Antimicrobial Resistance and Residues from Biofilms in Poultry, Swine, and Cattle Farms: A Scoping Review
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Eligibility Criteria
2.3. Information Sources
2.4. Search Strategy
2.5. Selection Process
- Is the study original research published in English or French? Yes [include], No [exclude], Unclear [include]
- Does the study involve livestock? Yes [include], No [exclude], Unclear [include]
- Does the study investigate biofilms from the farm environment? Yes [include], No [exclude], Unclear [include]
- Does the study focus on ARs, AMR, or ARGs? Yes [include], No [exclude], Unclear [include]
- Is the full text available in English or French? Yes [include], No [exclude]
- Does the study population include at least one of the following species: poultry, swine, or cattle? Yes [include], No [exclude], Unclear [Exclude]
- Does the study focus on ARs, AMR, or ARGs in biofilms? Yes [include], No [exclude]
- Was the study conducted at the farm level? Yes [include], No [exclude]
2.6. Data Charting and Items
2.7. Data Synthesis
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Biofilm Collection, Handling, and Processing
3.4. Antimicrobial Resistance Profiles of Biofilms
3.5. Characterization of Resistance- and Biofilm-Related Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMDs | Antimicrobial Drugs |
AMR | Antimicrobial Resistance |
AMU | Antimicrobial Use |
APEC | Avian Pathogenic Escherichia coli |
ARs | Antimicrobial Residues |
ARGs | Antimicrobial Resistance Genes |
AST | Antimicrobial Susceptibility Testing |
BHI | Brain Heart Infusion |
CHROMagar ESBL | Chromogenic Agar for Extended-Spectrum Beta-Lactamases |
CHROMagar MRSA | Chromogenic Agar for Methicillin-Resistant Staphylococcus aureus |
CLSI | Clinical and Laboratory Standards Institute |
CRB | Cephalosporin-Resistant Bacteria |
DD | Disk Diffusion |
DIN | Deutsches Institut für Normung (German Institute for Standardization) |
DWDSs | Drinking Water Distribution Systems |
EMB | Eosin Methylene Blue |
IMViC | Indole, Methyl Red, Voges-Proskauer, Citrate |
ISO | International Organization for Standardization |
MARI | Multiple Antibiotic Resistance Index |
MIC | Minimum Inhibitory Concentration |
MRSA | Methicillin-Resistant Staphylococcus aureus |
PICo | Population, Interest, Context |
PRISMA-ScR | Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews |
PVC | Polyvinyl Chloride |
SWOT | Strengths, Weaknesses, Opportunities, and Threats |
SYREAF | Systematic Reviews for Animals and Food |
WHO | World Health Organization |
WoS | Web of Science |
WGS | Whole Genome Sequencing |
References
- FAO. The Role of Livestock in Food Security, Poverty Reduction and Wealth Creation in West Africa; FAO: Rome, Italy, 2020. [Google Scholar]
- FAO. Contribution of Terrestrial Animal Source Food to Healthy Diets for Improved Nutrition and Health Outcomes; FAO: Rome, Italy, 2023. [Google Scholar]
- Komarek, A.M.; Dunston, S.; Enahoro, D.; Godfray, H.C.J.; Herrero, M.; Mason-D’Croz, D.; Rich, K.M.; Scarborough, P.; Springmann, M.; Sulser, T.B.; et al. Income, Consumer Preferences, and the Future of Livestock-Derived Food Demand. Glob. Environ. Change 2021, 70, 102343. [Google Scholar] [CrossRef]
- Espinosa, R.; Tago, D.; Treich, N. Infectious Diseases and Meat Production. Environ. Resour. Econ. 2020, 76, 1019–1044. [Google Scholar] [CrossRef]
- Stevenson, P. Links between Industrial Livestock Production, Disease Including Zoonoses and Antimicrobial Resistance. Anim. Res. One Health 2023, 1, 137–144. [Google Scholar] [CrossRef]
- Mulchandani, R.; Wang, Y.; Gilbert, M.; Van Boeckel, T.P. Global Trends in Antimicrobial Use in Food-Producing Animals: 2020 to 2030. PLoS Glob. Public Health 2023, 3, e0001305. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhao, F.; Wang, J.; Zhong, N. Biofilm Formation and Control Strategies of Foodborne Pathogens: Food Safety Perspectives. RSC Adv. 2017, 7, 36670–36683. [Google Scholar] [CrossRef]
- Ardakani, Z.; Aragrande, M.; Canali, M. Global Antimicrobial Use in Livestock Farming: An Estimate for Cattle, Chickens, and Pigs. Animal 2024, 18, 101060. [Google Scholar] [CrossRef]
- Redwan Haque, A.; Sarker, M.; Das, R.; Azad, M.A.K.; Hasan, M.M. A Review on Antibiotic Residue in Foodstuffs from Animal Source: Global Health Risk and Alternatives. Int. J. Environ. Anal. Chem. 2023, 103, 3704–3721. [Google Scholar] [CrossRef]
- Naghavi, M.; Vollset, S.E.; Ikuta, K.S.; Swetschinski, L.R.; Gray, A.P.; Wool, E.E.; Robles Aguilar, G.; Mestrovic, T.; Smith, G.; Han, C.; et al. Global Burden of Bacterial Antimicrobial Resistance 1990–2021: A Systematic Analysis with Forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef]
- Steenackers, H.P.; Parijs, I.; Foster, K.R.; Vanderleyden, J. Experimental Evolution in Biofilm Populations. FEMS Microbiol. Rev. 2016, 40, 373–397. [Google Scholar] [CrossRef] [PubMed]
- Costerton, J.W. Introduction to Biofilm. Int. J. Antimicrob. Agents 1999, 11, 217–221. [Google Scholar] [CrossRef]
- Sharma, S.; Mohler, J.; Mahajan, S.D.; Schwartz, S.A.; Bruggemann, L.; Aalinkeel, R. Microbial Biofilm: A Review on Formation, Infection, Antibiotic Resistance, Control Measures, and Innovative Treatment. Microorganisms 2023, 11, 1614. [Google Scholar] [CrossRef]
- Yan, J.; Bassler, B.L. Surviving as a Community: Antibiotic Tolerance and Persistence in Bacterial Biofilms. Cell Host Microbe 2019, 26, 15–21. [Google Scholar] [CrossRef]
- Butucel, E.; Balta, I.; McCleery, D.; Morariu, F.; Pet, I.; Popescu, C.A.; Stef, L.; Corcionivoschi, N. Farm Biosecurity Measures and Interventions with an Impact on Bacterial Biofilms. Agriculture 2022, 12, 1251. [Google Scholar] [CrossRef]
- Piccirillo, A.; Tolosi, R.; Mughini-Gras, L.; Kers, J.G.; Laconi, A. Drinking Water and Biofilm as Sources of Antimicrobial Resistance in Free-Range Organic Broiler Farms. Antibiotics 2024, 13, 808. [Google Scholar] [CrossRef]
- Sparks, N.H.C. The Role of the Water Supply System in the Infection and Control of Campylobacter in Chicken. Worlds Poult. Sci. J. 2009, 65, 459–474. [Google Scholar] [CrossRef]
- Wingender, J.; Flemming, H.C. Biofilms in Drinking Water and Their Role as Reservoir for Pathogens. Int. J. Hyg. Environ. Health 2011, 214, 417–423. [Google Scholar] [CrossRef]
- Ceri, H.; Olson, M.E.; Stremick, C.; Read, R.R.; Morck, D.; Buret, A. The Calgary Biofilm Device: New Technology for Rapid Determination of Antibiotic Susceptibilities of Bacterial Biofilms. J. Clin. Microbiol. 1999, 37, 1771–1776. [Google Scholar] [CrossRef] [PubMed]
- Rilstone, V.; Vignale, L.; Craddock, J.; Cushing, A.; Filion, Y.; Champagne, P. The Role of Antibiotics and Heavy Metals on the Development, Promotion, and Dissemination of Antimicrobial Resistance in Drinking Water Biofilms. Chemosphere 2021, 282, 131048. [Google Scholar] [CrossRef]
- Khairullah, A.R.; Kurniawan, S.C.; Effendi, M.H.; Sudjarwo, S.A.; Ramandinianto, S.C.; Widodo, A.; Riwu, K.H.P.; Silaen, O.S.M.; Rehman, S. A Review of New Emerging Livestock-Associated Methicillin-Resistant Staphylococcus aureus from Pig Farms. Vet. World 2023, 16, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Levac, D.; Colquhoun, H.; O’brien, K.K. Scoping Studies: Advancing the Methodology. Implement. Sci. 2010, 5, 69. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Bramer, W.M.; Rethlefsen, M.L.; Kleijnen, J.; Franco, O.H. Optimal Database Combinations for Literature Searches in Systematic Reviews: A Prospective Exploratory Study. Syst. Rev. 2017, 6, 245. [Google Scholar] [CrossRef] [PubMed]
- Book Series, C.; Higgins, J.P.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions; The Cochrane Collaboration: London, UK, 2019. [Google Scholar]
- Sanguinetti, V.M.; Ganshorn, H.; Agbese, S.; Windeyer, M.C. Protocol for a Systematic Review of Disease Control Strategies Used to Prevent Infectious Mortality and Morbidity in Pre-Weaned Beef Calves. Available online: http://hdl.handle.net/1880/113381 (accessed on 15 May 2025).
- Aboelseoud, H.; Ismael, E.; Moustafa, G.Z.; Badawy, E.M. Hygienic Studies on Biofilms in Drinking Water Systems in Poultry Farms: Isolation, Molecular Identification, and Antibiotic Sensitivity. J. Anim. Health Prod. 2021, 9, 443–454. [Google Scholar] [CrossRef]
- Ahangaran, M.G.; Zinsaz, P.; Pourmahdi, O.; Ahmadi-Dastgerdi, A.; Ostadpour, M.; Soltani, M. Tetracycline Resistance Genes in Escherichia coli Strains Isolated from Biofilm of Drinking Water System in Poultry Farms. Acta Vet. Eurasia 2022, 48, 64–68. [Google Scholar] [CrossRef]
- Grakh, K.; Mittal, D.; Prakash, A.; Jindal, N. Characterization and Antimicrobial Susceptibility of Biofilm-Producing Avian Pathogenic Escherichia coli from Broiler Chickens and Their Environment in India. Vet. Res. Commun. 2022, 46, 537–548. [Google Scholar] [CrossRef]
- Hayer, J.J.; Heinemann, C.; Schulze-Dieckhoff, B.G.; Steinhoff-Wagner, J. A Risk-Oriented Evaluation of Biofilm and Other Influencing Factors on Biological Quality of Drinking Water for Dairy Cows. J. Anim. Sci. 2022, 100, skac112. [Google Scholar] [CrossRef]
- Coenye, T.; Ahonen, M.; Anderson, S.; Cámara, M.; Chundi, P.; Fields, M.; Foidl, I.; Gnimpieba, E.Z.; Griffin, K.; Hinks, J.; et al. Global Challenges and Microbial Biofilms: Identification of Priority Questions in Biofilm Research, Innovation and Policy. Biofilm 2024, 8, 100210. [Google Scholar] [CrossRef]
- Nahum, Y.; Muhvich, J.; Morones-Ramirez, J.R.; Casillas-Vega, N.G.; Zaman, M.H. Biofilms as Potential Reservoirs of Antimicrobial Resistance in Vulnerable Settings. Front. Public Health 2025, 13, 1568463. [Google Scholar] [CrossRef]
- Van Wagenberg, C.P.A.; De Haas, Y.; Hogeveen, H.; Van Krimpen, M.M.; Meuwissen, M.P.M.; Van Middelaar, C.E.; Rodenburg, T.B. Animal Board Invited Review: Comparing Conventional and Organic Livestock Production Systems on Different Aspects of Sustainability. Animal 2017, 11, 1839–1851. [Google Scholar] [CrossRef]
- Davies, R.; Wales, A. Antimicrobial Resistance on Farms: A Review Including Biosecurity and the Potential Role of Disinfectants in Resistance Selection. Compr. Rev. Food Sci. Food Saf. 2019, 18, 753–774. [Google Scholar] [CrossRef]
- Vougat Ngom, R.; Laconi, A.; Tolosi, R.; Akoussa, A.M.M.; Ziebe, S.D.; Kouyabe, V.M.; Piccirillo, A. Resistance to Medically Important Antimicrobials in Broiler and Layer Farms in Cameroon and Its Relation with Biosecurity and Antimicrobial Use. Front. Microbiol. 2024, 15, 1517159. [Google Scholar] [CrossRef]
- Liang, C.; Wei, D.; Yan, W.; Zhang, S.; Shi, J.; Liu, L. Fates of Intracellular and Extracellular Antibiotic Resistance Genes during the Cattle Farm Wastewater Treatment Process. Bioresour. Technol. 2022, 344, 126272. [Google Scholar] [CrossRef]
- Tu, Z.; Shui, J.; Liu, J.; Tuo, H.; Zhang, H.; Lin, C.; Feng, J.; Feng, Y.; Su, W.; Zhang, A. Exploring the Abundance and Influencing Factors of Antimicrobial Resistance Genes in Manure Plasmidome from Swine Farms. J. Environ. Sci. 2022, 124, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Dewulf, J.; Joosten, P.; Chantziaras, I.; Bernaerdt, E.; Vanderhaeghen, W.; Postma, M.; Maes, D. Antibiotic Use in European Pig Production: Less Is More. Antibiotics 2022, 11, 1493. [Google Scholar] [CrossRef]
- Holman, D.B.; Chénier, M.R. Antimicrobial Use in Swine Production and Its Effect on the Swine Gut Microbiota and Antimicrobial Resistance. Can. J. Microbiol. 2015, 61, 785–798. [Google Scholar] [CrossRef]
- Acosta, A.; Tirkaso, W.; Nicolli, F.; Van Boeckel, T.P.; Cinardi, G.; Song, J. The Future of Antibiotic Use in Livestock. Nat. Commun. 2025, 16, 2469. [Google Scholar] [CrossRef]
- Salcedo, D.E.; Lee, J.H.; Ha, U.H.; Kim, S.P. The Effects of Antibiotics on the Biofilm Formation and Antibiotic Resistance Gene Transfer. Desalination Water Treat. 2015, 54, 3582–3588. [Google Scholar] [CrossRef]
- Araújo, D.; Silva, A.R.; Fernandes, R.; Serra, P.; Barros, M.M.; Campos, A.M.; Oliveira, R.; Silva, S.; Almeida, C.; Castro, J. Emerging Approaches for Mitigating Biofilm-Formation-Associated Infections in Farm, Wild, and Companion Animals. Pathogens 2024, 13, 320. [Google Scholar] [CrossRef]
- Bowler, P.; Murphy, C.; Wolcott, R. Biofilm Exacerbates Antibiotic Resistance: Is This a Current Oversight in Antimicrobial Stewardship? Antimicrob. Resist. Infect. Control 2020, 9, 162. [Google Scholar] [CrossRef] [PubMed]
- Matheou, A.; Abousetta, A.; Pascoe, A.P.; Papakostopoulos, D.; Charalambous, L.; Panagi, S.; Panagiotou, S.; Yiallouris, A.; Filippou, C.; Johnson, E.O. Antibiotic Use in Livestock Farming: A Driver of Multidrug Resistance? Microorganisms 2025, 13, 779. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhang, Y.; Liu, X.; Hammes, F.; Liu, W.T.; Medema, G.; Wessels, P.; Van Der Meer, W. 360-Degree Distribution of Biofilm Quantity and Community in an Operational Unchlorinated Drinking Water Distribution Pipe. Environ. Sci. Technol. 2020, 54, 5619–5628. [Google Scholar] [CrossRef]
- Fish, K.; Osborn, A.M.; Boxall, J.B. Biofilm Structures (EPS and Bacterial Communities) in Drinking Water Distribution Systems Are Conditioned by Hydraulics and Influence Discolouration. Sci. Total Environ. 2017, 593–594, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Anjum, M.F.; Schmitt, H.; Börjesson, S.; Berendonk, T.U.; Donner, E.; Stehling, E.G.; Boerlin, P.; Topp, E.; Jardine, C.; Li, X.; et al. The Potential of Using E. coli as an Indicator for the Surveillance of Antimicrobial Resistance (AMR) in the Environment. Curr. Opin. Microbiol. 2021, 64, 152–158. [Google Scholar] [CrossRef]
- Pearcy, N.; Hu, Y.; Baker, M.; Maciel-Guerra, A.; Xue, N.; Wang, W.; Kaler, J.; Peng, Z.; Li, F.; Dottorini, T. Genome-Scale Metabolic Models and Machine Learning Reveal Genetic Determinants of Antibiotic Resistance in Escherichia coli and Unravel the Underlying Metabolic Adaptation Mechanisms. mSystems 2021, 6, e0091320. [Google Scholar] [CrossRef]
- Mellata, M. Human and Avian Extraintestinal Pathogenic Escherichia coli: Infections, Zoonotic Risks, and Antibiotic Resistance Trends. Foodborne Pathog. Dis. 2013, 10, 916–932. [Google Scholar] [CrossRef]
- Christensen, H.; Bachmeier, J.; Bisgaard, M. New Strategies to Prevent and Control Avian Pathogenic Escherichia coli (APEC). Avian Pathol. 2021, 50, 370–381. [Google Scholar] [CrossRef]
- Young, M.M.; de Oliveira, A.L.; Nolan, L.K.; Barbieri, N.L.; Logue, C.M. Identification of Novel Genes Involved in the Biofilm Formation Process of Avian Pathogenic Escherichia coli (APEC). PLoS ONE 2022, 17, e0279206. [Google Scholar] [CrossRef]
- Laconi, A.; Tolosi, R.; Apostolakos, I.; Piccirillo, A. Biofilm Formation Ability of ESBL/PAmpC-Producing Escherichia coli Isolated from the Broiler Production Pyramid. Antibiotics 2023, 12, 155. [Google Scholar] [CrossRef]
- Yin, L.; Li, Q.; Wang, Z.; Shen, X.; Tu, J.; Shao, Y.; Song, X.; Qi, K.; Pan, X. The Escherichia coli Type III Secretion System 2 Is Involved in the Biofilm Formation and Virulence of Avian Pathogenic Escherichia coli. Comp. Immunol. Microbiol. Infect. Dis. 2021, 79, 101722. [Google Scholar] [CrossRef] [PubMed]
- Sivaranjani, M.; McCarthy, M.C.; Sniatynski, M.K.; Wu, L.; Dillon, J.A.R.; Rubin, J.E.; White, A.P. Biofilm Formation and Antimicrobial Susceptibility of E. coli Associated with Colibacillosis Outbreaks in Broiler Chickens from Saskatchewan. Front. Microbiol. 2022, 13, 841516. [Google Scholar] [CrossRef] [PubMed]
- Feßler, A.T.; Wang, Y.; Burbick, C.R.; Diaz-Campos, D.; Fajt, V.R.; Lawhon, S.D.; Li, X.-Z.; Lubbers, B.V.; Maddock, K.; Miller, R.A.; et al. Antimicrobial Susceptibility Testing in Veterinary Medicine: Performance, Interpretation of Results, Best Practices and Pitfalls. One Health Adv. 2023, 1, 26. [Google Scholar] [CrossRef]
- Koritnik, T.; Cvetkovikj, I.; Zendri, F.; Blum, S.E.; Chaintoutis, S.C.; Kopp, P.A.; Hare, C.; Štritof, Z.; Kittl, S.; Gonçalves, J.; et al. Towards Harmonized Laboratory Methodologies in Veterinary Clinical Bacteriology: Outcomes of a European Survey. Front. Microbiol. 2024, 15, 1443755. [Google Scholar] [CrossRef]
- Volkov, S. WHO List of Medically Important Antimicrobials a Risk Management Tool for Mitigating Antimicrobial Resistance Due to Non-Human Use; WHO: Geneva, Switzerland, 2024; ISBN 9789240084612. [Google Scholar]
- Vandeplassche, E.; Coenye, T.; Crabbé, A. Developing Selective Media for Quantification of Multispecies Biofilms Following Antibiotic Treatment. PLoS ONE 2017, 12, e0187540. [Google Scholar] [CrossRef]
- Boolchandani, M.; D’Souza, A.W.; Dantas, G. Sequencing-Based Methods and Resources to Study Antimicrobial Resistance. Nat. Rev. Genet. 2019, 20, 356–370. [Google Scholar] [CrossRef]
- Yang, D.; Heederik, D.J.J.; Mevius, D.J.; Scherpenisse, P.; Luiken, R.E.C.; Van Gompel, L.; Skarżyńska, M.; Wadepohl, K.; Chauvin, C.; Van Heijnsbergen, E.; et al. Risk Factors for the Abundance of Antimicrobial Resistance Genes aph(3′)-III, erm(B), sul2 and tet(W) in Pig and Broiler Faeces in Nine European Countries. J. Antimicrob. Chemother. 2022, 77, 969–978. [Google Scholar] [CrossRef] [PubMed]
- Volk, M.; Gundogdu, O.; Klančnik, A. Temporal Dynamics of Gene Expression during the Development of Campylobacter jejuni Biofilms. Microb. Genom. 2025, 11, 001387. [Google Scholar] [CrossRef] [PubMed]
Reference | Country | Study Design | Animal Species | Number of Farms Visited | Period of Sampling |
---|---|---|---|---|---|
[27] | Egypt | Cross-sectional | Layer | 1 | February 2020 |
[28] | Iran | Cross-sectional | Broiler | 20 | 2019 to 2020 |
[29] | India | Cross-sectional | Broiler | 10 | NR |
[30] | Germany | Cross-sectional | Dairy Cow | 24 | March to September 2018 |
Reference | Sample Location | Sampling Method | Transportation/Storage Conditions | Time to Analysis |
---|---|---|---|---|
[27] | PVC and iron pipelines | Swabbing | Icebox | Within 4 h |
[28] | Drinking water distribution systems | NR | NR | NR |
[29] | Water tank, water supply pipes, and drinkers | Swabbing | Icebox | Same day |
[30] | Troughs | Scraping-off | Insulated box (4 to 7 °C) | Within 24 h |
Reference | Total No. of Biofilm Samples | No. of Positive Biofilm Samples | No. of Isolates | Bacterial Species Identified (No. of Isolates) | Methodology Used for Bacterial Isolation and Identification | ||
---|---|---|---|---|---|---|---|
Isolation Method | Identification by Biochemical Assays | Identification by Molecular Assays | |||||
[27] | 8 * | NA | NA | Staphylococcus saprophyticus; Enterococcus faecalis; Enterococcus casseliflavus; Pseudomonas aeruginosa (3); Sphingopyxis terrae; Bacillus luti; Acinetobacter kookii | Heterotrophic bacterial count following the standard protocols of the American Public Health Association | NA | 16S rRNA sequencing |
[28] | 100 | 20 | 20 | Escherichia coli | Direct inoculation of MacConkey and Eosin methylene blue (EMB) agar | IMViC test: indole, methyl red test, Voges–Proskauer test, and citrate utilization test | 16S rRNA sequencing |
[29] | 22 | 6 | 6 | Avian Pathogenic Escherichia coli | Inoculation in brain heart infusion (BHI) broth and MacConkey agar. Inoculation of suspected colonies on EMB | Vitek® 2 Compact | End-point PCR (uspA gene) |
[30] | 72 | 72 ^ | 102 | Escherichia coli (27); Methicillin-resistant Staphylococcus aureus (MRSA) (2); Resistant Escherichia coli (6); Resistant Acinetobacter spp. (38); Resistant Pseudomonas spp. (26); Resistant Citrobacter spp. (3) | Total bacterial count and enumeration of Escherichia coli and coliform bacteria according to DIN EN ISO 6222:1999 and DIN EN ISO 9308-1-2014, respectively. Biofilms diluted at 1:10 in sterile saline solution and filter bags blending. Chromocult coliform agar, CHROMagar ESBL, and CHROMagar MRSA, Columbia sheep blood agar | Oxidase, EnteroPluri or OxiFerm tests | NA |
[27] | [28] | [29] | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Antibiotic Class/Sub-Class | Active Principle | S. saprophyticus * | E. faecalis * | E. casseliflavus * | P. aeruginosa * | S. terrae * | B. luti # | P. aeruginosa # | P. aeruginosa # | A. kookii # | Number (%) of Resistant E. coli Strains | E. coli |
Aminoglycosides | Amikacin | S | - | - | S | R | S | S | S | S | 3 (15) | NR |
Gentamycin | S | S | R | S | S | S | S | S | S | 0 (0) | NR | |
Tobramycin | - | - | - | S | R | - | S | S | S | NA | NR | |
Aminopenicillins | Ampicillin | - | S | S | - | S | - | - | - | - | 5 (25) | NR |
Amoxicillin | NA | NA | NA | NA | NA | NA | NA | NA | NA | 6 (30) | NA | |
Aminopenicillins, in combination with beta-lactamase inhibitors | Amoxicillin-clavulanic acid | - | - | - | - | S | - | - | - | - | 2 (10) | NR |
Carbapenems | Imipenem | S | - | - | S | S | S | S | S | S | 0 (0) | NR |
Ertapenem | - | - | - | - | S | - | - | - | - | NA | NA | |
Doripenem | - | - | - | S | R | - | S | S | S | NA | NA | |
Cephalosporins, 1st- to 4th-generation | Cefalexin | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NR |
Cefuroxime | - | - | - | - | R | - | - | - | - | NA | NA | |
Ceftriaxone | - | - | - | - | R | - | - | - | R | NA | NA | |
Ceftazidime | S | - | - | - | R | R | S | S | R | NA | NA | |
Cefpodoxime | R | - | - | - | R | R | - | - | - | NA | NR | |
Cefotaxime | - | - | - | - | R | - | - | - | - | NA | NA | |
Cefovecin | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NR | |
Ceftiofur | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NR | |
Cefepime | S | - | - | S | R | R | S | S | R | NA | NA | |
Cefixime | NA | NA | NA | NA | NA | NA | NA | NA | NA | 3 (15) | NA | |
Glycopeptides | Teicoplanin | - | S | S | - | - | - | - | - | - | NA | NA |
Vancomycin | - | S | S | - | - | - | - | - | - | NA | NA | |
Lincosamides | Clindamycin | R | - | - | - | - | S | - | - | - | NA | NA |
Macrolides | Erythromycin | R | R | R | - | - | R | - | - | - | NA | NA |
Monobactams | Aztreonam | - | - | - | S | R | - | R | S | - | NA | NA |
Nitrofurans | Nitrofurantoin | S | S | S | - | S | S | - | - | - | NA | NR |
Furazolidone | NA | NA | NA | NA | NA | NA | NA | NA | NA | 4 (20) | NA | |
Oxazolidinones | Linezolid | - | S | S | - | - | - | - | - | - | NA | NA |
Penicillins | Penicillin | R | S | S | - | - | R | - | - | - | 0 (0) | NA |
Phenicols | Chloramphenicol | NA | NA | NA | NA | NA | NA | NA | NA | NA | 4 (20) | NR |
Polymyxins | Polymyxin B | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | S |
Quinolones | Nalidixic Acid | - | - | - | - | R | - | - | - | - | 4 (20) | NA |
Ciprofloxacin | S | S | S | S | R | S | S | S | S | 6 (30) | NA | |
Ofloxacin | S | - | - | S | S | S | R | S | - | NA | NA | |
Norfloxacin | R | S | - | S | S | S | S | R | - | NA | NA | |
Enrofloxacin | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NR | |
Marbofloxacin | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NR | |
Rifamycins | Rifampicin | S | R | S | - | - | R | - | - | - | NA | NA |
Sulfonamides and dihydrofolate reductase inhibitors combination | Sulfamethoxazole- Trimethoprim | S | - | - | - | R | S | - | - | R | 7 (35) | NR |
Tetracyclines | Tetracycline | NA | NA | NA | NA | NA | NA | NA | NA | NA | 14 (70) | NR |
Doxycycline | R | R | R | - | R | S | - | - | S | 5 (25) | NA | |
Oxytetracycline | NA | NA | NA | NA | NA | NA | NA | NA | NA | 8 (40) | NA | |
Ureidopenicillins | Piperacillin | - | - | - | S | S | - | S | S | S | NA | NR |
Ureidopenicillins, including combinations with beta-lactamase inhibitors | Piperacillin-Tazobactam | - | - | - | S | - | - | - | - | - | NA | NA |
Strengths | Weaknesses |
---|---|
Novel and timely topic linking AMR and biofilms in a One Health context | Very limited number of included studies (n = 4), reducing generalizability |
Rigorous methodology (PRISMA-ScR compliant and protocol-based) | High heterogeneity in methods, sampling, and bacterial identification |
Clear identification of research and knowledge gaps | Minimal synthesis possible due to data inconsistency |
No studies quantified antimicrobial residues (ARs) in biofilms | |
Lack of advanced molecular techniques (e.g., WGS, metagenomics) in all studies | |
Opportunities | Threats |
Development of standardized protocols for biofilm sampling, processing, and AMR testing | Field may remain under-researched without increased funding or policy attention |
Focus on underrepresented species like swine and cattle | Continued methodological inconsistency may hamper future meta-analyses |
Integration of molecular and culture-independent methods (e.g., WGS, qPCR, metagenomics) | Risk of misinterpretation or overgeneralization due to small evidence base |
Interdisciplinary collaboration across microbiology, veterinary, and public health sectors | |
Informing global AMR policies and One Health surveillance strategies |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irshad, Z.; Laconi, A.; Vougat Ngom, R.; Tolosi, R.; Piccirillo, A. Antimicrobial Resistance and Residues from Biofilms in Poultry, Swine, and Cattle Farms: A Scoping Review. Animals 2025, 15, 2756. https://doi.org/10.3390/ani15182756
Irshad Z, Laconi A, Vougat Ngom R, Tolosi R, Piccirillo A. Antimicrobial Resistance and Residues from Biofilms in Poultry, Swine, and Cattle Farms: A Scoping Review. Animals. 2025; 15(18):2756. https://doi.org/10.3390/ani15182756
Chicago/Turabian StyleIrshad, Zehra, Andrea Laconi, Ronald Vougat Ngom, Roberta Tolosi, and Alessandra Piccirillo. 2025. "Antimicrobial Resistance and Residues from Biofilms in Poultry, Swine, and Cattle Farms: A Scoping Review" Animals 15, no. 18: 2756. https://doi.org/10.3390/ani15182756
APA StyleIrshad, Z., Laconi, A., Vougat Ngom, R., Tolosi, R., & Piccirillo, A. (2025). Antimicrobial Resistance and Residues from Biofilms in Poultry, Swine, and Cattle Farms: A Scoping Review. Animals, 15(18), 2756. https://doi.org/10.3390/ani15182756