---|---|---|
Mean | (Min–Max) | Mean | (Min–Max) | ||
Faba beans | 28 | 24.8 | (22.2–27.4) | 12.6 | (12.2–13.1) |
Peas | 20 | 17.8 | (12.5–23.1) | 13.3 | (12.5–14.2) |
Barley | 21 | 9.8 | (7.7–11.9) | 11.7 | (11.5–11.9) |
Oats | 20 | 8.6 | (5.7–11.5) | 11.4 | (11.2–11.7) |
Triticale | 19 | 9.3 | (5.4–11.7) | 11.9 | (11.6–12.2) |
Wheat | 31 | 10.5 | (8.8–15.1) | 11.4 | (9.0–13.5) |
Animals | n | No. of Farms with | Recommended No. of Feeding Phases | Source | ||
---|---|---|---|---|---|---|
1 | 2 | >2 Phases | ||||
Sows from first litter | 17 | 0 | 14 | 3 | 2+ | [18,20,24] |
Piglets up to 30 kg | 17 | 6 | 7 | 4 | 3 | [18,20,24] |
Fattening pigs from 30 kg | 19 | 4 | 8 | 7 | 2+ | [18,24] |
Laying hens from start of lay | 9 | 8 | 1 | 0 | 2 | [19,25] |
Broilers | 5 | 0 | 4 | 1 | 3 | [21] |
Turkeys | 6 | 0 | 1 | 5 | 4 | [23] |
Animals | Phase | n | Crude Protein in % | Energy in MJ ME/kg | ||
---|---|---|---|---|---|---|
Mean | (Min–Max) | Mean | (Min–Max) | |||
Sows | Gestating | 17 | 13.2 | (8.8–15.9) | 12.1 | (10.4–13.4) |
Lactating | 17 | 16.7 | (15.1–20) | 12.7 | (11.4–13.6) | |
Fattening pigs | Starter | 19 | 17.1 | (15.2–20.5) | 13.3 | (12.2–14.9) |
Grower | 14 | 14.7 | (12.4–18.3) | 13.1 | (12.1–14.6) | |
Laying hens | Universal | 9 | 16.7 | (15.4–18.8) | 10.5 | (8.9–12.5) |
Broilers | Universal | 5 | 18.0 | (14.9–20.8) | 11.5 | (9.3–12.7) |
Turkeys | Starter | 6 | 22.6 | (18.5–28) | 11.6 | (11.2–12.2) |
Finisher | 6 | 16.6 | (13.7–18.7) | 11.7 | (11.1–12.6) |
Cluster-Forming Variables 1 | Cluster 1 | Cluster 2 | Cluster 3 | p-Value |
---|---|---|---|---|
n = 28 | n = 11 | n = 17 | ||
Component 1—Regular adjustment | 0.54 ± 0.64 a | 1.42 ± 0.39 b | 0.12 ± 0.60 a | <0.001 |
Component 2—Compensation (reverse) | 0.01 ± 0.65 a | 1.16 ± 0.57 b | 0.69 ± 0.36 b | <0.001 |
Component 3—Health and Performance | 0.80 ± 0.70 a | 1.94 ± 0.13 b | 0.55 ± 0.41 a | <0.001 |
Component 4—Uncertainty | 1.12 ± 0.54 a | 0.39 ± 0.83 b | −0.18 ± 0.41 c | <0.001 |
Animals | Cluster 1 | Cluster 2 | Cluster 3 |
---|---|---|---|
n = 28 | n = 11 | n = 17 | |
Fattening pigs | 4 | 4 | 9 |
Piglet production/sows | 9 | 2 | 6 |
Pigs (closed system) | 2 | 0 | 0 |
Laying hens | 7 | 1 | 1 |
Broilers | 3 | 1 | 1 |
Turkeys | 3 | 3 | 0 |
Cluster-Describing Variables | Cluster 1 | Cluster 2 | Cluster 3 | p-Value |
---|---|---|---|---|
n = 28 | n = 11 | n = 17 | ||
Agricultural area (ha) 1 | 134 ± 180 | 67 ± 56 | 107 ± 155 | 0.313 |
Time since conversion (years) | 14 ± 11 | 9 ± 5 | 14 ± 10 | 0.272 |
Division of responsibilities crop/animals (% of farms) | 29 | 36 | 24 | 0.764 |
Importance of farm branch 2 | 3.7 ± 1.4 | 3.9 ± 1.5 | 3.7 ± 1.3 | 0.903 |
Feed management | ||||
Verification of feed declaration 3 | 1.3 ± 0.4 | 1.5 ± 0.7 | 1.1 ± 0.2 | 0.119 |
Frequency of feed analyses 4 | 2.1 ± 1.0 a | 3.1 ± 1.3 b | 2.6 ± 1.1 ab | 0.067 |
Frequency of ration calculation 4 | 2.2 ± 1.0 a | 3.1 ± 1.0 b | 2.9 ± 1.2 b | 0.010 |
Consideration of ileal digestibility of amino acids 4 | 1.0 ± 0.0 a | 2.6 ± 1.9 b | 2.1 ± 1.3 b | <0.001 |
Phase-feeding | ||||
Mean number of phases in fattening pigs 5 | 2.0 ± 0.9 | 3.0 ± 0.8 | 2.1 ± 0.9 | 0.244 |
Mean number of phases in laying hens 6 | 1.1 ± 0.4 | 1.0 | 1.0 | - |
Performance measures | ||||
Weaned piglets per sow and year 7 | 19.6 ± 6.0 | 20.6 ± 0.9 | 20.9 ± 2.1 | 0.854 |
Daily weight gain fattening pigs (g/d) 5 | 752 ± 53 | 821 ± 48 | 799 ± 71 | 0.273 |
Eggs per hen and year 6 | 269 ± 10 | 292 | - | 0.132 |
Mentioning of problems (% of farms) | ||||
Feather pecking, tail biting, cannibalism | 24.0 | 10.0 | 12.5 | 0.450 |
Feacal consistency, diarrhoea | 12.0 | 0.0 | 18.8 | 0.352 |
Performance | 16.0 | 0.0 | 0.0 | 0.105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krieger, M.; Hoischen-Taubner, S.; Blume, L.; Sundrum, A. Attitudes and Beliefs Towards Ration Planning Among German Organic Pig and Poultry Farmers. Animals 2025, 15, 807. https://doi.org/10.3390/ani15060807
Krieger M, Hoischen-Taubner S, Blume L, Sundrum A. Attitudes and Beliefs Towards Ration Planning Among German Organic Pig and Poultry Farmers. Animals. 2025; 15(6):807. https://doi.org/10.3390/ani15060807
Chicago/Turabian StyleKrieger, Margret, Susanne Hoischen-Taubner, Leonie Blume, and Albert Sundrum. 2025. "Attitudes and Beliefs Towards Ration Planning Among German Organic Pig and Poultry Farmers" Animals 15, no. 6: 807. https://doi.org/10.3390/ani15060807
APA StyleKrieger, M., Hoischen-Taubner, S., Blume, L., & Sundrum, A. (2025). Attitudes and Beliefs Towards Ration Planning Among German Organic Pig and Poultry Farmers. Animals, 15(6), 807. https://doi.org/10.3390/ani15060807