Primary Uterine Inertia (PUI) in Dogs Is Associated with Impaired Placental Availability of Factors Involved in the Parturition Cascade
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Tissue Collection and Preservation
2.2. RNA Isolation, Reverse Transcription and Semi-Quantitative Real-Time TaqMan PCR
2.3. Immunohistochemistry Staining and Image Analysis
2.4. Protein Extraction and Western Blot
2.5. Placental Microsomal Cortisol-to-Cortisone Conversion Activity
2.6. Statistical Analysis
3. Results
3.1. Placental Transcriptional Availability of Parturition Cascade-Associated Factors
3.2. Immunohistochemistry
3.3. PGR Protein Availability in the Placenta at Prepartum Luteolysis and PUI
3.4. Placental Microsomal Cortisol-to-Cortisone Conversion Capacity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoffmann, B.; Hoveler, R.; Nohr, B.; Hasan, S.H. Investigations on hormonal changes around parturition in the dog and the occurrence of pregnancy-specific non conjugated oestrogens. Exp. Clin. Endocrinol. Diabetes 1994, 102, 185–189. [Google Scholar] [CrossRef]
- Nishiyama, T.; Tsumagari, S.; Ito, M.; Kimura, J.; Watanabe, G.; Taya, K.; Takeishi, M. Immunohistochemical study of steroidogenic enzymes in the ovary and placenta during pregnancy in the dog. Anat. Histol. Embryol. 1999, 28, 125–129. [Google Scholar] [CrossRef]
- Onclin, K.; Murphy, B.; Verstegen, J.P. Comparisons of estradiol, LH and FSH patterns in pregnant and nonpregnant beagle bitches. Theriogenology 2002, 57, 1957–1972. [Google Scholar] [CrossRef]
- Gram, A.; Buchler, U.; Boos, A.; Hoffmann, B.; Kowalewski, M.P. Biosynthesis and degradation of canine placental prostaglandins: Prepartum changes in expression and function of prostaglandin F2alpha-synthase (PGFS, AKR1C3) and 15-hydroxyprostaglandin dehydrogenase (HPGD). Biol. Reprod. 2013, 89, 1–12. [Google Scholar] [CrossRef]
- Concannon, P.W. Endocrinologic control of normal canine ovarian function. Reprod. Domest. Anim. 2009, 44, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Kowalewski, M.P.; Beceriklisoy, H.B.; Pfarrer, C.; Aslan, S.; Kindahl, H.; Kucukaslan, I.; Hoffmann, B. Canine placenta: A source of prepartal prostaglandins during normal and antiprogestin-induced parturition. Reproduction 2010, 139, 655–664. [Google Scholar] [CrossRef]
- Kowalewski, M.P. Advances in understanding canine pregnancy: Endocrine and morpho-functional regulation. Reprod. Domest. Anim. 2023, 58, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Veronesi, M.C.; Battocchio, M.; Marinelli, L.; Faustini, M.; Kindahl, H.; Cairoli, F. Correlations among body temperature, plasma progesterone, cortisol and prostaglandin F2α of the periparturient bitch. J. Vet. Med. A Physiol. Pathol. Clin. Med. 2002, 49, 264–268. [Google Scholar] [CrossRef]
- Nohr, B.; Hoffmann, B.; Steinetz, B.E. Investigation of the endocrine control of parturition in the dog by application of an antigestagen. J. Reprod. Fertil. Suppl. 1993, 47, 542–543. [Google Scholar] [PubMed]
- Kowalewski, M.P.; Kautz, E.; Hogger, E.; Hoffmann, B.; Boos, A. Interplacental uterine expression of genes involved in prostaglandin synthesis during canine pregnancy and at induced prepartum luteolysis/abortion. Reprod. Biol. Endocrinol. 2014, 12, 46. [Google Scholar] [CrossRef]
- Luz, M.R.; Bertan, C.M.; Binelli, M.; Lopes, M.D. In vitro PGF2alpha production by endometrium and corpus luteum explants from pregnant and nonpregnant diestrus bitches and placental explants from pregnant bitches. Theriogenology 2006, 66, 1442–1447. [Google Scholar] [CrossRef] [PubMed]
- Jungmann, C.; Dyhrberg Haubuff, S.; Packeiser, E.M.; Korber, H.; Reichler, I.M.; Balogh, O.; Mazzuoli-Weber, G.; Goericke-Pesch, S. Insights into the role of PGF2α in canine Periparturient myometrium. Front. Physiol. 2024, 15, 1392080. [Google Scholar] [CrossRef]
- Graubner, F.R.; Reichler, I.M.; Rahman, N.A.; Payan-Carreira, R.; Boos, A.; Kowalewski, M.P. Decidualization of the canine uterus: From early until late gestational in vivo morphological observations, and functional characterization of immortalized canine uterine stromal cell lines. Reprod. Domest. Anim. 2017, 52 (Suppl. S2), 137–147. [Google Scholar] [CrossRef]
- Vermeirsch, H.; Simoens, P.; Hellemans, A.; Coryn, M.; Lauwers, H. Immunohistochemical detection of progesterone receptors in the canine uterus and their relation to sex steroid hormone levels. Theriogenology 2000, 53, 773–788. [Google Scholar] [CrossRef]
- Tavares Pereira, M.; Kazemian, A.; Rehrauer, H.; Kowalewski, M.P. Transcriptomic profiling of canine decidualization and effects of antigestagens on decidualized dog uterine stromal cells. Sci. Rep. 2022, 12, 21890. [Google Scholar] [CrossRef]
- Tavares Pereira, M.; Schuler, G.; Aslan, S.; Payan-Carreira, R.; Reichler, I.M.; Reynaud, K.; Kowalewski, M.P. Utero-placental expression and functional implications of HSD11B1 and HSD11B2 in canine pregnancy. Biol. Reprod. 2023, 108, 645–658. [Google Scholar] [CrossRef]
- Nowak, M.; Rehrauer, H.; Ay, S.S.; Findik, M.; Boos, A.; Kautz, E.; Kowalewski, M.P. Gene expression profiling of the canine placenta during normal and antigestagen-induced luteolysis. Gen. Comp. Endocrinol. 2019, 282, 113194. [Google Scholar] [CrossRef]
- Concannon, P.W.; Powers, M.E.; Holder, W.; Hansel, W. Pregnancy and parturition in the bitch. Biol. Reprod. 1977, 16, 517–526. [Google Scholar]
- Concannon, P.W.; Butler, W.R.; Hansel, W.; Knight, P.J.; Hamilton, J.M. Parturition and lactation in the bitch: Serum progesterone, cortisol and prolactin. Biol. Reprod. 1978, 19, 1113–1118. [Google Scholar] [CrossRef] [PubMed]
- Olsson, K.; Bergstrom, A.; Kindahl, H.; Lagerstedt, A.S. Increased plasma concentrations of vasopressin, oxytocin, cortisol and the prostaglandin F2α metabolite during labour in the dog. Acta Physiol. Scand. 2003, 179, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Gram, A.; Trachsel, A.; Boos, A.; Kowalewski, M.P. Elevated utero/placental GR/NR3C1 is not required for the induction of parturition in the dog. Reproduction 2016, 152, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Karalis, K.; Goodwin, G.; Majzoub, J.A. Cortisol blockade of progesterone: A possible molecular mechanism involved in the initiation of human labor. Nat. Med. 1996, 2, 556–560. [Google Scholar] [CrossRef]
- Darvelid, A.W.; Linde-Forsberg, C. Dystocia in the bitch: A retrospective study of 182 cases. J. Small Anim. Pract. 1994, 35, 402–407. [Google Scholar] [CrossRef]
- Linde-Forsberg, C.; Persson, G. A survey of dystocia in the Boxer breed. Acta Vet. Scand. 2007, 49, 8. [Google Scholar] [CrossRef]
- Martins-Bessa, A.; Cardoso, L.; Costa, L.; Mota, R.; Rocha, A.; Montenegro, L. Reproductive emergencies in the bitch: A retrospective study. J. Hell. Vet. Med. Soc. 2018, 66, 231–240. [Google Scholar] [CrossRef]
- Jungmann, C.; Houghton, C.G.; Nielsen, F.G.; Packeiser, E.M.; Korber, H.; Reichler, I.M.; Balogh, O.; Goericke-Pesch, S. Involvement of oxytocin and progesterone receptor expression in the etiology of canine uterine inertia. Int. J. Mol. Sci. 2022, 23, 13601. [Google Scholar] [CrossRef] [PubMed]
- Frehner, B.L.; Reichler, I.M.; Keller, S.; Goericke-Pesch, S.; Balogh, O. Blood calcium, glucose and haematology profiles of parturient bitches diagnosed with uterine inertia or obstructive dystocia. Reprod. Domest. Anim. 2018, 53, 680–687. [Google Scholar] [CrossRef]
- Rempel, L.M.; Korber, H.; Reichler, I.M.; Balogh, O.; Goericke-Pesch, S. Investigations on the potential role of prostaglandin E2 in canine uterine inertia. Theriogenology 2021, 175, 134–147. [Google Scholar] [CrossRef]
- Munnich, A.; Kuchenmeister, U. Dystocia in numbers—Evidence-based parameters for intervention in the dog: Causes for dystocia and treatment recommendations. Reprod. Domest. Anim. 2009, 44 (Suppl. S2), 141–147. [Google Scholar] [CrossRef]
- Bergstrom, A.; Nodtvedt, A.; Lagerstedt, A.S.; Egenvall, A. Incidence and breed predilection for dystocia and risk factors for cesarean section in a Swedish population of insured dogs. Vet. Surg. 2006, 35, 786–791. [Google Scholar] [CrossRef] [PubMed]
- Egloff, S.; Reichler, I.M.; Kowalewski, M.P.; Keller, S.; Goericke-Pesch, S.; Balogh, O. Uterine expression of smooth muscle alpha- and gamma-actin and smooth muscle myosin in bitches diagnosed with uterine inertia and obstructive dystocia. Theriogenology 2020, 156, 162–170. [Google Scholar] [CrossRef]
- Frehner, B.L.; Reichler, I.M.; Kowalewski, M.P.; Gram, A.; Keller, S.; Goericke-Pesch, S.; Balogh, O. Implications of the RhoA/Rho associated kinase pathway and leptin in primary uterine inertia in the dog. J. Reprod. Dev. 2021, 67, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Nowak, M.; Aslan, S.; Kowalewski, M.P. Determination of novel reference genes for improving gene expression data normalization in selected canine reproductive tissues—A multistudy analysis. BMC Vet. Res. 2020, 16, 440. [Google Scholar] [CrossRef]
- Gram, A.; Fox, B.; Buchler, U.; Boos, A.; Hoffmann, B.; Kowalewski, M.P. Canine placental prostaglandin E2 synthase: Expression, localization, and biological functions in providing substrates for prepartum PGF2alpha synthesis. Biol. Reprod. 2014, 91, 154. [Google Scholar] [CrossRef]
- Kowalewski, M.P.; Pereira, M.T.; Papa, P.; Gram, A. Progesterone receptor blockers: Historical perspective, mode of function and insights into clinical and scientific applications. Tierärztliche Prax. Ausg. K Kleintiere/Heimtiere 2020, 48, 433–440. [Google Scholar] [CrossRef]
- Peters, G.A.; Yi, L.; Skomorovska-Prokvolit, Y.; Patel, B.; Amini, P.; Tan, H.; Mesiano, S. Inflammatory stimuli increase progesterone receptor—A stability and transrepressive activity in myometrial cells. Endocrinology 2017, 158, 158–169. [Google Scholar] [CrossRef]
- Patel, B.; Peters, G.A.; Skomorovska-Prokvolit, Y.; Yi, L.; Tan, H.; Yousef, A.; Wang, J.; Mesiano, S. Control of progesterone receptor-A transrepressive activity in myometrial cells: Implications for the control of human parturition. Reprod. Sci. 2018, 25, 214–221. [Google Scholar] [CrossRef]
- Mendelson, C.R.; Gao, L.; Montalbano, A.P. Multifactorial Regulation of Myometrial Contractility During Pregnancy and Parturition. Front. Endocrinol. 2019, 10, 714. [Google Scholar] [CrossRef] [PubMed]
- Amini, P.; Michniuk, D.; Kuo, K.; Yi, L.; Skomorovska-Prokvolit, Y.; Peters, G.A.; Tan, H.; Wang, J.; Malemud, C.J.; Mesiano, S. Human parturition involves phosphorylation of progesterone receptor-A at serine-345 in myometrial cells. Endocrinology 2016, 157, 4434–4445. [Google Scholar] [CrossRef] [PubMed]
- Kazemian, A.; Tavares Pereira, M.; Hoffmann, B.; Kowalewski, M.P. Antigestagens mediate the expression of decidualization markers, extracellular matrix factors and connexin 43 in decidualized dog uterine stromal (DUS) cells. Animals 2022, 12, 798. [Google Scholar] [CrossRef]
- Baan, M.; Taverne, M.A.; de Gier, J.; Kooistra, H.S.; Kindahl, H.; Dieleman, S.J.; Okkens, A.C. Hormonal changes in spontaneous and aglepristone-induced parturition in dogs. Theriogenology 2008, 69, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Bhaumik, S.; Lockett, J.; Cuffe, J.; Clifton, V.L. Glucocorticoids and their receptor isoforms: Roles in female reproduction, pregnancy, and foetal development. Biology 2023, 12, 1104. [Google Scholar] [CrossRef] [PubMed]
- Johnston, S.D.; Root Kustritz, M.V.; Olson, P.S. Canine and Feline Theriogenology, 1st ed.; WB Saunders: Philadelphia, PA, USA, 2001. [Google Scholar]
- Cornelius, A.J.; Moxon, R.; Russenberger, J.; Havlena, B.; Cheong, S.H. Identifying risk factors for canine dystocia and stillbirths. Theriogenology 2019, 128, 201–206. [Google Scholar] [CrossRef] [PubMed]
Gene | Name | Accession Numbers | Primer and Probe Sequence for Semi-Quantitative Real Time PCR | Product Length (bp) | |
---|---|---|---|---|---|
HPGD (PGDH) | Hydroxyprostaglandin dehydrogenase | NM_001284477 | Forward | 5′-GGC AGC GAA TCT CAT GAA CAG-3′ | 93 |
Reverse | 5′-TCT TCT TTC TCA ATG GAT TCA AGGA-3′ | ||||
TaqMan probe | 5′-TGA ATG CCA TTT GCC CAG GCT TTG T-3′ | ||||
PGT | Prostaglandin transporter | NM_001011558 | Forward | 5′-TGC AGC ACT AGG AAT GCT GTT C-3′ | 116 |
Reverse | 5′-GGG CGC AGA GAA TCA TGG A-3′ | ||||
TaqMan probe | 5′-TCT GCA AAC CAT TCC CCG CGT G-3′ | ||||
PTGS2 (COX2) | Prostaglandin-endoperoxide synthase 2 (=Cyclooxygenase 2) | HQ110882 | Forward | 5′-GGA GCA TAA CAG AGT GTG TGA TGT G-3′ | 87 |
Reverse | 5′-AAG TAT TAG CCT GCT CGT CTG GAA T-3′ | ||||
TaqMan probe | 5′-CGC TCA TCA TCC CAT TCT GGG TGC-3′ | ||||
PTGES | Prostaglandin E synthase | NM_001122854 | Forward | 5′-GTC CTG GCG CTG GTG AGT-3′ | 89 |
Reverse | 5′-ATG ACA GCC ACC ACG TAC ATC T-3′ | ||||
TaqMan probe | 5′-TCC CAG CCT TCC TGC TCT GCA GC-3′ | ||||
AKR1C3 (PGFS) | Prostaglandin F synthase | NM_001012344 | Forward | 5′-AGG GCT TGC CAA GTC TAT TGG-3′ | 74 |
Reverse | 5′-GCC TTG GCT TGC TCA GGA T-3′ | ||||
TaqMan probe | 5′-TCC AAC TTT AAC CGC AGG CAG CTG G-3′ | ||||
PGR | Progesterone receptor | NM_001003074 | Forward | 5′-CGA GTC ATT ACC TCA GAA GAT TTG TTT-3′ | 113 |
Reverse | 5′-CTT CCA TTG CCC TTT TAA AGA AGA-3′ | ||||
TaqMan probe | 5′-AAG CAT CAG GCT GTC ATT ATG GTG TCC TAA CTT-3′ | ||||
Commercially available Taq Man Systems (Applied Biosystems) | |||||
HSD11B1 | Hydroxysteroid 11β dehydrogenase 1 | Prod. No. Cf02626817_m1 | 67 | ||
HSD11B2 | Hydroxysteroid 11β dehydrogenase 2 | Prod. No. Cf02690463_s1 | 82 | ||
NR3C1 (GR) | Glucocorticoid receptor/nuclear receptor subfamily 3 group C member 1 | Prod. No. Cf02627498_m1 | 118 | ||
PTK2 | Protein tyrosine kinase 2 | Prod. No. Cf02684608_m1 | 104 | ||
EIF4H | Eukaryotic translation initiation factor 4H | Prod. No. Cf02713640_m1 | 136 | ||
KDM4A | Lysine (K)-specific demethylase 4A | Prod. No. Cf02708629_m1 | 96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steiner, M.; Schuler, G.; Frehner, B.L.; Reichler, I.M.; Goericke-Pesch, S.; Balogh, O.; Tavares Pereira, M.; Kowalewski, M.P. Primary Uterine Inertia (PUI) in Dogs Is Associated with Impaired Placental Availability of Factors Involved in the Parturition Cascade. Animals 2025, 15, 3043. https://doi.org/10.3390/ani15203043
Steiner M, Schuler G, Frehner BL, Reichler IM, Goericke-Pesch S, Balogh O, Tavares Pereira M, Kowalewski MP. Primary Uterine Inertia (PUI) in Dogs Is Associated with Impaired Placental Availability of Factors Involved in the Parturition Cascade. Animals. 2025; 15(20):3043. https://doi.org/10.3390/ani15203043
Chicago/Turabian StyleSteiner, Marianne, Gerhard Schuler, Bianca L. Frehner, Iris M. Reichler, Sandra Goericke-Pesch, Orsolya Balogh, Miguel Tavares Pereira, and Mariusz P. Kowalewski. 2025. "Primary Uterine Inertia (PUI) in Dogs Is Associated with Impaired Placental Availability of Factors Involved in the Parturition Cascade" Animals 15, no. 20: 3043. https://doi.org/10.3390/ani15203043
APA StyleSteiner, M., Schuler, G., Frehner, B. L., Reichler, I. M., Goericke-Pesch, S., Balogh, O., Tavares Pereira, M., & Kowalewski, M. P. (2025). Primary Uterine Inertia (PUI) in Dogs Is Associated with Impaired Placental Availability of Factors Involved in the Parturition Cascade. Animals, 15(20), 3043. https://doi.org/10.3390/ani15203043