Comparing Genomic and Pedigree Inbreeding Coefficients in the Slovenian Lipizzan Horse as a Case Study for Small Closed Populations
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population and Pedigree Data
2.2. Genotyping and Quality Control
2.3. Estimation of Genomic Inbreeding Coefficients
2.3.1. F_HOM
2.3.2. F_ROH
2.3.3. F_HBD
2.3.4. F_GRM
2.4. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Normality Test and Pairwise Associations
3.3. Linear Regression Analysis
3.4. ROH and HBD Length Category Contributions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
F_PED | Pedigree-based inbreeding coefficient (based on recorded ancestry) |
ROH | Runs of homozygosity (continuous homozygous genomic segments) |
F_ROH | Inbreeding coefficient estimated from the proportion of the genome covered by ROH |
F_HOM | SNP-based inbreeding coefficient estimated from observed versus expected homozygosity |
F_HBD | Inbreeding coefficient estimated based on homozygosity-by-descent using a hidden Markov model |
F_GRM | Inbreeding coefficient derived from the diagonal of the genomic relationship matrix |
GRM | Genomic relationship matrix (based on SNP allele sharing between individuals) |
Appendix A
References
- Ablondi, M.; Vasini, M.; Beretti, V.; Superchi, P.; Sabbioni, A. Exploring genetic diversity in an Italian horse native breed to develop strategies for preservation and management. J. Anim. Breed. Genet. 2018, 135, 450–459. [Google Scholar] [CrossRef]
- Hasler, H.; Flury, C.; Menet, S.; Haase, B.; Leeb, T.; Simianer, H.; Poncet, P.A.; Rieder, S. Genetic diversity in an indigenous horse breed: Implications for mating strategies and the control of future inbreeding. J. Anim. Breed. Genet. 2011, 128, 394–406. [Google Scholar] [CrossRef] [PubMed]
- Dovc, P.; Kavar, T.; Sölkner, H.; Achmann, R. Development of the Lipizzan horse breed. Reprod. Domest. Anim. 2006, 41, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Curik, I.; Ferenčaković, M.; Sölkner, J. Inbreeding and runs of homozygosity: A possible solution to an old problem. Livest. Sci. 2014, 166, 26–34. [Google Scholar] [CrossRef]
- Ralls, K.; Ballou, J.D.; Frankham, R. Inbreeding and outbreeding. In Encyclopedia of Biodiversity; Academic Press: Waltham, MA, USA, 2001; pp. 245–252. [Google Scholar]
- Caballero, A.; Fernández, A.; Villanueva, B.; Toro, M.A. A comparison of marker-based estimators of inbreeding and inbreeding depression. Genet. Sel. Evol. 2022, 54, 82. [Google Scholar] [CrossRef]
- Cassell, B.G.; Adamec, V.; Pearson, R.E. Effect of incomplete pedigrees on estimates of inbreeding and inbreeding depression for days to first service and summit milk yield in Holsteins and Jerseys. J. Dairy Sci. 2003, 86, 2967–2976. [Google Scholar] [CrossRef]
- Lutaaya, E.; Misztal, I.; Bertrand, J.K.; Mabry, J.W. Inbreeding in populations with incomplete pedigrees. J. Anim. Breed. Genet. 2001, 116, 475–480. [Google Scholar] [CrossRef]
- Kardos, M.; Luikart, G.; Allendorf, F.W. Measuring individual inbreeding in the age of genomics: Marker-based measures are better than pedigrees. Heredity 2015, 115, 63–72. [Google Scholar] [CrossRef]
- Peripolli, E.; Munari, D.P.; Silva, M.V.G.B.; Lima, A.L.F.; Irgang, R.; Baldi, F. Runs of homozygosity: Current knowledge and applications in livestock. Anim. Genet. 2017, 48, 255–271. [Google Scholar] [CrossRef]
- Ferenčaković, M.; Hamzić, E.; Gredler, B.; Solberg, T.R.; Klemetsdal, G.; Curik, I.; Sölkner, J. Estimates of autozygosity derived from runs of homozygosity: Empirical evidence from selected cattle populations. J. Anim. Breed. Genet. 2013, 130, 286–293. [Google Scholar] [CrossRef]
- Villanueva, B.; Fernández, A.; Saura, M.; Caballero, A.; Fernández, J.; Morales-González, E.; Toro, M.A.; Pong-Wong, R. The value of genomic relationship matrices to estimate levels of inbreeding. Genet. Sel. Evol. 2021, 53, 42. [Google Scholar] [CrossRef]
- Lavanchy, E.; Weir, B.S.; Goudet, J. Detecting inbreeding depression in structured populations. Proc. Natl. Acad. Sci. USA 2024, 121, e2315780121. [Google Scholar] [CrossRef]
- Wang, J. Pedigrees or markers: Which are better in estimating relatedness and inbreeding coefficient? Theor. Popul. Biol. 2016, 107, 4–13. [Google Scholar] [CrossRef]
- Howard, J.T.; Pryce, J.E.; Baes, C.; Maltecca, C. Invited review: Inbreeding in the genomics era: Inbreeding, inbreeding depression, and management of genomic variability. J. Dairy Sci. 2017, 100, 6009–6024. [Google Scholar] [CrossRef] [PubMed]
- Zechner, P.; Sölkner, J.; Bodo, I.; Druml, T.; Baumung, R.; Achmann, R.; Marti, E.; Habe, F.; Brem, G. Analysis of diversity and population structure in the Lipizzan horse breed based on pedigree information. Livest. Prod. Sci. 2002, 77, 137–146. [Google Scholar] [CrossRef]
- Ferencakovic, M.; Hamzic, E.; Gredler, B.; Curik, I.; Sölkner, J. Runs of Homozygosity Reveal Genome-wide Autozygosity in the Austrian Fleckvieh Cattle. Agric. Conspec. Sci. 2011, 76, 325–328. [Google Scholar]
- Cervantes, I.; Goyache, F.; Molina, A.; Valera, M.; Gutiérrez, J.P. Application of individual increase in inbreeding to estimate realized effective sizes from real pedigrees. J. Anim. Breed. Genet. 2008, 125, 301–310. [Google Scholar] [CrossRef]
- Weigel, K.; VanRaden, P.; Norman, H.; Grosu, H. A 100-Year Review: Methods and impact of genetic selection in dairy cattle—From daughter–dam comparisons to deep learning algorithms. J. Dairy Sci. 2017, 100, 10234–10250. [Google Scholar] [CrossRef]
- Caballero, A.; Villanueva, B.; Druet, T. On the estimation of inbreeding depression using different measures of inbreeding from molecular markers. Evol. Appl. 2021, 14, 416–428. [Google Scholar] [CrossRef]
- Halvoník, A.; Moravčíková, N.; Chalupková, M.; Kasarda, R. Commonly used genomic estimators of individual inbreeding in livestock. Czech J. Anim. Sci. 2024, 69, 269–279. [Google Scholar] [CrossRef]
- Druet, T.; Gautier, M. A model-based approach to characterize individual inbreeding at both global and local genomic scales. Mol. Ecol. 2017, 26, 5820–5841. [Google Scholar] [CrossRef]
- Grilz-Seger, G.; Druml, T.; Neuditschko, M.; Dobretsberger, M.; Horna, M.; Brem, G. High-resolution population structure and runs of homozygosity reveal the genetic architecture of complex traits in the Lipizzan horse. BMC Genom. 2019, 20, 174. [Google Scholar] [CrossRef]
- Rogic, B.; Strbac, L.; Preradovic, S.; Vazic, B. Pedigree analysis of the Lipizzan horse populations from Bosnia and Herzegovina and Serbia: Structure, inbreeding and genetic variability. Czech J. Anim. Sci. 2022, 67, 483–492. [Google Scholar] [CrossRef]
- Keller, L.F.; Waller, D.M. Inbreeding effects in wild populations. Trends Ecol. Evol. 2002, 17, 230–241. [Google Scholar] [CrossRef]
- Ives, A.R.; Whitlock, M.C. Inbreeding and metapopulations. Science 2002, 295, 454–455. [Google Scholar] [CrossRef]
- Lipizzan International Federation. Lipizzan Population Statistics 2024. Available online: https://www.lipizzan-online.com/download/files/%7B2049FEC9-4EC2-45B4-A6C8-2A562B2FB680%7D/Number%20of%20Lipizzan%20horses%202024%20-%20Nummer%20von%20Lipizzaner%20Pferde%202024.pdf (accessed on 13 September 2025).
- Meuwissen, T.; Luo, Z. Computing inbreeding coefficients in large populations. Genet. Sel. Evol. 1992, 24, 305. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. 2025. Available online: https://www.r-project.org/ (accessed on 28 May 2025).
- Amadeu, R.R.; Cellon, C.; Olmstead, J.W.; Garcia, A.A.F.; Resende, M.F.R.; Muñoz, P.R.; Amadeu, R.R.; Garcia, A.A.F.; Cellon, C.; Ol-Mstead, J.W. AGHmatrix: R Package to Construct Relationship Matrices for Autotetraploid and Diploid Species: A Blueberry Example. Plant Genome 2016, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Raudsepp, T.; Finno, C.J.; Bellone, R.R.; Petersen, J.L. Ten years of the horse reference genome: Insights into equine biology, domestication and population dynamics in the post-genome era. Anim. Genet. 2019, 50, 569. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Human Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Ferenčaković, M.; Sölkner, J.; Curik, I. Estimating autozygosity from high-throughput information: Effects of SNP density and genotyping errors. Genet. Sel. Evol. 2013, 45, 42. [Google Scholar] [CrossRef] [PubMed]
- Criscione, A.; Mastrangelo, S.; D’Alessandro, E.; Tumino, S.; Di Gerlando, R.; Zumbo, A.; Marletta, D.; Bordonaro, S. Genome-wide survey on three local horse populations with a focus on runs of homozygosity pattern. J. Anim. Breed. Genet. 2022, 139, 540. [Google Scholar] [CrossRef] [PubMed]
- Mancin, E.; Ablondi, M.; Mantovani, R.; Pigozzi, G.; Sabbioni, A.; Sartori, C. Genetic Variability in the Italian Heavy Draught Horse from Pedigree Data and Genomic Information. Animals 2020, 10, 1310. [Google Scholar] [CrossRef]
- Nolte, W.; Thaller, G.; Kuehn, C. Selection signatures in four German warmblood horse breeds: Tracing breeding history in the modern sport horse. PLoS ONE 2019, 14, e0215913. [Google Scholar] [CrossRef]
- Kalbfleisch, T.S.; Rice, E.S.; DePriest, M.S.; Walenz, B.P.; Hestand, M.S.; Vermeesch, J.R.; O′Connell, B.L.; Fiddes, I.T.; Vershinina, A.O.; Saremi, N.F.; et al. Improved reference genome for the domestic horse increases assembly contiguity and composition. Commun. Biol. 2018, 1, 197. [Google Scholar] [CrossRef]
- Bertrand, A.R.; Kadri, N.K.; Flori, L.; Gautier, M.; Druet, T. RZooRoH: An R package to characterize individual genomic autozygosity and identify homozygous-by-descent segments. Methods Ecol. Evol. 2019, 10, 860–866. [Google Scholar] [CrossRef]
- Nishio, M.; Inoue, K.; Ogawa, S.; Ichinoseki, K.; Arakawa, A.; Fukuzawa, Y.; Okamura, T.; Kobayashi, E.; Taniguchi, M.; Oe, M.; et al. Comparing pedigree and genomic inbreeding coefficients, and inbreeding depression of reproductive traits in Japanese Black cattle. BMC Genom. 2023, 24, 376. [Google Scholar] [CrossRef]
- VanRaden, P.M. Efficient methods to compute genomic predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef] [PubMed]
- Revelle, W. psych: Procedures for Psychological, Psychometric, and Personality Research, R package Version 2.5.6; R Foundation for Statistical Computing: Vienna, Austria, 2025. Available online: https://CRAN.R-project.org/package=psych (accessed on 20 July 2025).
- Schiavo, G.; Bovo, S.; Bertolini, F.; Tinarelli, S.; Dall’Olio, S.; Nanni Costa, L.; Gallo, M.; Fontanesi, L. Comparative evaluation of genomic inbreeding parameters in seven commercial and autochthonous pig breeds. Animal 2020, 14, 910–920. [Google Scholar] [CrossRef]
- Wickham, H.; François, R.; Henry, L.; Müller, K.; Vaughan, D. dplyr: A Grammar of Data Manipulation, R Package Version 1.1.4; R Foundation for Statistical Computing: Vienna, Austria, 2023. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 20 July 2025).
- Wickham, H.; Hester, J.; Bryan, J. readr: Read Rectangular Text Data, R Package Version 2.1.5.2024; R Foundation for Statistical Computing: Vienna, Austria, 2024. Available online: https://CRAN.R-project.org/package=readr (accessed on 20 July 2025).
- Wickham, H.; Vaughan, D.; Girlich, M. tidyr: Tidy Messy Data, R Package Version 1.3.1; R Foundation for Statistical Computing: Vienna, Austria, 2024. Available online: https://CRAN.R-project.org/package=tidyr (accessed on 20 July 2025).
- Wickham, H.; Henry, L. purrr: Functional Programming Tools, R Package Version 1.1.0; R Foundation for Statistical Computing: Vienna, Austria, 2025. Available online: https://CRAN.R-project.org/package=purrr (accessed on 20 July 2025).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis. 2016. Available online: https://ggplot2.tidyverse.org (accessed on 9 July 2025).
- Polak, G.; Gurgul, A.; Jasielczuk, I.; Szmatoła, T.; Krupiński, J.; Bugno-Poniewierska, M. Suitability of Pedigree Information and Genomic Methods for Analyzing Inbreeding of Polish Cold-Blooded Horses Covered by Conservation Programs. Genes 2021, 12, 429. [Google Scholar] [CrossRef] [PubMed]
- Radovic, L.; Remer, V.; Rigler, D.; Felkel, S.; Brem, G.; Wallner, B. Y-chromosomal insights into the breeding history and sire line genealogies of two traditional Baroque horse breeds: Lipizzaner and Kladruber. J. Equine Vet. Sci. 2025, 144, 105252. [Google Scholar] [CrossRef]
- Velie, B.D.; Solé, M.; Fegraeus, K.J.; Rosengren, M.K.; Røed, K.H.; Ihler, C.F.; Strand, E.; Lindgren, G. Genomic measures of inbreeding in the Norwegian-Swedish Coldblooded Trotter and their associations with known QTL for reproduction and health traits. Genet. Sel. Evol. 2019, 51, 22. [Google Scholar] [CrossRef]
- Alemu, S.W.; Kadri, N.K.; Harland, C.; Faux, P.; Charlier, C.; Caballero, A.; Druet, T. An evaluation of inbreeding measures using a whole-genome sequenced cattle pedigree. Heredity 2021, 126, 410–423. [Google Scholar] [CrossRef]
- Zhang, Q.; Calus, M.P.L.; Guldbrandtsen, B.; Lund, M.S.; Sahana, G. Estimation of inbreeding using pedigree, 50k SNP chip genotypes and full sequence data in three cattle breeds. BMC Genet. 2015, 16, 88. [Google Scholar] [CrossRef] [PubMed]
- Mon, S.L.Y.; Lwin, M.; Oozawa, E.; Ozawa, T.; Oozawa, K.; Kawabe, K.; Shimogiri, T. Estimation of inbreeding in Japanese Noma horses using genome-wide SNP genotyping. J. Anim. Genet. 2024, 52, 3–8. [Google Scholar] [CrossRef]
- Ablondi, M.; Pira, E.; Asti, V.; Sabbioni, A.; Dettori, M.L.; Vacca, G.M.; Pazzola, M. Genetic diversity and signatures of selection in Anglo-Arabian racehorses based on medium-density genotype data. Ital. J. Anim. Sci. 2024, 23, 961–969. [Google Scholar] [CrossRef]
- Gurgul, A.; Szmatoła, T.; Topolski, P.; Jasielczuk, I.; Żukowski, K.; Bugno-Poniewierska, M. The use of runs of homozygosity for estimation of recent inbreeding in Holstein cattle. J. Appl. Genet. 2016, 57, 527–530. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, A.; Tandon, G.; Pal, Y.; Sharma, N.K.; Nayan, V.; Soni, S.; Iquebal, M.A.; Jaiswal, S.; Legha, R.A.; Talluri, T.R.; et al. Genome-Wide Single-Nucleotide Polymorphism-Based Genomic Diversity and Runs of Homozygosity for Selection Signatures in Equine Breeds. Genes 2023, 14, 1623. [Google Scholar] [CrossRef]
- Dadousis, C.; Ablondi, M.; Cipolat-Gotet, C.; van Kaam, J.T.; Finocchiaro, R.; Marusi, M.; Cassandro, M.; Sabbioni, A.; Summer, A. Genomic inbreeding coefficients using imputed genotypes: Assessing differences among SNP panels in Holstein-Friesian dairy cows. Front. Vet. Sci. 2023, 10, 1142476. [Google Scholar] [CrossRef]
- Doekes, H.P.; Bijma, P.; Windig, J.J. How depressing is inbreeding? A meta-analysis of 30 years of research on the effects of inbreeding in livestock. Genes 2021, 12, 926. [Google Scholar] [CrossRef]
- Laseca, N.; Ziadi, C.; Perdomo-Gonzalez, D.I.; Valera, M.; Demyda-Peyras, S.; Molina, A. Reproductive traits in Pura Raza Española mares manifest inbreeding depression from low levels of homozygosity. J. Anim. Breed. Genet. 2024, 141, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Goszczynski, D.; Molina, A.; Terán, E.; Morales-Durand, H.; Ross, P.; Cheng, H.; Giovambattista, G.; Demyda-Peyrás, S. Runs of homozygosity in a selected cattle population with extremely inbred bulls: Descriptive and functional analyses revealed highly variable patterns. PLoS ONE 2018, 13, e0200069. [Google Scholar] [CrossRef]
- Peripolli, E.; Stafuzza, N.B.; Munari, D.P.; Lima, A.L.F.; Irgang, R.; Machado, M.A.; Panetto, J.C.D.C.; Ventura, R.V.; Baldi, F.; da Silva, M.V.G.B. Assessment of runs of homozygosity islands and estimates of genomic inbreeding in Gyr (Bos indicus) dairy cattle. BMC Genom. 2018, 19, 34. [Google Scholar] [CrossRef]
- Cortes-Hernández, J.; García-Ruiz, A.; Vásquez-Peláez, C.G.; Ruiz-Lopez, F. de J. Correlation of Genomic and Pedigree Inbreeding Coefficients in Small Cattle Populations. Animals 2021, 11, 3234. [Google Scholar] [CrossRef]
- Sumreddee, P.; Toghiani, S.; Hay, E.H.; Roberts, A.; Agrrey, S.E.; Rekaya, R. Inbreeding depression in line 1 Hereford cattle population using pedigree and genomic information. J. Anim. Sci. 2018, 97, 1–18. [Google Scholar] [CrossRef]
- Purfield, D.C.; Berry, D.P.; McParland, S.; Bradley, D.G. Runs of homozygosity and population history in cattle. BMC Genet. 2012, 13, 70. [Google Scholar] [CrossRef]
- Kirin, M.; McQuillan, R.; Franklin, C.S.; Campbell, H.; Mckeigue, P.M.; Wilson, J.F. Genomic Runs of Homozygosity Record Population History and Consanguinity. PLoS ONE 2010, 5, e13996. [Google Scholar] [CrossRef]
- Obšteter, J.; Logar, B. Estimation of inbreeding in Slovenian Brown-Swiss population. Acta Argicult. Slov. 2016, 5, 60–65. [Google Scholar] [CrossRef]
- Sumreddee, P.; Hay, E.H.; Toghiani, S.; Roberts, A.; Aggrey, S.E.; Rekaya, R. Grid search approach to discriminate between old and recent inbreeding using phenotypic, pedigree and genomic information. BMC Genom. 2021, 22, 538. [Google Scholar] [CrossRef] [PubMed]
- Ringbauer, H.; Novembre, J.; Steinrücken, M. Parental relatedness through time revealed by runs of homozygosity in ancient DNA. Nat. Commun. 2021, 12, 5425. [Google Scholar] [CrossRef] [PubMed]
- Santos, W.B.; Pereira, C.B.; Maiorano, A.M.; Arce, C.D.S.; Baldassini, W.A.; Pereira, G.L.; Chardulo, L.A.L.; Neto, O.R.M.; Oliveira, H.N.; Curi, R.A. Genomic inbreeding estimation, runs of homozygosity, and heterozygosity-enriched regions uncover signals of selection in the Quarter Horse racing line. J. Anim. Breed. Genet. 2023, 140, 583–595. [Google Scholar] [CrossRef]
- Bailey, E.; Finno, C.J.; Cullen, J.N.; Kalbfleisch, T.; Petersen, J.L. Analyses of whole-genome sequences from 185 North American Thoroughbred horses, spanning 5 generations. Sci. Rep. 2024, 14, 22930. [Google Scholar] [CrossRef]
- McGivney, B.A.; Han, H.; Corduff, L.R.; Katz, L.M.; Tozaki, T.; MacHugh, D.E.; Hill, E.W. Genomic inbreeding trends, influential sire lines and selection in the global Thoroughbred horse population. Sci. Rep. 2020, 10, 466. [Google Scholar] [CrossRef]
- Kasarda, R.; Moravčíková, N.; Kadlečík, O.; Trakovická, A.; Halo, M.; Candrák, J. Level of Inbreeding in Norik of Muran Horse: Pedigree vs. Genom. Data 2019, 67, 1457–1463. [Google Scholar]
- Thompson, M.A.; McCann, B.E.; Rhen, T.; Simmons, R. Population genomics provide insight into ancestral relationships and diversity of the feral horses of Theodore Roosevelt National Park. Ecol. Evol. 2024, 14, e11197. [Google Scholar] [CrossRef]
- Naji, M.M.; Luis, J.; Duarte, G.; Forneris, N.S.; Druet, T. Inbreeding depression is associated with recent homozygous-by-descent segments in Belgian Blue beef cattle. Genet. Sel. Evol. 2024, 56, 10. [Google Scholar] [CrossRef] [PubMed]
- Crisà, A.; Cardinali, I.; Giontella, A.; Silvestrelli, M.; Lancioni, H.; Buttazzoni, L. A Genetic Make Up of Italian Lipizzan Horse Through Uniparental Markers to Preserve Historical Pedigrees. Biology 2024, 13, 1087. [Google Scholar] [CrossRef]
- Shafer, A.B.A.; Kardos, M. Runs of Homozygosity and Inferences in Wild Populations. Mol. Ecol. 2025, 34, e17641. [Google Scholar] [CrossRef]
- Kardos, M.; Qvarnström, A.; Ellegren, H. Inferring individual inbreeding and demographic history from segments of identity by descent in Ficedula flycatcher genome sequences. Genetics 2017, 205, 1319–1334. [Google Scholar] [CrossRef] [PubMed]
- Solé, M.; Gori, A.S.; Faux, P.; Bertrand, A.; Farnir, F.; Gautier, M.; Druet, T. Age-based partitioning of individual genomic inbreeding levels in Belgian Blue cattle. Genet. Sel. Evol. 2017, 49, 92. [Google Scholar] [CrossRef] [PubMed]
- Druet, T.; Gautier, M. An hidden Markov model to estimate homozygous-by-descent probabilities associated with nested layers of ancestors. Theor. Popul. Biol. 2022, 145, 38–51. [Google Scholar] [CrossRef]
- Sumreddee, P.; Toghiani, S.; Hay, E.H.; Roberts, A.; Aggrey, S.E.; Rekaya, R. Runs of homozygosity and analysis of inbreeding depression. J. Anim. Sci. 2020, 98, skaa361. [Google Scholar] [CrossRef]
- Pemberton, T.J.; Absher, D.; Feldman, M.W.; Myers, R.M.; Rosenberg, N.A.; Li, J.Z. Genomic patterns of homozygosity in worldwide human populations. Am. J. Hum. Genet. 2012, 91, 275–292. [Google Scholar] [CrossRef] [PubMed]
- Capomaccio, S.; Ablondi, M.; Colombi, D.; Sartori, C.; Giontella, A.; Cappelli, K.; Mancin, E.; Asti, V.; Mantovani, R.; Sabbioni, A.; et al. Exploring the Italian equine gene pool via high-throughput genotyping. Front. Genet. 2023, 14, 1099896. [Google Scholar] [CrossRef] [PubMed]
- Szmatoła, T.; Gurgul, A.; Jasielczuk, I.; Fu, W.; Ropka-Molik, K. A detailed characteristics of bias associated with long runs of homozygosity identification based on medium density SNP microarrays. J. Genom. 2020, 8, 43–48. [Google Scholar] [CrossRef]
- Sams, A.J.; Boyko, A.R. Fine-Scale Resolution of Runs of Homozygosity Reveal Patterns of Inbreeding and Substantial Overlap with Recessive Disease Genotypes in Domestic Dogs. G3 2019, 9, 117–123. [Google Scholar] [CrossRef]
- Kovács, M.; Mihók, S. Genetic structure of the Lipizzan horse breed in Hungary through the mare families. Acta Agraria Debreceniensis 2022, 1, 71–78. [Google Scholar] [CrossRef]
- Zhang, Q.; Guldbrandtsen, B.; Bosse, M.; Lund, M.S.; Sahana, G. Runs of homozygosity and distribution of functional variants in the cattle genome. BMC Genom. 2015, 16, 542. [Google Scholar] [CrossRef] [PubMed]
- Olšanská, B.; Kasarda, R.; Lehocká, K.; Moravčíková, N. Genome-wide characterisation of regions under intense selection based on runs of homozygosity in Charolais cattle. Acta Fytotechn Zootech. 2020, 23, 350–355. [Google Scholar] [CrossRef]
Inbreeding Coefficient | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|
F_PED | 0.037 | 0.022 | 0 | 0.151 |
F_HOM | −0.022 | 0.040 | −0.257 | 0.113 |
F_ROH | 0.122 | 0.029 | 0.012 | 0.228 |
F_HBD | 0.177 | 0.027 | 0.078 | 0.271 |
F_GRM | −0.009 | 0.059 | −0.288 | 0.174 |
F_HOM | F_ROH | F_HBD | F_GRM | |
---|---|---|---|---|
F_PED | 0.496 | 0.562 | 0.469 | −0.182 |
F_HOM | 0.927 | 0.932 | 0.173 | |
F_ROH | 0.941 | 0.153 | ||
F_HBD | 0.353 |
Model | β | R2 | p-Value |
---|---|---|---|
F_PED~F_HOM | 0.285 | 0.262 | <0.001 |
F_PED~F_ROH | 0.437 | 0.337 | <0.001 |
F_PED~F_HBD | 0.419 | 0.265 | <0.001 |
F_PED~F_GRM | −0.050 | 0.016 | 0.014 |
Segment Type | Class | Inbreeding Age | N Segments | Min Length (Mb) | Max Length (Mb) | Mean Length (Mb) |
---|---|---|---|---|---|---|
HBD | R2 | Very recent | 3 | 32.56 | 75.59 | 52.65 |
R4 | Very recent | 31 | 9.41 | 67.24 | 36.69 | |
R8 | Very recent | 567 | 1.43 | 57.40 | 19.74 | |
R16 | Recent | 3746 | 0.59 | 46.21 | 9.08 | |
R32 | Recent | 10,245 | 0.33 | 23.03 | 4.31 | |
R64 | Recent | 2259 | 0.01 | 9.21 | 2.45 | |
R128 | Intermediate | 1327 | 0.15 | 3.48 | 1.47 | |
R256 | Intermediate | 19,029 | 0.00005 | 2.19 | 0.74 | |
R512 | Ancient | 1925 | 0.000001 | 1.11 | 0.32 | |
ROH | ≥16 | Very recent | 296 | 16.04 | 258.26 | 69.61 |
8–<16 | Recent | 327 | 8.66 | 176.93 | 82.99 | |
4–<8 | Intermediate | 329 | 9.73 | 152.23 | 83.34 | |
2–<4 | Ancient | 329 | 18.02 | 101.31 | 57.97 | |
1–<2 | Ancient | 319 | 1.24 | 16.28 | 6.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luštrek, B.; Šimon, M.; Turk, K.; Bogičević, S.; Potočnik, K. Comparing Genomic and Pedigree Inbreeding Coefficients in the Slovenian Lipizzan Horse as a Case Study for Small Closed Populations. Animals 2025, 15, 2774. https://doi.org/10.3390/ani15192774
Luštrek B, Šimon M, Turk K, Bogičević S, Potočnik K. Comparing Genomic and Pedigree Inbreeding Coefficients in the Slovenian Lipizzan Horse as a Case Study for Small Closed Populations. Animals. 2025; 15(19):2774. https://doi.org/10.3390/ani15192774
Chicago/Turabian StyleLuštrek, Barbara, Martin Šimon, Klemen Turk, Sanja Bogičević, and Klemen Potočnik. 2025. "Comparing Genomic and Pedigree Inbreeding Coefficients in the Slovenian Lipizzan Horse as a Case Study for Small Closed Populations" Animals 15, no. 19: 2774. https://doi.org/10.3390/ani15192774
APA StyleLuštrek, B., Šimon, M., Turk, K., Bogičević, S., & Potočnik, K. (2025). Comparing Genomic and Pedigree Inbreeding Coefficients in the Slovenian Lipizzan Horse as a Case Study for Small Closed Populations. Animals, 15(19), 2774. https://doi.org/10.3390/ani15192774