Sustainability of Animal Production Chains: Alternative Protein Sources as an Ecological Driver in Animal Feeding: A Review
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Alternative Protein Sources as Concentrates
3.1. Legume Seeds
3.1.1. Nutritional Characteristics and Factors of Influence
3.1.2. Feeding Studies
3.1.3. Focus on Lupin Growing in an Intercropping System
3.1.4. The Challenge of Legume Seeds as Feed Ingredients
3.2. Microalgae: Chlorella sp. And Spirulina sp.
3.2.1. Nutritional Characteristics
3.2.2. Microalgae in Monogastric Nutrition
Poultry
Pigs
Rabbits
3.2.3. The Challenge of Microalgae as Feed Ingredients
3.3. Insects
3.3.1. Insects in Aquaculture: Performance and Product Quality
| Insect 1 | Dietary Level | Animal Species, Category | Main Results vs. Control Diets | Reference |
|---|---|---|---|---|
| BM | 0, 16.8, 33.6, and 57.1% | Nile tilapia (Oreochromis niloticus) | Feed intake and weight gain increased (up to +15% growth), while FCR 2 and survival were unchanged. | [142] |
| BM | 0, 6.5, 13, and 19.5% | European seabass (Dicentrarchus labrax) | Up to 19.5% BM inclusion did not affect growth, fillet proximate composition, or overall quality. BM reduced fillet lipid peroxidation and oxidative stress indicators, with minimal effects on fatty acid profile and shelf-life. | [153] |
| BM | 0, 20, and 40% | Rainbow trout (Oncorhynchus mykiss) | Fillet pH, colour, shear stress, and water-holding capacity were unaffected. BM 40% increased saturated fatty acids and reduced PUFA/MUFA, while BM 20% showed intermediate values. | [156] |
| BM | 0, 10.5, and 21% | Rainbow trout (Oncorhynchus mykiss) | Growth and fillet quality were unaffected by BM inclusion. Fillet FA profile and key n-3 PUFA (EPA, DHA) were maintained, confirming good nutritional quality. | [157] |
| BM | 0, 3, 6, 9, 12, and 15% | Rainbow trout (Oncorhynchus mykiss) | Growth, digestibility, and fillet physical traits were unaffected up to 15% inclusion. Higher BM levels increased SFA and MUFA and reduced PUFA. | [158] |
| MM | 0, 9, 18, 27, and 36% | Nile tilapia (Oreochromis niloticus) | Up to 18% MM maintained growth, feed utilization, and flesh quality; 36% MM reduced survival and growth. | [152] |
| TM | 0, 25, and 50% | Gilthead sea bream (Sparus aurata) | Diet 25% improved growth, FCR, and protein efficiency, while diet 50% reduced protein and lipid digestibility and dressed yield. | [143] |
| TM | 0, 8, 16, 24, and 32% | Juvenile rockfish (Sebastes schlegelii) | Growth and protein retention improved up to 16% TM inclusion, then declined at higher levels. No changes in body composition or amino acid profile. Up to 16% TM is recommended, as 32% maintained similar performance but with reduced growth efficiency. | [146] |
| TM | 0, 10, 20, and 30% | Juvenile mandarin fish (Siniperca chuatsi) | Growth and feed efficiency improved up to 20% inclusion, then declined at 30%. Fillets showed higher SFA and MUFA and lower n-3 PUFA compared to the control. | [147] |
| TM | 0, 21, and 40% | Blackspot sea bream (Pagellus bogaraveo) | Growth and feed efficiency were unaffected by TM inclusion. Fillet texture and composition remained unchanged. Increasing TM reduced n-3 (EPA) and raised n-6 (linoleic acid), worsening the n-3/n-6 ratio and lipid health indexes. | [150] |
| TM | 0, 25, and 50% | Rainbow trout (Oncorhynchus mykiss) | Growth, morphology, and fillet quality were unaffected. Fillet proximate composition remained stable, but TM increased C16:0, C18:1n9, and C18:2n6, while reducing EPA, DHA, PUFA/SFA, and n-3/n-6 ratios. | [151] |
3.3.2. Insects in Poultry: Performance and Product Quality
Broiler
Laying Hens
Turkey
| Insect 1 | Dietary Level | Animal Species, Category | Main Results vs. Control Diets | Reference | |
|---|---|---|---|---|---|
| Broiler | Partially defatted BM | 0, 5, 10, and 15% | Ross 308 | Growth and FCR 2 improved up to 10% inclusion but declined to 15%. | [163] |
| Partially defatted BM | 0, 5, 10, and 15% | Ross 308 | Live and carcass weights improved up to 10% inclusion. Higher BM levels increased meat protein and SFA/MUFA while reducing PUFA and moisture. | [164] | |
| BM | 0, 5, 10, and 15% | Cobb 500 | Feed intake, growth, FCR, and meat sensory traits were unaffected. | [165] | |
| BM | 0, 5, and 10% | Cobb 500 | Growth performance and mortality were unaffected. BM up to 10% reduced heat stress and pathogenic intestinal bacteria count. | [166] | |
| BM | 0, 15, and 30% replacement of soybean meal protein | Ross 308 | 15% replacement maintained growth, feed intake, gut health, and carcass traits. At 30% replacement, body weight decreased. | [167] | |
| BM | 0, 50, 75, and 100% replacement of soybean meal protein | Ross 308 | Growth and carcass quality were maintained at 50% replacement but declined at 75–100%. Higher inclusion reduced body weight, worsened FCR, and lowered meat juiciness and taste intensity. | [169] | |
| TM | 0 and 29.7% | Shaver brown | Growth and carcass traits were mostly unaffected; FCR improved with TM. | [170] | |
| TM | 0, 5, 10, and15% | Ross 708 | Low TM inclusion improved body weight and feed intake. High inclusion (TM15%) reduced feed efficiency, indicating moderate levels are preferable. | [171] | |
| TM | 0 and 7.5% | Label Hub- bard hybrid | Growth, welfare, hematological, and serum parameters were unaffected. | [172] | |
| TM | 0, 2, 4, and 8% | Ross 308 | Body weight and average daily gain, and FCR increased with TM, with optimal growth at 4% inclusion. | [174] | |
| Laying hens | BM | 0, 12, and 24% | Lohmann Selected Leghorn | Egg production, feed intake, yolk, and shell weights were unaffected. No health, plumage, or mortality issues were observed. | [177] |
| BM larvae and pre-pupae | 0 and 10% | Julia | Feed intake and egg-laying rate were unaffected. Egg weight and shell thickness increased in pre-pupae-fed hens. | [178] | |
| BM | 0 and 17% | Lohman Brown | FCR improved with BM, but feed intake, egg weight, and total egg mass were lower. | [179] | |
| TM | 0, 2.5, and 5% | Bovans White | TM improved egg production, egg mass, and FCR without negative effects on health or egg quality | [180] | |
| TM | 0 and 5% | Lohmann Brown | TM did not alter egg deposition rate, but reduced egg weight while increasing eggshell thickness and breaking strength. | [181] | |
| Turkey | BM and TM | 0.3% | Young turkey | Growth performance at 28 days of age was not affected by both BM and TM; some beneficial effects were observed on oxidative and inflammatory parameters. | [182] |
| BM | 0, 5, 10, and 15% | Young Hybrid Converter turkey | Inclusion of BM improved gut health, microbial activity, and FCR without affecting growth. | [183] | |
| BM | 0 and 10% | Female turkey | Enhanced growth and feed efficiency without negative effects on carcass or immune health. | [184] |
3.4. Camelina Sativa By-Products
3.4.1. Broiler
3.4.2. Laying Hens
4. Alternative Forages to Increase Protein Self-Sufficiency
4.1. Whole-Plant Soybean Silage
Agronomic and Nutritional Features
4.2. Tef (Eragrostis tef)
4.2.1. Proximate Composition and In Vitro Trials
4.2.2. Feeding Trials
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A Meta-Analysis of Projected Global Food Demand and Population at Risk of Hunger for the Period 2010–2050. Nat. Food 2021, 2, 494–501. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). The Future of Food and Agriculture: Trends and Challenges; FAO: Rome, Italy, 2017; ISBN 978-92-5-109551-5. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). Livestock’s Long Shadow: Environmental Issues and Options; FAO: Rome, Italy, 2006; ISBN 978-92-5-105571-7. [Google Scholar]
- Manceron, S.; Ben-Ari, T.; Dumas, P. Feeding Proteins to Livestock: Global Land Use and Food vs. Feed Competition. OCL Oilseeds Fats Crops Lipids 2014, 21, D408. [Google Scholar] [CrossRef]
- Makkar, H.P.S. Review: Feed Demand Landscape and Implications of Food-Not Feed Strategy for Food Security and Climate Change. Animal 2018, 12, 1744–1754. [Google Scholar] [CrossRef]
- Ibeagha-Awemu, E.M.; Omonijo, F.A.; Piché, L.C.; Vincent, A.T. Alternatives to Antibiotics for Sustainable Livestock Production in the Context of the One Health Approach: Tackling a Common Foe. Front. Vet. Sci. 2025, 12, 1605215. [Google Scholar] [CrossRef]
- Tullo, E.; Finzi, A.; Guarino, M. Review: Environmental Impact of Livestock Farming and Precision Livestock Farming as a Mitigation Strategy. Sci. Total Environ. 2019, 650, 2751–2760. [Google Scholar] [CrossRef]
- European Feed Manufacturers’ Federation (FEFAC). Available online: https://fefac.eu/ (accessed on 1 September 2025).
- Prudêncio da Silva, V.; van der Werf, H.M.G.; Spies, A.; Soares, S.R. Variability in Environmental Impacts of Brazilian Soybean According to Crop Production and Transport Scenarios. J. Environ. Manag. 2010, 91, 1831–1839. [Google Scholar] [CrossRef] [PubMed]
- Jia, F.; Peng, S.; Green, J.; Koh, L.; Chen, X. Soybean Supply Chain Management and Sustainability: A Systematic Literature Review. J. Clean. Prod. 2020, 255, 120254. [Google Scholar] [CrossRef]
- Xu, H.; Guo, Y.; Qiu, L.; Ran, Y. Progress in Soybean Genetic Transformation Over the Last Decade. Front. Plant Sci. 2022, 13, 900318. [Google Scholar] [CrossRef] [PubMed]
- Kleter, G.; McFarland, S.; Bach, A.; Bernabucci, U.; Bikker, P.; Busani, L.; Kok, E.; Kostov, K.; Nadal, A.; Pla, M.; et al. Surveying Selected European Feed and Livestock Production Chains for Features Enabling the Case-Specific Post-Market Monitoring of Livestock for Intake and Potential Health Impacts of Animal Feeds Derived from Genetically Modified Crops. Food Chem. Toxicol. 2018, 117, 66–78. [Google Scholar] [CrossRef]
- EUROSTAT. Available online: https://ec.europa.eu (accessed on 1 September 2025).
- Notz, I.; Topp, C.F.E.; Schuler, J.; Alves, S.; Gallardo, L.A.; Dauber, J.; Haase, T.; Hargreaves, P.R.; Hennessy, M.; Iantcheva, A.; et al. Transition to Legume-Supported Farming in Europe through Redesigning Cropping Systems. Agron. Sustain. Dev. 2023, 43, 12. [Google Scholar] [CrossRef]
- Halmemies-Beauchet-Filleau, A.; Rinne, M.; Lamminen, M.; Mapato, C.; Ampapon, T.; Wanapat, M.; Vanhatalo, A. Review: Alternative and Novel Feeds for Ruminants: Nutritive Value, Product Quality and Environmental Aspects. Animal 2018, 12, s295–s309. [Google Scholar] [CrossRef]
- Vouraki, S.; Papanikolopoulou, V.; Irakli, M.; Parissi, Z.; Abraham, E.M.; Arsenos, G. Legume Grains as an Alternative to Soybean Meal in the Diet of Intensively Reared Dairy Ewes. Sustainability 2023, 15, 1028. [Google Scholar] [CrossRef]
- Vasta, V.; Nudda, A.; Cannas, A.; Lanza, M.; Priolo, A. Alternative Feed Resources and Their Effects on the Quality of Meat and Milk from Small Ruminants. Anim. Feed Sci. Technol. 2008, 147, 223–246. [Google Scholar] [CrossRef]
- White, C.L.; Staines, V.E.; Staines, M.v.H. A Review of the Nutritional Value of Lupins for Dairy Cows. Aust. J. Agric. Res. 2007, 58, 185. [Google Scholar] [CrossRef]
- Duc, G.; Marget, P.; Esnault, R.; Le Guen, J.; Bastianelli, D. Genetic Variability for Feeding Value of Faba Bean Seeds (Vicia faba): Comparative Chemical Composition of Isogenics Involving Zero-Tannin and Zero-Vicine Genes. J. Agric. Sci. 1999, 133, 185–196. [Google Scholar] [CrossRef]
- Yáñez-Ruiz, D.R.; Martín-García, A.I.; Weisbjerg, M.R.; Hvelplund, T.; Molina-Alcaide, E. A Comparison of Different Legume Seeds as Protein Supplement to Optimise the Use of Low Quality Forages by Ruminants. Arch. Anim. Nutr. 2009, 63, 39–55. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.; Liu, Q.; Zhang, Y.; Chen, J.; Sun, Z.; Ren, C.; Zhang, Z.; Cheng, X.; Huang, Y. Nutritive Value of Faba Bean (Vicia faba L.) as a Feedstuff Resource in Livestock Nutrition: A Review. Food Sci. Nutr. 2021, 9, 5244–5262. [Google Scholar] [CrossRef] [PubMed]
- Jezierny, D.; Mosenthin, R.; Bauer, E. The Use of Grain Legumes as a Protein Source in Pig Nutrition: A Review. Anim. Feed Sci. Technol. 2010, 157, 111–128. [Google Scholar] [CrossRef]
- Bampidis, V.A.; Christodoulou, V. Chickpeas (Cicer arietinum L.) in Animal Nutrition: A Review. Anim. Feed Sci. Technol. 2011, 168, 1–20. [Google Scholar] [CrossRef]
- Musco, N.; Cutrignelli, M.I.; Calabrò, S.; Tudisco, R.; Infascelli, F.; Grazioli, R.; Lo Presti, V.; Gresta, F.; Chiofalo, B. Comparison of Nutritional and Antinutritional Traits among Different Species (Lupinus albus L., Lupinus luteus L., Lupinus angustifolius L.) and Varieties of Lupin Seeds. J. Anim. Physiol. Anim. Nutr. 2017, 101, 1227–1241. [Google Scholar] [CrossRef]
- Masucci, F.; Di Francia, A.; Romano, R.; Serracapriola, M.T.M.d.; Lambiase, G.; Varricchio, M.L.; Proto, V. Effect of Lupinus albus as Protein Supplement on Yield, Constituents, Clotting Properties and Fatty Acid Composition in Ewes’ Milk. Small Rumin. Res. 2006, 65, 251–259. [Google Scholar] [CrossRef]
- Ferchichi, N.; Toukabri, W.; Vrhovsek, U.; Nouairi, I.; Angeli, A.; Masuero, D.; Mhamdi, R.; Trabelsi, D. Proximate Composition, Lipid and Phenolic Profiles, and Antioxidant Activity of Different Ecotypes of Lupinus albus, Lupinus luteus and Lupinus angustifolius. J. Food Meas. Charact. 2021, 15, 1241–1257. [Google Scholar] [CrossRef]
- Heuzé, V.; Thiollet, H.; Tran, G.; Lessire, M.; Lebas, F. Yellow Lupin (Lupinus luteus) Seeds. Available online: https://www.feedipedia.org/node/23097 (accessed on 5 November 2025).
- Laudadio, V.; Tufarelli, V. Dehulled-Micronised Lupin (Lupinus albus L. Cv. Multitalia) as the Main Protein Source for Broilers: Influence on Growth Performance, Carcass Traits and Meat Fatty Acid Composition. J. Sci. Food Agric. 2011, 91, 2081–2087. [Google Scholar] [CrossRef] [PubMed]
- Heuzé, V.; Tran, G.; Kaushik, S. Soybean Meal. Available online: https://www.feedipedia.org/node/674 (accessed on 5 November 2025).
- Petterson, D.S. The Use of Lupins in Feeding Systems-Review. Asian-Australas. J. Anim. Sci. 2000, 13, 861–882. [Google Scholar] [CrossRef]
- Wu, G.; Bazer, F.W.; Satterfield, M.C.; Li, X.; Wang, X.; Johnson, G.A.; Burghardt, R.C.; Dai, Z.; Wang, J.; Wu, Z. Impacts of Arginine Nutrition on Embryonic and Fetal Development in Mammals. Amino Acids 2013, 45, 241–256. [Google Scholar] [CrossRef]
- Aguilera, J.F.; Bustos, M.; Molina, E. The Degradability of Legume Seed Meals in the Rumen: Effect of Heat Treatment. Anim. Feed Sci. Technol. 1992, 36, 101–112. [Google Scholar] [CrossRef]
- Muzquiz, M.; Varela, A.; Burbano, C.; Cuadrado, C.; Guillamón, E.; Pedrosa, M.M. Bioactive Compounds in Legumes: Pronutritive and Antinutritive Actions. Implications for Nutrition and Health. Phytochem. Rev. 2012, 11, 227–244. [Google Scholar] [CrossRef]
- Valente, I.M.; Maia, M.R.G.; Malushi, N.; Oliveira, H.M.; Papa, L.; Rodrigues, J.A.; Fonseca, A.J.M.; Cabrita, A.R.J. Profiling of Phenolic Compounds and Antioxidant Properties of European Varieties and Cultivars of Vicia faba L. Pods. Phytochem. 2018, 152, 223–229. [Google Scholar] [CrossRef]
- Han, X.; Akhov, L.; Ashe, P.; Lewis, C.; Deibert, L.; Irina Zaharia, L.; Forseille, L.; Xiang, D.; Datla, R.; Nosworthy, M.; et al. Comprehensive Compositional Assessment of Bioactive Compounds in Diverse Pea Accessions. Food Res. Int. 2023, 165, 112455. [Google Scholar] [CrossRef] [PubMed]
- de Camargo, A.C.; Favero, B.T.; Morzelle, M.C.; Franchin, M.; Alvarez-Parrilla, E.; de la Rosa, L.A.; Geraldi, M.V.; Maróstica Júnior, M.R.; Shahidi, F.; Schwember, A.R. Is Chickpea a Potential Substitute for Soybean? Phenolic Bioactives and Potential Health Benefits. Int. J. Mol. Sci. 2019, 20, 2644. [Google Scholar] [CrossRef]
- Magalhães, S.C.Q.; Taveira, M.; Cabrita, A.R.J.; Fonseca, A.J.M.; Valentão, P.; Andrade, P.B. European Marketable Grain Legume Seeds: Further Insight into Phenolic Compounds Profiles. Food Chem. 2017, 215, 177–184. [Google Scholar] [CrossRef]
- Fares, C.; Suriano, S.; Codianni, P.; Marciello, U.; Russo, M.; Menga, V. Phytochemical Profile of Chickpea Cultivars Grown in Conventional and Organic Farms in Southern, Italy. Org. Agric. 2021, 11, 589–600. [Google Scholar] [CrossRef]
- Grela, E.R.; Kiczorowska, B.; Samolińska, W.; Matras, J.; Kiczorowski, P.; Rybiński, W.; Hanczakowska, E. Chemical Composition of Leguminous Seeds: Part I—Content of Basic Nutrients, Amino Acids, Phytochemical Compounds, and Antioxidant Activity. Eur. Food Res. Technol. 2017, 243, 1385–1395. [Google Scholar] [CrossRef]
- Spina, A.; Saletti, R.; Fabroni, S.; Natalello, A.; Cunsolo, V.; Scarangella, M.; Rapisarda, P.; Canale, M.; Muccilli, V. Multielemental, Nutritional, and Proteomic Characterization of Different Lupinus spp. Genotypes: A Source of Nutrients for Dietary Use. Molecules 2022, 27, 8771. [Google Scholar] [CrossRef] [PubMed]
- Meléndez-Martínez, A.J.; Mandić, A.I.; Bantis, F.; Böhm, V.; Borge, G.I.A.; Brnčić, M.; Bysted, A.; Cano, M.P.; Dias, M.G.; Elgersma, A.; et al. A Comprehensive Review on Carotenoids in Foods and Feeds: Status Quo, Applications, Patents, and Research Needs. Crit. Rev. Food Sci. Nutr. 2022, 62, 1999–2049. [Google Scholar] [CrossRef]
- Ashokkumar, K.; Diapari, M.; Jha, A.B.; Tar’an, B.; Arganosa, G.; Warkentin, T.D. Genetic Diversity of Nutritionally Important Carotenoids in 94 Pea and 121 Chickpea Accessions. J. Food Compos. Anal. 2015, 43, 49–60. [Google Scholar] [CrossRef]
- Estivi, L.; Brandolini, A.; Gasparini, A.; Hidalgo, A. Lupin as a Source of Bioactive Antioxidant Compounds for Food Products. Molecules 2023, 28, 7529. [Google Scholar] [CrossRef]
- Primi, R.; Ruggeri, R.; Ronchi, B.; Bernabucci, U.; Rossini, F.; Martin-Pedrosa, M.; Danieli, P.P. Sowing Date and Seeding Rate Affect Bioactive Compound Contents of Chickpea Grains. Animals 2019, 9, 571. [Google Scholar] [CrossRef]
- Moreno-Valdespino, C.A.; Luna-Vital, D.; Camacho-Ruiz, R.M.; Mojica, L. Bioactive Proteins and Phytochemicals from Legumes: Mechanisms of Action Preventing Obesity and Type-2 Diabetes. Food Res. Int. 2020, 130, 108905. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Shevkani, K.; Singh, N.; Kaur, A. Bioactive Constituents in Pulses and Their Health Benefits. J. Food Sci. Technol. 2017, 54, 858–870. [Google Scholar] [CrossRef]
- Frutos, P.; Hervás, G.; Giráldez, F.J.; Mantecón, A.R. Review. Tannins and Ruminant Nutrition. Span. J. Agric. Res. 2004, 2, 191–202. [Google Scholar] [CrossRef]
- Frutos, P.; Hervás, G.; Natalello, A.; Luciano, G.; Fondevila, M.; Priolo, A.; Toral, P.G. Ability of Tannins to Modulate Ruminal Lipid Metabolism and Milk and Meat Fatty Acid Profiles. Anim. Feed Sci. Technol. 2020, 269, 114623. [Google Scholar] [CrossRef]
- Crépon, K.; Marget, P.; Peyronnet, C.; Carrouée, B.; Arese, P.; Duc, G. Nutritional Value of Faba Bean (Vicia faba L.) seeds feed food. Field Crops Res. 2010, 115, 329–339. [Google Scholar] [CrossRef]
- Cherif, C.; Hassanat, F.; Claveau, S.; Girard, J.; Gervais, R.; Benchaar, C. Faba Bean (Vicia faba) Inclusion in Dairy Cow Diets: Effect on Nutrient Digestion, Rumen Fermentation, Nitrogen Utilization, Methane Production, and Milk Performance. J. Dairy Sci. 2018, 101, 8916–8928. [Google Scholar] [CrossRef] [PubMed]
- Lanza, M.; Ponte, M.; Pipi, M.; Bonanno, A.; Di Grigoli, A.; Avondo, M.; Tumino, S. Milk Performance and Grazing Behaviour of Cinisara Cows Supplemented with Low- and High-Polyphenols Faba Bean Varieties. Animals 2025, 15, 335. [Google Scholar] [CrossRef]
- Lanza, M.; Fabro, C.; Scerra, M.; Bella, M.; Pagano, R.; Brogna, D.M.R.; Pennisi, P. Lamb Meat Quality and Intramuscular Fatty Acid Composition as Affected by Concentrates Including Different Legume Seeds. Ital. J. Anim. Sci. 2011, 10, e18. [Google Scholar] [CrossRef][Green Version]
- Scerra, M.; Caparra, P.; Foti, F.; Cilione, C.; Zappia, G.; Motta, C.; Scerra, V. Intramuscular Fatty Acid Composition of Lambs Fed Diets Containing Alternative Protein Sources. Meat Sci. 2011, 87, 229–233. [Google Scholar] [CrossRef]
- Gatta, D.; Russo, C.; Giuliotti, L.; Mannari, C.; Picciarelli, P.; Lombardi, L.; Giovannini, L.; Ceccarelli, N.; Mariotti, L. Influence of Partial Replacement of Soya Bean Meal by Faba Beans or Peas in Heavy Pigs Diet on Meat Quality, Residual Anti-Nutritional Factors and Phytoestrogen Content. Arch. Anim. Nutr. 2013, 67, 235–247. [Google Scholar] [CrossRef]
- Vicenti, A.; Toteda, F.; Di Turi, L.; Cocca, C.; Perrucci, M.; Melodia, L.; Ragni, M. Use of Sweet Lupin (Lupinus albus L. var. Multitalia) in Feeding for Podolian Young Bulls and Influence on Productive Performances and Meat Quality. Traits. Meat Sci. 2009, 82, 247–251. [Google Scholar] [CrossRef]
- Biesek, J.; Kuźniacka, J.; Banaszak, M.; Maiorano, G.; Grabowicz, M.; Adamski, M. The Effect of Various Protein Sources in Goose Diets on Meat Quality, Fatty Acid Composition, and Cholesterol and Collagen Content in Breast Muscles. Poult. Sci. 2020, 99, 6278–6286. [Google Scholar] [CrossRef]
- Pietras, M.; Orczewska-Dudek, S.; Szczurek, W.; Pieszka, M. Effect of Dietary Lupine Seeds (Lupinus luteus L.) and Different Insect Larvae Meals as Protein Sources in Broiler Chicken Diet on Growth Performance, Carcass, and Meat Quality. Livest. Sci. 2021, 250, 104537. [Google Scholar] [CrossRef]
- Cebulska, A.; Jankowiak, H.; Weisbauerová, E.; Nevrkla, P. Influence of an Increased Content of Pea and Yellow Lupin Protein in the Diet of Pigs on Meat Quality. Porc. Heal. Manag. 2021, 7, 63. [Google Scholar] [CrossRef]
- Almeida, M.; Garcia-Santos, S.; Carloto, D.; Arantes, A.; Lorenzo, J.M.; Silva, J.A.; Santos, V.; Azevedo, J.; Guedes, C.; Ferreira, L.; et al. Introducing Mediterranean Lupins in Lamb Diets: Effects on Carcass Composition, Meat Quality, and Intramuscular Fatty Acid Profile. Animals 2022, 12, 1758. [Google Scholar] [CrossRef] [PubMed]
- Lestingi, A.; Facciolongo, A.M.; Jambrenghi, A.C.; Ragni, M.; Toteda, F. The Use of Peas and Sweet Lupin Seeds Alone or in Association for Fattening Lambs: Effects on Performance, Blood Parameters and Meat Quality. Small Rumin. Res. 2016, 143, 15–23. [Google Scholar] [CrossRef]
- Parrini, S.; Aquilani, C.; Pugliese, C.; Bozzi, R.; Sirtori, F. Soybean Replacement by Alternative Protein Sources in Pig Nutrition and Its Effect on Meat Quality. Animals 2023, 13, 494. [Google Scholar] [CrossRef]
- Straková, E.; Všetičková, L.; Kutlvašr, M.; Timová, I.; Suchý, P. Beneficial Effects of Substituting Soybean Meal for White Lupin (Lupinus albus, Cv. Zulika) Meal on the Biochemical Blood Parameters of Laying Hens. Ital. J. Anim. Sci. 2021, 20, 352–358. [Google Scholar] [CrossRef]
- Banaszak, M.; Kuźniacka, J.; Biesek, J.; Maiorano, G.; Adamski, M. Meat Quality Traits and Fatty Acid Composition of Breast Muscles from Ducks Fed with Yellow Lupin. Animal 2020, 14, 1969–1975. [Google Scholar] [CrossRef]
- Ciurescu, G.; Vasilachi, A.; Ropotă, M. Effect of Dietary Cowpea (Vigna unguiculata [L] Walp) and Chickpea (Cicer arietinum L.) Seeds on Growth Performance, Blood Parameters and Breast Meat Fatty Acids in Broiler Chickens. Ital. J. Anim. Sci. 2021, 21, 97–105. [Google Scholar] [CrossRef]
- Watson, C.A.; Reckling, M.; Preissel, S.; Bachinger, J.; Bergkvist, G.; Kuhlman, T.; Lindström, K.; Nemecek, T.; Topp, C.F.E.; Vanhatalo, A.; et al. Grain Legume Production and Use in European Agricultural Systems. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2017; Volume 144, pp. 235–303. [Google Scholar]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#home (accessed on 1 September 2025).
- Cernay, C.; Ben-Ari, T.; Pelzer, E.; Meynard, J.-M.; Makowski, D. Estimating Variability in Grain Legume Yields across Europe and the Americas. Sci. Rep. 2015, 5, 11171. [Google Scholar] [CrossRef] [PubMed]
- Annicchiarico, P.; Alami, I.T. Enhancing White Lupin (Lupinus albus L.) Adaptation to Calcareous Soils through Selection of Lime-Tolerant Plant Germplasm and Bradyrhizobium Strains. Plant Soil 2012, 350, 131–144. [Google Scholar] [CrossRef]
- Bedoussac, L.; Journet, E.-P.; Hauggaard-Nielsen, H.; Naudin, C.; Corre-Hellou, G.; Jensen, E.S.; Prieur, L.; Justes, E. Ecological Principles Underlying the Increase of Productivity Achieved by Cereal-Grain Legume Intercrops in Organic Farming. A Review. Agron. Sustain. Dev. 2015, 35, 911–935. [Google Scholar] [CrossRef]
- Carton, N.; Naudin, C.; Piva, G.; Corre-Hellou, G. Intercropping Winter Lupin and Triticale Increases Weed Suppression and Total Yield. Agriculture 2020, 10, 316. [Google Scholar] [CrossRef]
- Malézieux, E.; Crozat, Y.; Dupraz, C.; Laurans, M.; Makowski, D.; Ozier-Lafontaine, H.; Rapidel, B.; Tourdonnet, S.; Valantin-Morison, M. Mixing Plant Species in Cropping Systems: Concepts, Tools and Models. A Review. Agron. Sustain. Dev. 2009, 29, 43–62. [Google Scholar] [CrossRef]
- Blum, A. The Abiotic Stress Response and Adaptation of Triticale—A Review. Cereal Res. Commun. 2014, 42, 359–375. [Google Scholar] [CrossRef]
- Rodriguez, C.; Carlsson, G.; Englund, J.-E.; Flöhr, A.; Pelzer, E.; Jeuffroy, M.-H.; Makowski, D.; Jensen, E.S. Grain Legume-Cereal Intercropping Enhances the Use of Soil-Derived and Biologically Fixed Nitrogen in Temperate Agroecosystems. A Meta-Analysis. Eur. J. Agron. 2020, 118, 126077. [Google Scholar] [CrossRef]
- Louarn, G.; Bedoussac, L.; Gaudio, N.; Journet, E.-P.; Moreau, D.; Steen Jensen, E.; Justes, E. Plant Nitrogen Nutrition Status in Intercrops–A Review of Concepts and Methods. Eur. J. Agron. 2021, 124, 126229. [Google Scholar] [CrossRef]
- Hauggaard-Nielsen, H.; Ambus, P.; Jensen, E.S. The Comparison of Nitrogen Use and Leaching in Sole Cropped versus Intercropped Pea and Barley. Nutr. Cycl. Agroecosyst. 2003, 65, 289–300. [Google Scholar] [CrossRef]
- Senbayram, M.; Wenthe, C.; Lingner, A.; Isselstein, J.; Steinmann, H.; Kaya, C.; Köbke, S. Legume-Based Mixed Intercropping Systems May Lower Agricultural Born N2O Emissions. Energy Sustain. Soc. 2015, 6, 2. [Google Scholar] [CrossRef]
- Li, L.; Tilman, D.; Lambers, H.; Zhang, F. Plant Diversity and Overyielding: Insights from Belowground Facilitation of Intercropping in Agriculture. New Phytol. 2014, 203, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Cu, S.T.T.; Hutson, J.; Schuller, K.A. Mixed Culture of Wheat (Triticum aestivum L.) with White Lupin (Lupinus albus L.) Improves the Growth and Phosphorus Nutrition of the Wheat. Plant Soil 2005, 272, 143–151. [Google Scholar] [CrossRef]
- Li, L.; Li, S.-M.; Sun, J.-H.; Zhou, L.-L.; Bao, X.-G.; Zhang, H.-G.; Zhang, F.-S. Diversity Enhances Agricultural Productivity via Rhizosphere Phosphorus Facilitation on Phosphorus-Deficient Soils. Proc. Natl. Acad. Sci. USA 2007, 104, 11192–11196. [Google Scholar] [CrossRef]
- Zuo, Y.; Zhang, F. Iron and Zinc Biofortification Strategies in Dicot Plants by Intercropping with Gramineous Species: A Review. In Sustainable Agriculture; Springer: Dordrecht, The Netherlands, 2009; Volume 29, pp. 571–582. ISBN 9789048126651. [Google Scholar]
- Xue, Y.; Xia, H.; Christie, P.; Zhang, Z.; Li, L.; Tang, C. Crop Acquisition of Phosphorus, Iron and Zinc from Soil in Cereal/Legume Intercropping Systems: A Critical Review. Ann. Bot. 2016, 117, 363–377. [Google Scholar] [CrossRef]
- Folgart, A.; Price, A.J.; van Santen, E.; Wehtje, G.R. Organic Weed Control in White Lupin (Lupinus albus L.). Renew. Agric. Food Syst. 2011, 26, 193–199. [Google Scholar] [CrossRef]
- Dawson, L.E.R. The Effect of Inclusion of Lupins/Triticale Whole Crop Silage in the Diet of Winter Finishing Beef Cattle on Their Performance and Meat Quality at Two Levels of Concentrates. Anim. Feed Sci. Technol. 2012, 171, 75–84. [Google Scholar] [CrossRef]
- Kennedy, P.C.; Dawson, L.E.R.; Lively, F.O.; Steen, R.W.J.; Fearon, A.M.; Moss, B.W.; Kilpatrick, D.J. Effects of Offering Lupins/Triticale and Vetch/Barley Silages Alone or in Combination with Grass Silage on Animal Performance, Meat Quality and the Fatty Acid Composition of Lean Meat from Beef Cattle. J. Agric. Sci. 2018, 156, 1005–1016. [Google Scholar] [CrossRef]
- Fraser, M.D.; Fychan, R.; Jones, R. The Effect of Harvest Date and Inoculation on the Yield and Fermentation Characteristics of Two Varieties of White Lupin (Lupinus albus) When Ensiled as a Whole-Crop. Anim. Feed Sci. Technol. 2005, 119, 307–322. [Google Scholar] [CrossRef]
- Górski, R.; Płaza, A. Content and Uptake of Macroelements in Green Fodder of Mixtures of Narrowleaf Lupin with Spring Triticale. J. Agric. Sci. 2023, 161, 563–571. [Google Scholar] [CrossRef]
- Petersen, J.; Rredhi, A.; Szyttenholm, J.; Oldemeyer, S.; Kottke, T.; Mittag, M. The World of Algae Reveals a Broad Variety of Cryptochrome Properties and Functions. Front. Plant Sci. 2021, 12, 766509. [Google Scholar] [CrossRef]
- Wang, B.; Li, Y.; Wu, N.; Lan, C.Q. CO2 Bio-Mitigation Using Microalgae. Appl. Microbiol. Biotechnol. 2008, 79, 707–718. [Google Scholar] [CrossRef] [PubMed]
- Torres-Tiji, Y.; Fields, F.J.; Mayfield, S.P. Microalgae as a Future Food Source. Biotechnol. Adv. 2020, 41, 107536. [Google Scholar] [CrossRef]
- Verdelho Vieira, V.; Cadoret, J.-P.; Acien, F.G.; Benemann, J. Clarification of Most Relevant Concepts Related to the Microalgae Production Sector. Processes 2022, 10, 175. [Google Scholar] [CrossRef]
- Abreu, A.P.; Martins, R.; Nunes, J. Emerging Applications of Chlorella sp. and Spirulina (Arthrospira) sp. Bioengineering 2023, 10, 955. [Google Scholar] [CrossRef]
- Yun, H.-S.; Kim, Y.-S.; Yoon, H.-S. Characterization of Chlorella Sorokiniana and Chlorella Vulgaris Fatty Acid Components under a Wide Range of Light Intensity and Growth Temperature for Their Use as Biological Resources. Heliyon 2020, 6, e04447. [Google Scholar] [CrossRef] [PubMed]
- Nowicka-Krawczyk, P.; Mühlsteinová, R.; Hauer, T. Detailed Characterization of the Arthrospira Type Species Separating Commercially Grown Taxa into the New Genus Limnospira (Cyanobacteria). Sci. Rep. 2019, 9, 694. [Google Scholar] [CrossRef]
- Furmaniak, M.A.; Misztak, A.E.; Franczuk, M.D.; Wilmotte, A.; Waleron, M.; Waleron, K.F. Edible Cyanobacterial Genus Arthrospira: Actual State of the Art in Cultivation Methods, Genetics, and Application in Medicine. Front. Microbiol. 2017, 8, 2541. [Google Scholar] [CrossRef]
- Bature, A.; Melville, L.; Rahman, K.M.; Aulak, P. Microalgae as Feed Ingredients and a Potential Source of Competitive Advantage in Livestock Production: A Review. Livest. Sci. 2022, 259, 104907. [Google Scholar] [CrossRef]
- Abdelnour, S.A.; Abd El-Hack, M.E.; Arif, M.; Khafaga, A.F.; Taha, A.E. The Application of the Microalgae Chlorella spp. as a Supplement in Broiler Feed. Worlds Poult. Sci. J. 2019, 75, 305–318. [Google Scholar] [CrossRef]
- Tibbetts, S.M.; Milley, J.E.; Lall, S.P. Chemical Composition and Nutritional Properties of Freshwater and Marine Microalgal Biomass Cultured in Photobioreactors. J. Appl. Phycol. 2015, 27, 1109–1119. [Google Scholar] [CrossRef]
- Samarakoon, K.; Jeon, Y.-J. Bio-Functionalities of Proteins Derived from Marine Algae—A Review. Food Res. Int. 2012, 48, 948–960. [Google Scholar] [CrossRef]
- Mussgnug, J.H.; Klassen, V.; Schlüter, A.; Kruse, O. Microalgae as Substrates for Fermentative Biogas Production in a Combined Biorefinery Concept. J. Biotechnol. 2010, 150, 51–56. [Google Scholar] [CrossRef] [PubMed]
- de Morais, M.G.; Vaz, B.D.S.; de Morais, E.G.; Costa, J.A.V. Biologically Active Metabolites Synthesized by Microalgae. Biomed Res. Int. 2015, 2015, 835761. [Google Scholar] [CrossRef]
- Del Mondo, A.; Smerilli, A.; Sané, E.; Sansone, C.; Brunet, C. Challenging Microalgal Vitamins for Human Health. Microb. Cell Fact. 2020, 19, 201. [Google Scholar] [CrossRef]
- Saadaoui, I.; Rasheed, R.; Aguilar, A.; Cherif, M.; Al Jabri, H.; Sayadi, S.; Manning, S.R. Microalgal-Based Feed: Promising Alternative Feedstocks for Livestock and Poultry Production. J. Anim. Sci. Biotechnol. 2021, 12, 76. [Google Scholar] [CrossRef]
- Hamed, I. The Evolution and Versatility of Microalgal Biotechnology: A Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 1104–1123. [Google Scholar] [CrossRef]
- Madeira, M.S.; Cardoso, C.; Lopes, P.A.; Coelho, D.; Afonso, C.; Bandarra, N.M.; Prates, J.A.M. Microalgae as Feed Ingredients for Livestock Production and Meat Quality: A Review. Livest. Sci. 2017, 205, 111–121. [Google Scholar] [CrossRef]
- Grinstead, G.S.; Tokach, M.D.; Dritz, S.S.; Goodband, R.D.; Nelssen, J.L. Effects of Spirulina Platensis on Growth Performance of Weanling Pigs. Anim. Feed Sci. Technol. 2000, 83, 237–247. [Google Scholar] [CrossRef]
- Furbeyre, H.; van Milgen, J.; Mener, T.; Gloaguen, M.; Labussière, E. Effects of Dietary Supplementation with Freshwater Microalgae on Growth Performance, Nutrient Digestibility and Gut Health in Weaned Piglets. Animal 2017, 11, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Furbeyre, H.; van Milgen, J.; Mener, T.; Gloaguen, M.; Labussière, E. Effects of Oral Supplementation with Spirulina and Chlorella on Growth and Digestive Health in Piglets around Weaning. Animal 2018, 12, 2264–2273. [Google Scholar] [CrossRef] [PubMed]
- Martins, C.F.; Pestana Assunção, J.; Ribeiro Santos, D.M.; Madeira, M.S.M.d.S.; Alfaia, C.M.R.P.M.; Lopes, P.A.A.B.; Coelho, D.F.M.; Cardoso Lemos, J.P.; de Almeida, A.M.; Mestre Prates, J.A.; et al. Effect of Dietary Inclusion of Spirulina on Production Performance, Nutrient Digestibility and Meat Quality Traits in Post-weaning Piglets. J. Anim. Physiol. Anim. Nutr. 2021, 105, 247–259. [Google Scholar] [CrossRef]
- Coelho, D.; Pestana, J.; Almeida, J.M.; Alfaia, C.M.; Fontes, C.M.G.A.; Moreira, O.; Prates, J.A.M. A High Dietary Incorporation Level of Chlorella vulgaris Improves the Nutritional Value of Pork Fat without Impairing the Performance of Finishing Pigs. Animals 2020, 10, 2384. [Google Scholar] [CrossRef]
- Coelho, D.; Alfaia, C.M.; Lopes, P.A.; Pestana, J.M.; Costa, M.M.; Pinto, R.M.A.; Almeida, J.M.; Moreira, O.; Fontes, C.M.G.A.; Prates, J.A.M. Impact of Chlorella vulgaris as Feed Ingredient and Carbohydrases on the Health Status and Hepatic Lipid Metabolism of Finishing Pigs. Res. Vet. Sci. 2022, 144, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Altmann, B.A.; Neumann, C.; Rothstein, S.; Liebert, F.; Mörlein, D. Do Dietary Soy Alternatives Lead to Pork Quality Improvements or Drawbacks? A Look into Micro-Alga and Insect Protein in Swine Diets. Meat Sci. 2019, 153, 26–34. [Google Scholar] [CrossRef]
- Lugarà, R.; Realini, L.; Kreuzer, M.; Giller, K. Effects of Maternal High-Energy Diet and Spirulina Supplementation in Pregnant and Lactating Sows on Performance, Quality of Carcass and Meat, and Its Fatty Acid Profile in Male and Female Offspring. Meat Sci. 2022, 187, 108769. [Google Scholar] [CrossRef]
- Toyomizu, M.; Sato, K.; Taroda, H.; Kato, T.; Akiba, Y. Effects of Dietary Spirulina on Meat Colour in Muscle of Broiler Chickens. Br. Poult. Sci. 2001, 42, 197–202. [Google Scholar] [CrossRef]
- Evans, A.M.; Smith, D.L.; Moritz, J.S. Effects of Algae Incorporation into Broiler Starter Diet Formulations on Nutrient Digestibility and 3 to 21 d Bird Performance. J. Appl. Poult. Res. 2015, 24, 206–214. [Google Scholar] [CrossRef]
- Altmann, B.A.; Neumann, C.; Velten, S.; Liebert, F.; Mörlein, D. Meat Quality Derived from High Inclusion of a Micro-Alga or Insect Meal as an Alternative Protein Source in Poultry Diets: A Pilot Study. Foods 2018, 7, 34. [Google Scholar] [CrossRef]
- Altmann, B.A.; Wigger, R.; Ciulu, M.; Mörlein, D. The Effect of Insect or Microalga Alternative Protein Feeds on Broiler Meat Quality. J. Sci. Food Agric. 2020, 100, 4292–4302. [Google Scholar] [CrossRef]
- Kang, H.K.; Park, S.B.; Kim, C.H. Effects of Dietary Supplementation with a Chlorella By-product on the Growth Performance, Immune Response, Intestinal Microflora and Intestinal Mucosal Morphology in Broiler Chickens. J. Anim. Physiol. Anim. Nutr. 2017, 101, 208–214. [Google Scholar] [CrossRef]
- Choi, H.; Jung, S.K.; Kim, J.S.; Kim, K.-W.; Oh, K.B.; Lee, P.; Byun, S.J. Effects of Dietary Recombinant Chlorella Supplementation on Growth Performance, Meat Quality, Blood Characteristics, Excreta Microflora, and Nutrient Digestibility in Broilers. Poult. Sci. 2017, 96, 710–716. [Google Scholar] [CrossRef] [PubMed]
- Zahroojian, N.; Moravej, H.; Shivazad, M. Effects of Dietary Marine Algae (Spirulina platensis) on Egg Quality and Production Performance of Laying Hens. J. Agric. Sci. Technol. 2013, 15, 1353–1360. [Google Scholar]
- Sikiru, A.B.; Arangasamy, A.; Alemede, I.C.; Egena, S.S.A.; Bhatta, R. Dietary Supplementation Effects of Chlorella vulgaris on Performances, Oxidative Stress Status and Antioxidant Enzymes Activities of Prepubertal New Zealand White Rabbits. Bull. Natl. Res. Cent. 2019, 43, 162. [Google Scholar] [CrossRef]
- Abdelnour, S.A.; Sheiha, A.M.; Taha, A.E.; Swelum, A.A.; Alarifi, S.; Alkahtani, S.; Ali, D.; AlBasher, G.; Almeer, R.; Falodah, F.; et al. Impacts of Enriching Growing Rabbit Diets with Chlorella vulgaris Microalgae on Growth, Blood Variables, Carcass Traits, Immunological and Antioxidant Indices. Animals 2019, 9, 788. [Google Scholar] [CrossRef]
- El Basuini, M.F.; Khattab, A.A.A.; Hafsa, S.H.A.; Teiba, I.I.; Elkassas, N.E.M.; El-Bilawy, E.H.; Dawood, M.A.O.; Atia, S.E.S. Impacts of Algae Supplements (Arthrospira & Chlorella) on Growth, Nutrient Variables, Intestinal Efficacy, and Antioxidants in New Zealand White Rabbits. Sci. Rep. 2023, 13, 7891. [Google Scholar] [CrossRef]
- Boskovic Cabrol, M.; Martins, J.C.; Malhão, L.P.; Alves, S.P.; Bessa, R.J.B.; Almeida, A.M.; Raymundo, A.; Lordelo, M. Partial Replacement of Soybean Meal with Chlorella vulgaris in Broiler Diets Influences Performance and Improves Breast Meat Quality and Fatty Acid Composition. Poult. Sci. 2022, 101, 101955. [Google Scholar] [CrossRef]
- Świątkiewicz, S.; Arczewska-Włosek, A.; Józefiak, D. Application of Microalgae Biomass in Poultry Nutrition. Worlds Poult. Sci. J. 2015, 71, 663–672. [Google Scholar] [CrossRef]
- Kotrbáček, V.; Doubek, J.; Doucha, J. The Chlorococcalean Alga Chlorella in Animal Nutrition: A Review. J. Appl. Phycol. 2015, 27, 2173–2180. [Google Scholar] [CrossRef]
- Zampiga, M.; Brugaletta, G.; Ceccaroni, F.; Bonaldo, A.; Pignata, S.; Sirri, F. Performance Response of Broiler Chickens Fed Diets Containing Dehydrated Microalgae Meal as Partial Replacement for Soybean until 22 Days of Age. Anim. Feed Sci. Technol. 2023, 297, 115573. [Google Scholar] [CrossRef]
- Mullenix, G.J.; Maynard, C.J.; Owens, C.M.; Rochell, S.J.; Bottje, W.G.; Brister, R.D.; Kidd, M.T. Spirulina Platensis Meal Inclusion Effects on Broilers Fed a Reduced Protein Diet. J. Appl. Poult. Res. 2022, 31, 100199. [Google Scholar] [CrossRef]
- Coudert, E.; Baéza, E.; Berri, C. Use of Algae in Poultry Production: A Review. Worlds Poult. Sci. J. 2020, 76, 767–786. [Google Scholar] [CrossRef]
- Alfaia, C.M.; Pestana, J.M.; Rodrigues, M.; Coelho, D.; Aires, M.J.; Ribeiro, D.M.; Major, V.T.; Martins, C.F.; Santos, H.; Lopes, P.A.; et al. Influence of Dietary Chlorella vulgaris and Carbohydrate-Active Enzymes on Growth Performance, Meat Quality and Lipid Composition of Broiler Chickens. Poult. Sci. 2021, 100, 926–937. [Google Scholar] [CrossRef] [PubMed]
- Omri, B.; Amraoui, M.; Tarek, A.; Lucarini, M.; Durazzo, A.; Cicero, N.; Santini, A.; Kamoun, M. Arthrospira platensis (Spirulina) Supplementation on Laying Hens’ Performance: Eggs Physical, Chemical, and Sensorial Qualities. Foods 2019, 8, 386. [Google Scholar] [CrossRef] [PubMed]
- Tufarelli, V.; Baghban-Kanani, P.; Azimi-Youvalari, S.; Hosseintabar-Ghasemabad, B.; Slozhenkina, M.; Gorlov, I.; Seidavi, A.; Ayaşan, T.; Laudadio, V. Effects of Horsetail (Equisetum arvense) and Spirulina (Spirulina platensis) Dietary Supplementation on Laying Hens Productivity and Oxidative Status. Animals 2021, 11, 335. [Google Scholar] [CrossRef]
- Al-Otaibi, M.I.M.; Abdellatif, H.A.E.; Al-Huwail, A.K.A.; Abbas, A.O.; Mehaisen, G.M.K.; Moustafa, E.S. Hypocholesterolemic, Antioxidative, and Anti-Inflammatory Effects of Dietary Spirulina platensisis Supplementation on Laying Hens Exposed to Cyclic Heat Stress. Animals 2022, 12, 2759. [Google Scholar] [CrossRef]
- Zheng, L.; Oh, S.T.; Jeon, J.Y.; Moon, B.H.; Kwon, H.S.; Lim, S.U.; An, B.K.; Kang, C.W. The Dietary Effects of Fermented Chlorella vulgaris (CBT®) on Production Performance, Liver Lipids and Intestinal Microflora in Laying Hens. Asian-Australas. J. Anim. Sci. 2011, 25, 261–266. [Google Scholar] [CrossRef]
- Panaite, T.D.; Cornescu, G.M.; Predescu, N.C.; Cismileanu, A.; Turcu, R.P.; Saracila, M.; Soica, C. Microalgae (Chlorella vulgaris and Spirulina platensis) as a Protein Alternative and Their Effects on Productive Performances, Blood Parameters, Protein Digestibility, and Nutritional Value of Laying Hens’ Egg. Appl. Sci. 2023, 13, 10451. [Google Scholar] [CrossRef]
- Kim, Y.-B.; Park, J.; Heo, Y.-J.; Lee, H.-G.; Kwon, B.-Y.; Joo, S.S.; Joo, S.Y.; Kim, M.; Kim, Z.-H.; Lee, K.-W. Effect of Dietary Chlorella vulgaris or Tetradesmus obliquus on Laying Performance and Intestinal Immune Cell Parameters. Animals 2023, 13, 1589. [Google Scholar] [CrossRef]
- Skřivan, M.; Šimáně, J.; Dlouhá, G.; Doucha, J. Effect of Dietary Sodium Selenite, Se-Enriched Yeast and Se-Enriched Chlorella on Egg Se Concentration, Physical Parameters of Eggs and Laying Hen Production. Czech J. Anim. Sci. 2006, 51, 163–167. [Google Scholar] [CrossRef]
- Martins, C.F.; Pestana, J.M.; Alfaia, C.M.; Costa, M.; Ribeiro, D.M.; Coelho, D.; Lopes, P.A.; Almeida, A.M.; Freire, J.P.B.; Prates, J.A.M. Effects of Chlorella vulgaris as a Feed Ingredient on the Quality and Nutritional Value of Weaned Piglets’ Meat. Foods 2021, 10, 1155. [Google Scholar] [CrossRef]
- Siedenburg, J. Could Microalgae Offer Promising Options for Climate Action via Their Agri-Food Applications? Front. Sustain. Food Syst. 2022, 6, 976946. [Google Scholar] [CrossRef]
- Grosshagauer, S.; Kraemer, K.; Somoza, V. The True Value of Spirulina. J. Agric. Food Chem. 2020, 68, 4109–4115. [Google Scholar] [CrossRef] [PubMed]
- Spínola, M.P.; Costa, M.M.; Prates, J.A.M. Digestive Constraints of Arthrospira platensis in Poultry and Swine Feeding. Foods 2022, 11, 2984. [Google Scholar] [CrossRef]
- Gasco, L.; Biancarosa, I.; Liland, N.S. From Waste to Feed: A Review of Recent Knowledge on Insects as Producers of Protein and Fat for Animal Feeds. Curr. Opin. Green Sustain. Chem. 2020, 23, 67–79. [Google Scholar] [CrossRef]
- Wachira, M.N.; Osuga, I.M.; Munguti, J.M.; Ambula, M.K.; Subramanian, S.; Tanga, C.M. Efficiency and Improved Profitability of Insect-Based Aquafeeds for Farming Nile Tilapia Fish (Oreochromis niloticus L.). Animals 2021, 11, 2599. [Google Scholar] [CrossRef] [PubMed]
- Piccolo, G.; Iaconisi, V.; Marono, S.; Gasco, L.; Loponte, R.; Nizza, S.; Bovera, F.; Parisi, G. Effect of Tenebrio Molitor Larvae Meal on Growth Performance, in Vivo Nutrients Digestibility, Somatic and Marketable Indexes of Gilthead Sea Bream (Sparus aurata). Anim. Feed Sci. Technol. 2017, 226, 12–20. [Google Scholar] [CrossRef]
- Liland, N.S.; Araujo, P.; Xu, X.X.; Lock, E.-J.; Radhakrishnan, G.; Prabhu, A.J.P.; Belghit, I. A Meta-Analysis on the Nutritional Value of Insects in Aquafeeds. J. Insects Food Feed. 2021, 7, 743–759. [Google Scholar] [CrossRef]
- Hua, K. A Meta-Analysis of the Effects of Replacing Fish Meals with Insect Meals on Growth Performance of Fish. Aquaculture 2021, 530, 735732. [Google Scholar] [CrossRef]
- Khosravi, S.; Kim, E.; Lee, Y.; Lee, S. Dietary Inclusion of Mealworm (Tenebrio molitor) Meal as an Alternative Protein Source in Practical Diets for Juvenile Rockfish (Sebastes schlegeli). Entomol. Res. 2018, 48, 214–221. [Google Scholar] [CrossRef]
- Sankian, Z.; Khosravi, S.; Kim, Y.-O.; Lee, S.-M. Effects of Dietary Inclusion of Yellow Mealworm (Tenebrio molitor) Meal on Growth Performance, Feed Utilization, Body Composition, Plasma Biochemical Indices, Selected Immune Parameters and Antioxidant Enzyme Activities of Mandarin Fish (Siniperca scherze). Aquaculture 2018, 496, 79–87. [Google Scholar] [CrossRef]
- Maulu, S.; Langi, S.; Hasimuna, O.J.; Missinhoun, D.; Munganga, B.P.; Hampuwo, B.M.; Gabriel, N.N.; Elsabagh, M.; Van Doan, H.; Abdul Kari, Z.; et al. Recent Advances in the Utilization of Insects as an Ingredient in Aquafeeds: A Review. Anim. Nutr. 2022, 11, 334–349. [Google Scholar] [CrossRef]
- Shafique, L.; Abdel-Latif, H.M.R.; Hassan, F.; Alagawany, M.; Naiel, M.A.E.; Dawood, M.A.O.; Yilmaz, S.; Liu, Q. The Feasibility of Using Yellow Mealworms (Tenebrio molitor): Towards a Sustainable Aquafeed Industry. Animals 2021, 11, 811. [Google Scholar] [CrossRef] [PubMed]
- Iaconisi, V.; Marono, S.; Parisi, G.; Gasco, L.; Genovese, L.; Maricchiolo, G.; Bovera, F.; Piccolo, G. Dietary Inclusion of Tenebrio Molitor Larvae Meal: Effects on Growth Performance and Final Quality Treats of Blackspot Sea Bream (Pagellus bogaraveo). Aquaculture 2017, 476, 49–58. [Google Scholar] [CrossRef]
- Iaconisi, V.; Bonelli, A.; Pupino, R.; Gai, F.; Parisi, G. Mealworm as Dietary Protein Source for Rainbow Trout: Body and Fillet Quality Traits. Aquaculture 2018, 484, 197–204. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Jin, J.N.; Zhu, F.; Roffeis, M.; Zhang, X.Z. A Comprehensive Evaluation of Replacing Fishmeal with Housefly (Musca domestica) Maggot Meal in the Diet of Nile Tilapia (Oreochromis niloticus): Growth Performance, Flesh Quality, Innate Immunity and Water Environment. Aquac. Nutr. 2017, 23, 983–993. [Google Scholar] [CrossRef]
- Moutinho, S.; Pedrosa, R.; Magalhães, R.; Oliva-Teles, A.; Parisi, G.; Peres, H. Black Soldier Fly (Hermetia illucens) Pre-Pupae Larvae Meal in Diets for European Seabass (Dicentrarchus labrax) Juveniles: Effects on Liver Oxidative Status and Fillet Quality Traits during Shelf-Life. Aquaculture 2021, 533, 736080. [Google Scholar] [CrossRef]
- Chaklader, M.R.; Howieson, J.; Siddik, M.A.B.; Foysal, M.J.; Fotedar, R. Supplementation of Tuna Hydrolysate and Insect Larvae Improves Fishmeal Replacement Efficacy of Poultry By-Product in Lates calcarifer (Bloch, 1790) Juveniles. Sci. Rep. 2021, 11, 4997. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.S.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-Art on Use of Insects as Animal Feed. Anim. Feed Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Secci, G.; Mancini, S.; Iaconisi, V.; Gasco, L.; Basto, A.; Parisi, G. Can the Inclusion of Black Soldier Fly (Hermetia illucens) in Diet Affect the Flesh Quality/Nutritional Traits of Rainbow Trout (Oncorhynchus mykiss) after Freezing and Cooking? Int. J. Food Sci. Nutr. 2019, 70, 161–171. [Google Scholar] [CrossRef]
- Bruni, L.; Randazzo, B.; Cardinaletti, G.; Zarantoniello, M.; Mina, F.; Secci, G.; Tulli, F.; Olivotto, I.; Parisi, G. Dietary Inclusion of Full-Fat Hermetia Illucens Prepupae Meal in Practical Diets for Rainbow Trout (Oncorhynchus mykiss): Lipid Metabolism and Fillet Quality Investigations. Aquaculture 2020, 529, 735678. [Google Scholar] [CrossRef]
- Caimi, C.; Biasato, I.; Chemello, G.; Oddon, S.B.; Lussiana, C.; Malfatto, V.M.; Capucchio, M.T.; Colombino, E.; Schiavone, A.; Gai, F.; et al. Dietary Inclusion of a Partially Defatted Black Soldier Fly (Hermetia illucens) Larva Meal in Low Fishmeal-Based Diets for Rainbow Trout (Oncorhynchus mykiss). J. Anim. Sci. Biotechnol. 2021, 12, 50. [Google Scholar] [CrossRef]
- Klasing, K.C. Poultry Nutrition: A Comparative Approach. J. Appl. Poult. Res. 2005, 14, 426–436. [Google Scholar] [CrossRef]
- Józefiak, D.; Józefiak, A.; Kierończyk, B.; Rawski, M.; Świątkiewicz, S.; Długosz, J.; Engberg, R.M. Insects–A Natural Nutrient Source for Poultry–A Review. Ann. Anim. Sci. 2016, 16, 297–313. [Google Scholar] [CrossRef]
- Bovera, F.; Piccolo, G.; Gasco, L.; Marono, S.; Loponte, R.; Vassalotti, G.; Mastellone, V.; Lombardi, P.; Attia, Y.A.; Nizza, A. Yellow Mealworm Larvae (Tenebrio molitor L.) as a Possible Alternative to Soybean Meal in Broiler Diets. Br. Poult. Sci. 2015, 56, 569–575. [Google Scholar] [CrossRef]
- Gasco, L.; Biasato, I.; Dabbou, S.; Schiavone, A.; Gai, F. Animals Fed Insect-Based Diets: State-of-the-Art on Digestibility, Performance and Product Quality. Animals 2019, 9, 170. [Google Scholar] [CrossRef]
- Dabbou, S.; Gai, F.; Biasato, I.; Capucchio, M.T.; Biasibetti, E.; Dezzutto, D.; Meneguz, M.; Plachà, I.; Gasco, L.; Schiavone, A. Black Soldier Fly Defatted Meal as a Dietary Protein Source for Broiler Chickens: Effects on Growth Performance, Blood Traits, Gut Morphology and Histological Features. J. Anim. Sci. Biotechnol. 2018, 9, 49. [Google Scholar] [CrossRef]
- Schiavone, A.; Dabbou, S.; Petracci, M.; Zampiga, M.; Sirri, F.; Biasato, I.; Gai, F.; Gasco, L. Black Soldier Fly Defatted Meal as a Dietary Protein Source for Broiler Chickens: Effects on Carcass Traits, Breast Meat Quality and Safety. Animal 2019, 13, 2397–2405. [Google Scholar] [CrossRef]
- Onsongo, V.O.; Osuga, I.M.; Gachuiri, C.K.; Wachira, A.M.; Miano, D.M.; Tanga, C.M.; Ekesi, S.; Nakimbugwe, D.; Fiaboe, K.K.M. Insects for Income Generation Through Animal Feed: Effect of Dietary Replacement of Soybean and Fish Meal With Black Soldier Fly Meal on Broiler Growth and Economic Performance. J. Econ. Entomol. 2018, 111, 1966–1973. [Google Scholar] [CrossRef] [PubMed]
- Mazlan, N.A.F.; Miswan, N.A.; Ahmad, S.; Hassim, H.A.; Jamien, E.S.; Wei Ee, H.; Kumari Ramiah, S.; Idrus, Z. Black Soldier Fly (Hermetia illucens) Larvae Meal for Heat-Stressed Broiler Chicken: Its Effects on Gut Health, Stress Biomarkers, and Growth Performance. Ital. J. Anim. Sci. 2024, 23, 1391–1402. [Google Scholar] [CrossRef]
- Hartinger, K.; Greinix, J.; Thaler, N.; Ebbing, M.A.; Yacoubi, N.; Schedle, K.; Gierus, M. Effect of Graded Substitution of Soybean Meal by Hermetia illucens Larvae Meal on Animal Performance, Apparent Ileal Digestibility, Gut Histology and Microbial Metabolites of Broilers. Animals 2021, 11, 1628. [Google Scholar] [CrossRef]
- Hartinger, K.; Fröschl, K.; Ebbing, M.A.; Bruschek-Pfleger, B.; Schedle, K.; Schwarz, C.; Gierus, M. Suitability of Hermetia illucens Larvae Meal and Fat in Broiler Diets: Effects on Animal Performance, Apparent Ileal Digestibility, Gut Histology, and Microbial Metabolites. J. Anim. Sci. Biotechnol. 2022, 13, 50. [Google Scholar] [CrossRef] [PubMed]
- Murawska, D.; Daszkiewicz, T.; Sobotka, W.; Gesek, M.; Witkowska, D.; Matusevičius, P.; Bakuła, T. Partial and Total Replacement of Soybean Meal with Full-Fat Black Soldier Fly (Hermetia illucens L.) Larvae Meal in Broiler Chicken Diets: Impact on Growth Performance, Carcass Quality and Meat Quality. Animals 2021, 11, 2715. [Google Scholar] [CrossRef]
- Bovera, F.; Loponte, R.; Marono, S.; Piccolo, G.; Parisi, G.; Iaconisi, V.; Gasco, L.; Nizza, A. Use of Tenebrio molitor Larvae Meal as Protein Source in Broiler Diet: Effect on Growth Performance, Nutrient Digestibility, and Carcass and Meat Traits. J. Anim. Sci. 2016, 94, 639–647. [Google Scholar] [CrossRef]
- Biasato, I.; Gasco, L.; De Marco, M.; Renna, M.; Rotolo, L.; Dabbou, S.; Capucchio, M.T.; Biasibetti, E.; Tarantola, M.; Sterpone, L.; et al. Yellow Mealworm Larvae (Tenebrio molitor) Inclusion in Diets for Male Broiler Chickens: Effects on Growth Performance, Gut Morphology, and Histological Findings. Poult. Sci. 2018, 97, 540–548. [Google Scholar] [CrossRef]
- Biasato, I.; De Marco, M.; Rotolo, L.; Renna, M.; Lussiana, C.; Dabbou, S.; Capucchio, M.T.; Biasibetti, E.; Costa, P.; Gai, F.; et al. Effects of Dietary Tenebrio molitor Meal Inclusion in Free-range Chickens. J. Anim. Physiol. Anim. Nutr. 2016, 100, 1104–1112. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Khan, R.U.; Alam, W.; Sultan, A. Evaluating the Nutritive Profile of Three Insect Meals and Their Effects to Replace Soya Bean in Broiler Diet. J. Anim. Physiol. Anim. Nutr. 2018, 102, e662–e668. [Google Scholar] [CrossRef]
- Elahi, U.; Wang, J.; Ma, Y.; Wu, S.; Wu, J.; Qi, G.; Zhang, H. Evaluation of Yellow Mealworm Meal as a Protein Feedstuff in the Diet of Broiler Chicks. Animals 2020, 10, 224. [Google Scholar] [CrossRef]
- Dalmoro, Y.K.; Franceschi, C.H.; Stefanello, C. A Systematic Review and Metanalysis on the Use of Hermetia illucens and Tenebrio molitor in Diets for Poultry. Vet. Sci. 2023, 10, 702. [Google Scholar] [CrossRef]
- Martínez Marín, A.L.; Gariglio, M.; Biasato, I.; Gasco, L.; Schiavone, A. Meta-Analysis of the Effect of Black Soldier Fly Larvae Meal in Diet on Broiler Performance and Prediction of Its Metabolisable Energy Value. Ital. J. Anim. Sci. 2023, 22, 379–387. [Google Scholar] [CrossRef]
- Maurer, V.; Holinger, M.; Amsler, Z.; Früh, B.; Wohlfahrt, J.; Stamer, A.; Leiber, F. Replacement of Soybean Cake by Hermetia illucens Meal in Diets for Layers. J. Insects Food Feed. 2016, 2, 83–90. [Google Scholar] [CrossRef]
- Kawasaki, K.; Hashimoto, Y.; Hori, A.; Kawasaki, T.; Hirayasu, H.; Iwase, S.; Hashizume, A.; Ido, A.; Miura, C.; Miura, T.; et al. Evaluation of Black Soldier Fly (Hermetia illucens) Larvae and Pre-Pupae Raised on Household Organic Waste, as Potential Ingredients for Poultry Feed. Animals 2019, 9, 98. [Google Scholar] [CrossRef] [PubMed]
- Marono, S.; Loponte, R.; Lombardi, P.; Vassalotti, G.; Pero, M.E.; Russo, F.; Gasco, L.; Parisi, G.; Piccolo, G.; Nizza, S.; et al. Productive Performance and Blood Profiles of Laying Hens Fed Hermetia illucens Larvae Meal as Total Replacement of Soybean Meal from 24 to 45 Weeks of Age. Poult. Sci. 2017, 96, 1783–1790. [Google Scholar] [CrossRef]
- Sedgh-Gooya, S.; Torki, M.; Darbemamieh, M.; Khamisabadi, H.; Abdolmohamadi, A. Effect of Dietary Inclusion of Yellow Mealworm (Tenebrio molitor) Larvae Meal on Productive Performance, Egg Quality Indices and Blood Parameters of Laying Hens. Anim. Prod. Sci. 2021, 61, 1365–1372. [Google Scholar] [CrossRef]
- Ait-Kaki, A.; Chebli, Y.; El Otmani, S.; Moula, N. Effects of Yellow Mealworm Larvae (Tenebrio molitor) and Turmeric Powder (Curcuma) on Laying Hens Performance, Physical and Nutritional Eggs Quality. J. Indones. Trop. Anim. Agric. 2022, 47, 87–96. [Google Scholar] [CrossRef]
- Kozłowski, K.; Ognik, K.; Stępniowska, A.; Juśkiewicz, J.; Zduńczyk, Z.; Kierończyk, B.; Benzertiha, A.; Józefiak, D.; Jankowski, J. Growth Performance, Immune Status and Intestinal Fermentative Processes of Young Turkeys Fed Diet with Additive of Full Fat Meals from Tenebrio molitor and Hermetia illucens. Anim. Feed Sci. Technol. 2021, 278, 114994. [Google Scholar] [CrossRef]
- Jankowski, J.; Kozłowski, K.; Zduńczyk, Z.; Stępniowska, A.; Ognik, K.; Kierończyk, B.; Józefiak, D.; Juśkiewicz, J. The Effect of Dietary Full-Fat Hermetia illucens Larvae Meal on Gut Physiology and Growth Performance in Young Turkeys. Anim. Feed Sci. Technol. 2021, 275, 114879. [Google Scholar] [CrossRef]
- Lalev, M.; Mincheva, N.; Oblakova, M.; Hristakieva, P.; Ivanova, I.; Atanassov, A.; Petrova, A. Effects of Insect-and Probiotic-Based Diets on Turkeys’ Production, Health, and Immune Parameters. Bulg. J. Agric. Sci. 2020, 26, 1254–1265. [Google Scholar]
- Ryhänen, E.; Perttilä, S.; Tupasela, T.; Valaja, J.; Eriksson, C.; Larkka, K. Effect of Camelina Sativa Expeller Cake on Performance and Meat Quality of Broilers. J. Sci. Food Agric. 2007, 87, 1489–1494. [Google Scholar] [CrossRef]
- Neupane, D.; Solomon, J.K.Q.; Mclennon, E.; Davison, J.; Lawry, T. Sowing Date and Sowing Method Influence on Camelina Cultivars Grain Yield, Oil Concentration, and Biodiesel Production. Food Energy Secur. 2019, 8, e00166. [Google Scholar] [CrossRef]
- Juodka, R.; Nainienė, R.; Juškienė, V.; Juška, R.; Leikus, R.; Kadžienė, G.; Stankevičienė, D. Camelina (Camelina sativa (L.) Crantz) as Feedstuffs in Meat Type Poultry Diet: A Source of Protein and n-3 Fatty Acids. Animals 2022, 12, 295. [Google Scholar] [CrossRef]
- Orczewska-Dudek, S.; Pietras, M. The Effect of Dietary Camelina Sativa Oil or Cake in the Diets of Broiler Chickens on Growth Performance, Fatty Acid Profile, and Sensory Quality of Meat. Animals 2019, 9, 734. [Google Scholar] [CrossRef] [PubMed]
- Cullere, M.; Singh, Y.; Pellattiero, E.; Berzuini, S.; Galasso, I.; Clemente, C.; Dalle Zotte, A. Effect of the Dietary Inclusion of Camelina Sativa Cake into Quail Diet on Live Performance, Carcass Traits, and Meat Quality. Poult. Sci. 2023, 102, 102650. [Google Scholar] [CrossRef]
- Singh, Y.; Cullere, M.; Tůmová, E.; Dalle Zotte, A. Camelina Sativa as a Sustainable and Feasible Feedstuff for Broiler Poultry Species: A Review. Czech J. Anim. Sci. 2023, 68, 277–295. [Google Scholar] [CrossRef]
- Matthäus, B.; Zubr, J. Variability of Specific Components in Camelina Sativa Oilseed Cakes. Ind. Crops Prod. 2000, 12, 9–18. [Google Scholar] [CrossRef]
- Russo, R.; Reggiani, R. Glucosinolates and Sinapine in Camelina Meal. Food Nutr. Sci. 2017, 08, 1063–1073. [Google Scholar] [CrossRef]
- Smit, M.N.; Beltranena, E. Effects of Feeding Camelina Cake to Weaned Pigs on Safety, Growth Performance, and Fatty Acid Composition of Pork. J. Anim. Sci. 2017, 95, 2496. [Google Scholar] [CrossRef]
- Hilbrands, A.M.; Johnston, L.J.; Cox, R.B.; Forcella, F.; Gesch, R.; Li, Y.Z. Effects of Increasing Dietary Inclusion of Camelina Cake on Growth Performance of Growing-Finishing Pigs. Transl. Anim. Sci. 2021, 5, txab140. [Google Scholar] [CrossRef]
- Frame, D.D.; Palmer, M.; Peterson, B. Use of Camelina Sativa in the Diets of Young Turkeys. J. Appl. Poult. Res. 2007, 16, 381–386. [Google Scholar] [CrossRef]
- Pekel, A.Y.; Patterson, P.H.; Hulet, R.M.; Acar, N.; Cravener, T.L.; Dowler, D.B.; Hunter, J.M. Dietary Camelina Meal versus Flaxseed with and without Supplemental Copper for Broiler Chickens: Live Performance and Processing Yield. Poult. Sci. 2009, 88, 2392–2398. [Google Scholar] [CrossRef]
- Cherian, G.; Campbell, A.; Parker, T. Egg Quality and Lipid Composition of Eggs from Hens Fed Camelina Sativa. J. Appl. Poult. Res. 2009, 18, 143–150. [Google Scholar] [CrossRef]
- Aziza, A.E.; Panda, A.K.; Quezada, N.; Cherian, G. Nutrient Digestibility, Egg Quality, and Fatty Acid Composition of Brown Laying Hens Fed Camelina or Flaxseed Meal. J. Appl. Poult. Res. 2013, 22, 832–841. [Google Scholar] [CrossRef]
- Lolli, S.; Grilli, G.; Ferrari, L.; Battelli, G.; Pozzo, S.; Galasso, I.; Russo, R.; Brasca, M.; Reggiani, R.; Ferrante, V. Effect of Different Percentage of Camelina Sativa Cake in Laying Hens Diet: Performance, Welfare, and Eggshell Quality. Animals 2020, 10, 1396. [Google Scholar] [CrossRef]
- Tabacco, E.; Comino, L.; Borreani, G. Production Efficiency, Costs and Environmental Impacts of Conventional and Dynamic Forage Systems for Dairy Farms in Italy. Eur. J. Agron. 2018, 99, 1–12. [Google Scholar] [CrossRef]
- Stagnari, F.; Maggio, A.; Galieni, A.; Pisante, M. Multiple Benefits of Legumes for Agriculture Sustainability: An Overview. Chem. Biol. Technol. Agric. 2017, 4, 2. [Google Scholar] [CrossRef]
- Seiter, S.; Altemose, C.E.; Davis, M.H. Forage Soybean Yield and Quality Responses to Plant Density and Row Distance. Agron. J. 2004, 96, 966–970. [Google Scholar] [CrossRef]
- Spanghero, M.; Zanfi, C.; Signor, M.; Davanzo, D.; Volpe, V.; Venerus, S. Effects of Plant Vegetative Stage and Field Drying Time on Chemical Composition and in Vitro Ruminal Degradation of Forage Soybean Silage. Anim. Feed Sci. Technol. 2015, 200, 102–106. [Google Scholar] [CrossRef]
- Rota Graziosi, A.; Gislon, G.; Colombini, S.; Bava, L.; Rapetti, L. Partial Replacement of Soybean Meal with Soybean Silage and Responsible Soybean Meal in Lactating Cows Diet: Part 2, Environmental Impact of Milk Production. Ital. J. Anim. Sci. 2022, 21, 645–658. [Google Scholar] [CrossRef]
- Darmosarkoro, W.; Harbur, M.M.; Buxton, D.R.; Moore, K.J.; Devine, T.E.; Anderson, I.C. Growth, Development, and Yield of Soybean Lines Developed for Forage. Agron. J. 2001, 93, 1028–1034. [Google Scholar] [CrossRef]
- Vargas-Bello-Pérez, E.; Mustafa, A.F.; Seguin, P. Effects of Feeding Forage Soybean Silage on Milk Production, Nutrient Digestion, and Ruminal Fermentation of Lactating Dairy Cows. J. Dairy Sci. 2008, 91, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Hintz, R.W.; Albrecht, K.A.; Oplinger, E.S. Yield and Quality of Soybean Forage as Affected by Cultivar and Management Practices. Agron. J. 1992, 84, 795–798. [Google Scholar] [CrossRef]
- Rota Graziosi, A.; Colombini, S.; Crovetto, G.M.; Galassi, G.; Chiaravalli, M.; Battelli, M.; Reginelli, D.; Petrera, F.; Rapetti, L. Partial Replacement of Soybean Meal with Soybean Silage in Lactating Dairy Cows Diet: Part 1, Milk Production, Digestibility, and N Balance. Ital. J. Anim. Sci. 2022, 21, 634–644. [Google Scholar] [CrossRef]
- Sheaffer, C.C.; Orf, J.H.; Devine, T.E.; Jewett, J.G. Yield and Quality of Forage Soybean. Agron. J. 2001, 93, 99–106. [Google Scholar] [CrossRef]
- INRA. INRA Feeding System for Ruminants; Wageningen Academic Publishers: Wageningen, The Netherlands, 2018; ISBN 978-90-8686-292-4. [Google Scholar]
- Wang, C.; Zheng, M.; Wu, S.; Zou, X.; Chen, X.; Ge, L.; Zhang, Q. Effects of Gallic Acid on Fermentation Parameters, Protein Fraction, and Bacterial Community of Whole Plant Soybean Silage. Front. Microbiol. 2021, 12, 662966. [Google Scholar] [CrossRef]
- Ghizzi, L.G.; Del Valle, T.A.; Zilio, E.M.C.; Sakamoto, L.Y.; Marques, J.A.; Dias, M.S.S.; Nunes, A.T.; Gheller, L.S.; Silva, T.B.D.P.; Grigoletto, N.T.; et al. Partial Replacement of Corn Silage with Soybean Silage on Nutrient Digestibility, Ruminal Fermentation, and Milk Fatty Acid Profile of Dairy Cows. Anim. Feed Sci. Technol. 2020, 266, 114526. [Google Scholar] [CrossRef]
- Tabacco, E.; Comino, L.; Revello-Chion, A.; Borreani, G. Fermentative Profile, Microbial and Chemical Characteristics and Aerobic Stability of Whole Crop Soybean Silage Affected by the Stage of Growth and Inoculation with Lactic Acid Bacteria. In Proceedings of the 18th International Silage Conference (XVIII), Bonn, Germany, 24–26 July 2018; pp. 180–181. [Google Scholar]
- Ni, K.; Wang, F.; Zhu, B.; Yang, J.; Zhou, G.; Pan, Y.; Tao, Y.; Zhong, J. Effects of Lactic Acid Bacteria and Molasses Additives on the Microbial Community and Fermentation Quality of Soybean Silage. Bioresour. Technol. 2017, 238, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Gandra, J.R.; Takiya, C.S.; Del Valle, T.A.; Oliveira, E.R.; de Goes, R.H.T.B.; Gandra, E.R.S.; Batista, J.D.O.; Araki, H.M.C. Soybean Whole-Plant Ensiled with Chitosan and Lactic Acid Bacteria: Microorganism Counts, Fermentative Profile, and Total Losses. J. Dairy Sci. 2018, 101, 7871–7880. [Google Scholar] [CrossRef]
- Ni, K.; Zhao, J.; Zhu, B.; Su, R.; Pan, Y.; Ma, J.; Zhou, G.; Tao, Y.; Liu, X.; Zhong, J. Assessing the Fermentation Quality and Microbial Community of the Mixed Silage of Forage Soybean with Crop Corn or Sorghum. Bioresour. Technol. 2018, 265, 563–567. [Google Scholar] [CrossRef] [PubMed]
- National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Dairy Cattle, 8th ed.; National Academies Press: Washington, DC, USA, 2021; ISBN 978-0-309-67777-6. [Google Scholar]
- Silva, T.B.P.; Del Valle, T.A.; Ghizzi, L.G.; Silva, G.G.; Gheller, L.S.; Marques, J.A.; Dias, M.S.S.; Nunes, A.T.; Grigoletto, N.T.S.; Takiya, C.S.; et al. Partial Replacement of Corn Silage with Whole-Plant Soybean and Black Oat Silages for Dairy Cows. J. Dairy Sci. 2021, 104, 9842–9852. [Google Scholar] [CrossRef]
- Oba, M.; Allen, M.S. Evaluation of the Importance of the Digestibility of Neutral Detergent Fiber from Forage: Effects on Dry Matter Intake and Milk Yield of Dairy Cows. J. Dairy Sci. 1999, 82, 589–596. [Google Scholar] [CrossRef]
- Broderick, G.A. Effects of Varying Dietary Protein and Energy Levels on the Production of Lactating Dairy Cows. J. Dairy Sci. 2003, 86, 1370–1381. [Google Scholar] [CrossRef]
- Heuzé, V.; Thiollet, H.; Tran, G.; Lebas, F. Tef (Eragrostis tef) Hay. Available online: https://www.feedipedia.org/node/22768 (accessed on 5 November 2025).
- Bedane, G.M.; Saukuru, A.M.; George, D.L.; Gupta, M.L. Evaluation of Teff (Eragrostis tef [Zucc.] Trotter) Lines for Agronomic Traits in Australia. Aust. J. Crop Sci. 2015, 9, 242–247. [Google Scholar]
- Lee, H. Teff, A Rising Global Crop: Current Status of Teff Production and Value Chain. Open Agric. J. 2018, 12, 185–193. [Google Scholar] [CrossRef]
- DeBoer, M.L.; Sheaffer, C.C.; Grev, A.M.; Catalano, D.N.; Wells, M.S.; Hathaway, M.R.; Martinson, K.L. Yield, Nutritive Value, and Preference of Annual Warm-Season Grasses Grazed by Horses. Agron. J. 2017, 109, 2136–2148. [Google Scholar] [CrossRef]
- Roseberg, R.J.; Shuck, R.A.; Charlton, B.A. Yield and Forage Quality of Six Teff Seed Brands as Affected by Seeding Date in the Klamath Basin. Res. Klamath Basin 2008 Annu. Rep. 2008, 2008, 30–41. [Google Scholar]
- Hunter, M.; Ketterings, Q.M.; Cherney, J.H.; Barney, P.; Kilcer, T.; Godwin, G. Nitrogen Needs of Teff Managed as Forage Crop in New York. Forage Grazinglands 2009, 7, 1–9. [Google Scholar] [CrossRef]
- Saylor, B.A.; Min, D.; Bradford, B.J. Effects of Cultivar and Harvest Days after Planting on Dry Matter Yield and Nutritive Value of Teff. J. Anim. Sci. Technol. 2021, 63, 510–519. [Google Scholar] [CrossRef] [PubMed]
- Saylor, B.A.; Min, D.H.; Bradford, B.J. Productivity of Lactating Dairy Cows Fed Diets with Teff Hay as the Sole Forage. J. Dairy Sci. 2018, 101, 5984–5990. [Google Scholar] [CrossRef]
- Ritz, K.E.; Heins, B.J.; Moon, R.; Sheaffer, C.; Weyers, S.L. Forage Yield and Nutritive Value of Cool-Season and Warm-Season Forages for Grazing Organic Dairy Cattle. Agronomy 2020, 10, 1963. [Google Scholar] [CrossRef]
- Vinyard, J.R.; Hall, J.B.; Sprinkle, J.E.; Chibisa, G.E. Effects of Maturity at Harvest on the Nutritive Value and Ruminal Digestion of Eragrostis tef (Cv. Moxie) When Fed to Beef Cattle. J. Anim. Sci. 2018, 96, 3420–3432. [Google Scholar] [CrossRef]
- Ream, C.N.; Stevens, A.V.; Hall, J.B.; Chibisa, G.E. Harvest Maturity of Eragrostis tef ‘Moxie’: Effects on Ruminal Fermentation, Total-Tract Nutrient Digestibility, and Growth Performance in Backgrounding Beef Cattle. Appl. Anim. Sci. 2020, 36, 600–609. [Google Scholar] [CrossRef]
| Legumes | DM 1, % | CP 2 | NDF 3 | ADF 4 | ADL 5 | Starch | EE 6 | Ash | GE 7, MJ/kg DM | References |
|---|---|---|---|---|---|---|---|---|---|---|
| Vicia faba var. minor | 85–92 | 250–290 | 126–240 | 100–160 | 4–12 | 300–450 | 9–13 | 34–41 | 18–19.5 | [19,20,21,22] |
| Pisum sativum | 87.8 | 233 | 104–246 | 65 | 0.5 | 329–530 | 13 | 31 | 19 | [20,22] |
| Cicer arietinum | 92–95.5 | 255–284 | 123–154 | 46–47 | 0.5–1 | 332–356 | 45–46 | 34–39 | 18.8–19 | [20,23] |
| Lupinus albus | 91–92 | 309–454 | 189–217 | 96–184 | 27–49 | 13–74 | 70–106 | 44–68 | 8.0 | [20,24,25,26] |
| Lupinus luteus | 90.5–91.1 | 322–343 | 217–252 | 195–213 | 15–24 | 38–49 | 52–59 | 40–66 | 20.5 | [27] |
| Lupinus angustifolius | 90–90.5 | 277–303 | 220–312 | 236–276 | 29–37 | 45–101 | 33–46 | 47 | 20 | [22,26,28] |
| Soybean meal | 86.8–88.8 | 478–512 (44% CP) 536–568 (49% CP) | 125–171 (44% CP) 88–122 (49% CP) | 67–111 (44% CP) 45–69 (49% CP) | 3–13 (44% CP) 1–7 (49% CP) | 9 (44% CP) 11 (49% CP) | 13–25 (44% CP) 11–23 (49% CP) | 67–81 (44% CP) 68–78 (49% CP) | 18.9–20.1 (44% CP) 194–200 (49% CP) | [29] |
| Legumes | Vicia faba var. Minor | Pisum sativum | Cicer arietinum | L. albus | L. luteus | L. angustifolius |
|---|---|---|---|---|---|---|
| Phenolic compounds | 4.8–13 * (pod extract) | 0.5–1.3 * | 47 ± 18.4 ** | 227 ± 137.9 ** | 960 ± 203.9 ** | 679 ± 20.2 ** |
| 2.9 * (whole seed) | 152 ± 64.2 ** | *§ 0.93–10.8 | ||||
| 22.5 * (seed coat) | ||||||
| 214 ± 120.6 ** (whole seed) | ||||||
| - Phenolic acids | 23–138 ** | 57–248 ** | 27–107 ** | 7.5 ** | 10–28 ** | nd *** |
| - Flavonoids | 6–245 ** | 6–57 ** | 0–21 ** | 130–465 ** | 706–1144 ** | 665–692 ** |
| 148.5–302.1 ††† (whole seeds) | ||||||
| - Tannins | 2.1–7.4 † | 4.69 † | 3.78 † | 3.1–7.7 ! | 2.2–2.7 ! | 1.3–1.6 ! |
| Carotenoids | 3.4–3.5 ††† | 5.41–28.19 †† | 8.9–31.3 †† | 8.9–12.7 ** | 6.1–6.3 ** | 17.2–62.5 ** |
| Tocopherols | 5.4–6.2 †† | 6.54–13.9 †† | 8.7–11.3 †† | 922–1834 †† | 1415–1773 †† | 674 †† |
| Microalga | Dietary Level | Category, Initial Body Weight and Age | Main Results vs. Control Diets | Reference | |
|---|---|---|---|---|---|
| Piglets | SP | 2–20 g/kg for 28 d | Weaning piglets, 3.7 kg, 11–12 d | No change in growth performance | [105] |
| SP/CHL | 1% as fed for 14 d | Weaned piglets, 9.1 kg, 28 d | Improved intestinal mucosa and nutrient digestibility. Positive effects of CHL on digestive disorders after weaning | [106] | |
| SP/CHL | 385 mg/kg BW for 14 d | Weaning piglets 4.9 kg, 14 d; weaned piglets 9.04 kg | Increased weaning weight and reduced diarrhea occurrence | [107] | |
| CHL | 5% as fed for 15 d | Weaning piglets 11.2 kg, 28 d | No change in growth performance and meat quality. Increased carotenoids and n-3 PUFA content, enhanced antioxidant activity, and hepatic lipid metabolism | [108] | |
| Fattening pigs | CHL | 5% as fed from 59.1 to 101 kg BW | Barrows 59.1 kg | No changes in growth performance, carcass, and meat quality traits. Increased lipid-soluble antioxidant pigments and n-3 PUFA of meat. Strong immunosuppressive effect, and increased hepatic content of n-3 PUFA | [109,110] |
| SP | 50 to 100% replacement of soybean, from 22 to 75 kg BW | Barrows 22 kg | No change in sensory attributes and physico-chemical parameters of meat. | [111] | |
| Sows | SP | 20 g/d for 29 weeks | Gilts 119.3 kg, 5.6 months | Moderate effects on growth performance, carcass, and meat quality of the offspring | [112] |
| Broilers | SP | 40–80 g/kg as fed for 16 d | Male chicks 678 g, 21 d | No change in growth performance. Increased redness and yellowness of meat | [113] |
| SP | 100% replacement of corn (study 1), 6–21% DM for 18 days (study 2) | Chicks 3 d | Increased amino acids digestibility with 100% replacement; no changes until 16% replacement, decrease in performance and amino acid digestibility with 21% replacement | [114] | |
| SP | 50% replacement of soybean for 35 d | Male chicks 1 d | SP increased pH and WHC and decreased metallic off-flavour of meat. | [115] | |
| SP | 50 to 75% substitution of soybean for 35 d | Chicks 1 d | SP increased meat colour and lipid oxidation; no effects on sensory attributes. | [116] | |
| CHL | 25 to 75 g/kg for 35 d | Chicks 1 d | CHL increased growth rate, immune response intestinal microflora status | [117] | |
| CHL | 0.2 to 1% for 35 d | Chicks 45 g, 1 d | With 1% inclusion, better growth rate, feed conversion ratio, and immune status. | [118] | |
| Laying hens | SP | 1.5 to 2.5% for 4 weeks | Hens 1500 g, 63 weeks | No changes in production performance, increase in egg yolk colour with SP at 2.5% | [119] |
| Rabbits | CHL | 200 to 500 mg/kg BW | Females, 935 g, 6 weeks | Increases feed intake, BW, carcass weights, and reduction in oxidative stress | [120] |
| CHL | 0.5 to 1.5 g/kg diet for 8 weeks | Males, 635 g, 5 weeks | No change in growth performance, reduced alanine transferase activity, increase in hematochemical and immune parameters | [121] | |
| SP/CHL | 300 to 500 mg/kg diet for 8 weeks | Males, 665 g, 5 weeks | Improved growth, intestinal enzyme efficiency, blood health, and antioxidant parameters. | [122] |
| Maturity | DM 1 (%) | OM 2 | CP 3 | NDF 4 | ADF 5 | EE 6 | GE 7 (kcal/kg DM) |
|---|---|---|---|---|---|---|---|
| Early varieties: | |||||||
| Pod setting R3 | 17.2 | 895 | 174 | 461 | 326 | 25 | 4380 |
| Seed setting R5 | 23.2 | 910 | 180 | 422 | 293 | 50 | 4460 |
| Mature seeds R7 | 32.1 | 918 | 228 | 441 | 309 | 75 | 4700 |
| Late varieties: | |||||||
| Beginning of flowering R1 | 16.2 | 888 | 154 | 467 | 331 | 20 | 4350 |
| Flowering R2 | 18.9 | 892 | 150 | 488 | 348 | 10 | 4370 |
| Pod setting R3 | 20.8 | 897 | 169 | 469 | 332 | 25 | 4390 |
| Seed setting R5 | 23.9 | 908 | 171 | 458 | 323 | 35 | 4450 |
| DM 1 (%) | Ash | CP 2 | RUP 3 (%CP) | NDF 4 | IVNDFD 5 (%NDF) | ADF 6 | ADL 7 | Starch | WSC 8 | EE 9 | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Lucerne silage | 42.9 | 106 | 205 | 27.0 | 432 | 49.4 | 337 | 74 | 20 | 63 | 29 |
| Pea silage | 31.7 | 114 | 170 | 27.0 | 525 | 57.7 | 371 | 64 | 34 | 45 | 38 |
| Soybean silage | 37.5 | 101 | 180 | 21.0 | 453 | 47.7 | 356 | 78 | 45 | 43 | 43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lanza, M.; Battelli, M.; Gallo, L.; Soglia, F.; Bovera, F.; Giunta, F.; Primi, R.; Biondi, L.; Giannuzzi, D.; Zampiga, M.; et al. Sustainability of Animal Production Chains: Alternative Protein Sources as an Ecological Driver in Animal Feeding: A Review. Animals 2025, 15, 3245. https://doi.org/10.3390/ani15223245
Lanza M, Battelli M, Gallo L, Soglia F, Bovera F, Giunta F, Primi R, Biondi L, Giannuzzi D, Zampiga M, et al. Sustainability of Animal Production Chains: Alternative Protein Sources as an Ecological Driver in Animal Feeding: A Review. Animals. 2025; 15(22):3245. https://doi.org/10.3390/ani15223245
Chicago/Turabian StyleLanza, Massimiliano, Marco Battelli, Luigi Gallo, Francesca Soglia, Fulvia Bovera, Francesco Giunta, Riccardo Primi, Luisa Biondi, Diana Giannuzzi, Marco Zampiga, and et al. 2025. "Sustainability of Animal Production Chains: Alternative Protein Sources as an Ecological Driver in Animal Feeding: A Review" Animals 15, no. 22: 3245. https://doi.org/10.3390/ani15223245
APA StyleLanza, M., Battelli, M., Gallo, L., Soglia, F., Bovera, F., Giunta, F., Primi, R., Biondi, L., Giannuzzi, D., Zampiga, M., Addeo, N. F., Cannas, A., Danieli, P. P., Ronchi, B., & Crovetto, G. M. (2025). Sustainability of Animal Production Chains: Alternative Protein Sources as an Ecological Driver in Animal Feeding: A Review. Animals, 15(22), 3245. https://doi.org/10.3390/ani15223245

