Temperatures of the Mouthpiece of the Bit of Carriage Horses over a Period of 11 Months
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Animals
2.3. Data Collection
2.3.1. Bit Shape and Material
2.3.2. Physical Measurements
Measurement of the Bits
Surface Temperature of the Horse’s Inner Thigh
Infrared Thermography
Meteorological Measurements
2.4. Data Processing
2.4.1. Instrument Cross Validation of the Infrared Thermometers
2.4.2. Surface Area of Different Bit Configurations
2.5. Statistical Analysis
3. Results
3.1. Animals
3.2. Meteorological Measurements over the Year
3.3. Comparison of Bits
3.4. Differences Between Mouthpiece Temperature, Meteorological Measurements, and Surface Temperatures
3.5. Correlations Between Mouthpiece Temperature, Meteorological Measurements, and Surface Temperatures
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BM | Bit material |
BS | Bit shape |
BC | Bit configuration |
TA | Air temperature |
RH | Relative Humidity |
WBGT | Wet Bulb globe temperature |
MT | Mouthpiece temperature |
IRT | infrared thermography |
N | Number of data points |
GT | Ground temperature |
SST | Specific façade temperature |
PFT | Panorama façade temperature |
STT | Surface temperature of the inner thigh |
BW | Weight of the bit |
SRCW | Weight of the shanks, rings, chain |
MW | Weight of the mouthpiece |
SRA | Surface area of the shanks and rings |
References
- Budiansky, S. The Nature of Horses; Simon and Schuster: New York, NY, USA, 1997. [Google Scholar]
- Schacht, J.; May, A.; Gehlen, H. The Use of Bits in Equestrian Sports and Its Implications for Equine Welfare. Preprints 2023, 2023081725. [Google Scholar] [CrossRef]
- Casey, V.; McGreevy, P.D.; O’Muiris, E.; Doherty, O. A preliminary report on estimating the pressures exerted by a crank noseband in the horse. J. Vet. Behav. 2013, 8, 479–484. [Google Scholar] [CrossRef]
- Manfredi, J.; Clayton, H.; Rosenstein, D. Radiographic study of bit position within the horse’s oral cavity. Equine Comp. Exerc. Physiol. 2005, 2, 195–201. [Google Scholar] [CrossRef]
- Engelke, E.; Gasse, H. An anatomical study of the rostral part of the equine oral cavity in respect to position and size of a snaffle bit. Equine Vet. Educ. 2010, 15, 158–163. [Google Scholar] [CrossRef]
- Anttila, M.; Raekallio, M.; Valros, A. Oral Dimensions Related to Bit Size in Adult Horses and Ponies. Front. Vet. Sci. 2022, 9, 879048. [Google Scholar] [CrossRef] [PubMed]
- Mellor, D.J. Mouth Pain in Horses: Physiological Foundations, Behavioural Indices, Welfare Implications, and a Suggested Solution. Animals 2020, 10, 572. [Google Scholar] [CrossRef] [PubMed]
- Cook, R. Pathophysiology of bit control in the horse. J. Equine Vet. Sci. 1999, 19, 196–204. [Google Scholar] [CrossRef]
- Doherty, O.; Casey, V.; McGreevy, P.; McLean, A.; Parker, P.; Arkins, S. An analysis of visible patterns of horse bit wear. J. Vet. Behav. 2017, 18, 84–91. [Google Scholar] [CrossRef]
- Guzzo, N.; Sartori, C.; Stelletta, C.; Bailoni, L.; Mantovani, R. Comparison Between Stainless Steel and Titanium Snaffle Bits in Sport Horses During Show Jumping Exercise. J. Equine Vet. Sci. 2018, 71, 105–111. [Google Scholar] [CrossRef]
- Cook, W.R.; Kibler, M. Behavioural assessment of pain in 66 horses, with and without a bit. Equine Vet. Educ. 2019, 31, 551–560. [Google Scholar] [CrossRef]
- Wang, M.; Liu, D.; Lu, Y.; Yang, Q.; Song, D.; Liu, X. Investigation into the nonuniform temperature effect of a large-span stainless steel roof system under solar radiation. J. Constr. Steel Res. 2025, 224, 109133. [Google Scholar] [CrossRef]
- Chestovich, P.J.; Saroukhanoff, R.Z.; Moujaes, S.F.; Flores, C.E.; Carroll, J.T.; Saquib, S.F. Temperature Profiles of Sunlight-Exposed Surfaces in a Desert Climate: Determining the Risk for Pavement Burns. J. Burn Care Res. 2023, 44, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Soroko, M.; Davies Morel, M.C.G.; Howell, K. The Application of Infrared Thermography in Equestrian Sport. In Application of Infrared Thermography in Sports Science; Priego Quesada, J.I., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 265–296. [Google Scholar]
- Giannetto, C.; Arfuso, F.; Giudice, E.; Gianesella, M.; Fazio, F.; Panzera, M.; Piccione, G. Infrared methodologies for the assessment of skin temperature daily rhythm in two domestic mammalian species. J. Therm. Biol. 2020, 92, 102677. [Google Scholar] [CrossRef] [PubMed]
- Soroko, M.; Howell, K. Infrared Thermography: Current Applications in Equine Medicine. J. Equine Vet. Sci. 2018, 60, 90–96.e92. [Google Scholar] [CrossRef]
- Prochno, H.C.; Barussi, F.M.; Bastos, F.Z.; Weber, S.H.; Bechara, G.H.; Rehan, I.F.; Michelotto, P.V. Infrared Thermography Applied to Monitoring Musculoskeletal Adaptation to Training in Thoroughbred Race Horses. J. Equine Vet. Sci. 2020, 87, 102935. [Google Scholar] [CrossRef]
- Redaelli, V.; Luzi, F.; Mazzola, S.; Bariffi, G.; Zappaterra, M.; Nanni Costa, L.; Padalino, B. The Use of Infrared Thermography (IRT) as Stress Indicator in Horses Trained for Endurance: A Pilot Study. Animals 2019, 9, 84. [Google Scholar] [CrossRef]
- Johnson, S.R.; Rao, S.; Hussey, S.B.; Morley, P.S.; Traub-Dargatz, J.L. Thermographic Eye Temperature as an Index to Body Temperature in Ponies. J. Equine Vet. Sci. 2011, 31, 63–66. [Google Scholar] [CrossRef]
- Marlin, D.J.; Harris, P.A.; Schroter, R.C.; Harris, R.C.; Roberts, C.A.; Scott, C.M.; Orme, C.E.; Dunnett, M.; Dyson, S.J.; Barrelet, F.; et al. Physiological, metabolic and biochemical responses of horses competing in the speed and endurance phase of a CCI**** 3-day-event. Equine Vet. J. 1995, 27, 37–46. [Google Scholar] [CrossRef]
- Mills, P.C.; Marlin, D.J.; Schroter, R.C.; White, S.L.; Maykuth, P.L.; Votion, D.; Waran, N. Performance of acclimatized European horses in a modified One Star (*) Three-Day Event in heat and humidity. J. Equine Vet. Sci. 2001, 21, 341–350. [Google Scholar] [CrossRef]
- Wiener Fiaker- und Pferde-mietwagengesetzes, LGBl. 34/2016. 2017. Available online: https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=LrW&Gesetzesnummer=20000190 (accessed on 4 September 2025).
- Padalino, B.; Loy, J.; Hawson, L.; Randle, H. Effects of a light-colored cotton rug use on horse thermoregulation and behavior indicators of stress. J. Vet. Behav. 2019, 29, 134–139. [Google Scholar] [CrossRef]
- Geosphere Austria. Available online: https://dataset.api.hub.geosphere.at/app/frontend/station/historical/klima-v2-1h (accessed on 4 September 2025).
- Barreira, E.; Almeida, R.M.S.F.; Simões, M.L. Emissivity of Building Materials for Infrared Measurements. Sensors 2021, 21, 1961. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Roesler, J. Thermal and optical characterization of asphalt field cores for microscale urban heat island analysis. Constr. Build. Mater. 2019, 217, 600–611. [Google Scholar] [CrossRef]
- Zentralanstalt für Meteorologie und Geodynamik. GeoSphere Austria. Monatlicher Klimabericht Österreich für das Jahr 2024; ZAMG: Wien, Austria, 2024. [Google Scholar]
- Metereological Information. Available online: https://www.ilmeteo.it/portale/archivio-meteo/Udine/2015/Dicembre (accessed on 4 September 2025).
- Da Costa Rodrigues, A.; Severo, E.; Góss, G.; Döwich Pradella, G.; Junior, O.; Icart, R.; Da Silva Azevedo, M. Gaining body temperature in horses: Mercury, digital and infrared thermometer in different locations. Acta Vet. Bras. 2021, 15, 82–86. [Google Scholar] [CrossRef]
- Mazerolle, S.M.; Ganio, M.S.; Casa, D.J.; Vingren, J.; Klau, J. Is oral temperature an accurate measurement of deep body temperature? A systematic review. J. Athl. Train. 2011, 46, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.W.; Bonde, R.K.; Siegal-Willott, J.; Stamper, M.A.; Colee, J.; Powell, J.A.; Reid, J.P.; Deutsch, C.J.; Harr, K.E. Monitoring oral temperature, heart rate, and respiration rate of West Indian manatees (Trichechus manatus) during capture and handling in the field. Aquat. Mamm. 2012, 38, 1–16. [Google Scholar] [CrossRef]
- Cugmas, B.; Šušterič, P.; Ružić, N.; Plavec, T. Comparison between rectal and body surface temperature in dogs by the calibrated infrared thermometer. Vet. Anim. Sci. 2020, 9, 100120. [Google Scholar] [CrossRef]
- Hartmann, A.; Welte-Jzyk, C.; Schmidtmann, I.; Geber, C.; Al-Nawas, B.; Daubländer, M. Somatosensory and Gustatory Profiling in the Orofacial Region. Diagn. 2022, 12, 3198. [Google Scholar] [CrossRef]
- Steinfort, S.; Röcken, M.; Vogelsberg, J.; Failing, K.; Staszyk, C. The Equine Gingiva: A Histological Evaluation. Front. Vet. Sci. 2019, 6, 435. [Google Scholar] [CrossRef]
- Kristula, M.A.; McDonnell, S.M. Drinking water temperature affects consumption of water during cold weather in ponies. Appl. Anim. Behav. Sci. 1994, 41, 155–160. [Google Scholar] [CrossRef]
- Callister, W.D.; Rethwisch, D.G. Materials Science and Engineering: An Introduction, 10th ed; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Staff, K.E.R. Winter Horse Management and Riding Considerations. 2012. Available online: https://ker.com/equinews/winter-horse-management-and-riding-considerations/ (accessed on 4 September 2025).
- Popović, Ž.V.; Thiha, A.; Ibrahim, F.; Petrović, B.B.; Dahlan, N.A.; Milić, L.; Kojić, S.; Stojanović, G.M. Oral micro-electronic platform for temperature and humidity monitoring. Sci. Rep. 2023, 13, 21277. [Google Scholar] [CrossRef]
2024 | Mouthpiece Temp n | Bit Shape n | Bit Material n |
---|---|---|---|
January | 10 | 9 | 9 |
February | 56 | 56 | 56 |
March | 42 | 42 | 42 |
April | 72 | 73 | 73 |
May | 77 | 79 | 79 |
June | 111 | 111 | 112 |
July | 55 | 55 | 55 |
August | 87 | 88 | 88 |
September | 75 | 76 | 76 |
October | 55 | 59 | 59 |
November | 53 | 55 | 55 |
January–November | 693 | 703 | 704 |
Bit Materials | Butterfly Liverpool | Liverpool | Loose Ring Snaffle (4 Rings) |
---|---|---|---|
Steel | 50 | 15 | 14 |
Copper | - | - | 7 |
Copper–Steel | - | 4 | 3 |
Mean Values | Standard Deviation | N | |
---|---|---|---|
Infrared Thermometers | |||
Laserliner ThermoSpotPocket (Device 1) | 30.72 °C | 1.98 °C | 107 |
Testo: 830-T1 (Device 2) | 31.53 °C | 2.24 °C | 321 |
Meteorological parameters | |||
Wet bulb globe temperature | 15.26 °C | 4.41 °C | 107 |
Relative humidity | 47.91% | 14.68% | 107 |
Air temperature | 19.69 °C | 5.95 °C | 107 |
Butterfly Liverpool | Liverpool Bit Steel | Liverpool Bit Copper–Steel | Loose Ring Snaffle 4 Rings | |
---|---|---|---|---|
defined length of 10 mm [pixel] | 2.38 | 2.38 | 2.38 | 2.38 |
black [pixel] | 77,123 | 14,9838 | 76,819 | 42,541 |
white [pixel] | 24,216 | 42,958 | 34,685 | 16,994 |
left-sided white area [mm2] | 10,174.8 | 18,049.6 | 14,573.5 | 7140.3 |
area [mm2] of all exposed parts | 20,349.6 | 36,099.2 | 29,147 | 14,280.6 |
2024 | Wet Bulb Globe Temperature [°C] | Relative Humidity [%] | Air Temperature [°C] | N |
---|---|---|---|---|
January–November | 19.6 (5.5–30.3) | 44.3 (27.2–96.9) | 26.35 (6.2–39.1) | 777 |
January | 6.1 (5.5–11.8) | 77 (60.2–96.9) | 7.4 (6.2–14.7) | 32 |
February | 9.5 (7–12.3) | 49.15 (43.9–91.9) | 12.45 (7.5–16) | 56 |
March | 10.2 (6–15.8) | 57.1 (37.1–96.6) | 12.7 (7.3–19.9) | 42 |
April | 18.5 (13.8–22.9) | 39.4 (32–48.3) | 24.4 (16.5–30.3) | 73 |
May | 19.6 (15.8–25.1) | 36.9 (27.2–53.1) | 26.4 (20.9–34.5) | 79 |
June | 25.1 (19.8–30.3) | 39.1 (34.2–56.6) | 31.9 (23.8–39.1) | 112 |
July | 27.5 (21.7–29.4) | 42.9 (31.4–51.3) | 33.6 (28.7–38.4) | 55 |
August | 25.5 (22.3–29.4) | 42.4 (34.4–53.1) | 32 (27.4–36.2) | 88 |
September | 23 (17–25.7) | 45.9 (30–54.7) | 28.6 (22.1–34.4) | 77 |
October | 14.8 (12.5–16.2) | 55.1 (48.6–67.2) | 18.3 (15.9–30.3) | 61 |
November | 14.5 (7.6–14.5) | 61 (48.9–61) | 17.6 (10.3–17.6) | 55 |
MT [°C] | MT-STT [°C] | MT-TA [°C] | MT-WBGT [°C] | MT-GT [°C] | MT-SFT [°C] | |
---|---|---|---|---|---|---|
All months | 29.8 (13.8–37) | 2.9 (0–17.2) | 3.9 (0–19.9) | 8.9 (1.2–21.7) | 3.4 (0–19.3) | 3.6 (0–18.6) |
January | 21.5 (17–26) | 7.2 (0.6–11.8) | 7.7 (5.7–11.3) | 10.2 (8.6–14.3) | 9.7 (8.2–12.5) | 7.5 (4.7–12.7) |
February | 22.2 (13.8–29.4) | 5.7 (0.7–11.8) | 10.3 (2.8–11.6) | 13.1 (6.7–14.3) | 8.5 (2.4–12.5) | 7.1 (0.3–10.4) |
March | 24.5 (15.5–32.5) | 6.1 (0.6–17.2) | 10.9 (5.7–19.9) | 13.1 (8.6–21.7) | 7.6 (5.1–19.3) | 7.7 (4.7–17.6) |
April | 29.1 (18.1–32.9) | 3.6 (0–12) | 5.4 (0.1–12.5) | 10.8 (4.3–16.1) | 3.4 (0–9.5) | 2.3 (0–8.7) |
May | 29.3 (24.6–32.9) | 2.7 (0–7.3) | 3.6 (0.1–8.6) | 9.6 (4.2–14) | 3.2 (0–14.6) | 2.0 (0–18.6) |
June | 32.0 (24.6–37) | 1.6 (0–7.6) | 2.6 (0–9.2) | 8.0 (2.6–15.7) | 3.1 (0–14.2) | 2.7 (0–12.5) |
July | 33.3 (29.1–36.4) | 1.4 (0–4.9) | 2.3 (0.1–7.8) | 6.6 (1.2–11.6) | 3.7 (0.1–15.7) | 5.8 (0.4–12.9) |
August | 33.1 (28.2–36.2) | 1.3 (0–5.2) | 2 (0–6.8) | 8 (2.8–11.9) | 2.3 (0.2–12.4) | 5.2 (2.3–8) |
September | 32.9 (23.1–36.6) | 2.5 (0.1–9.4) | 2 (0.1–8) | 8.6 (3.9–13.6) | 1.7 (0–13.6) | 4.4 (1.7–7.1) |
October | 22.2 (15.5–26.6) | 8.3 (1.8–14.3) | 4.9 (0.2–10.2) | 6.8 (2.5–11.8) | 1.8 (0.3–7.6) | 2.5 (0.8–4.2) |
November | 22.2 (14.9–32.4) | 6.3 (0.1–13.5) | 6.5 (2.7–14.8) | 9.5 (5.8–17.9) | 5.7 (0–14.6) | 1.1 (4–1.9) |
Correlation of MT with | February (n = 56) | July (n = 55) | All Months (n = 693) | |||
---|---|---|---|---|---|---|
rs | p-Value | rs | p-Value | rs | p-Value | |
BM | 0.139 | <0.001 | ||||
BS | 0.152 | <0.001 | ||||
RH | −0.356 | <0.007 | 0.370 | <0.005 | −0.633 | <0.001 |
TA | 0.394 | <0.030 | 0.851 | <0.001 | ||
WBGT | 0.312 | <0.019 | 0.880 | <0.001 | ||
STT | 0.372 | <0.005 | 0.419 | <0.001 | 0.793 | <0.001 |
GT | 0.277 | <0.039 | 0.467 | <0.001 | 0.822 | <0.001 |
BW | −0.092 | <0.015 | ||||
SRCW | −0.154 | <0.001 | ||||
MW | 0.165 | <0.001 | ||||
SRA | 0.373 | <0.005 |
Month(s) | Max MT [°C] | Median MT [°C] | Max GT [°C] | Median GT [°C] | Median Fsun [°C] | Median Fsha [°C] |
---|---|---|---|---|---|---|
August | 35.2 (34.2–36.2) | 33.4 a (31.7–35.2) | 39.4 (35.9–45.0) | 34.0 a (31.7–36) | 41.5 (39.9–42.8) | 35.45 (34.1–37.3) |
November | 25.15 (17.3–32.4) | 20.8 (16.3–23.7) | 17.25 (13–25.3) | 13.27 (9.2–18.4) | 21.7 (17.7–28.0) | 15.8 (12.9–21.1) |
August–November | 32.4 b,c,d,e (17.3–36.6) | 25.7 f,g,h,i (16.3–35.2) | 31.3 b,f (13–45) | 26.4 c,g (9.2–36.5) | 35.3 d,h (17.7–42.9) | 26.0 e,i (12.9–38.8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krcal, C.; Licka, T. Temperatures of the Mouthpiece of the Bit of Carriage Horses over a Period of 11 Months. Animals 2025, 15, 2623. https://doi.org/10.3390/ani15172623
Krcal C, Licka T. Temperatures of the Mouthpiece of the Bit of Carriage Horses over a Period of 11 Months. Animals. 2025; 15(17):2623. https://doi.org/10.3390/ani15172623
Chicago/Turabian StyleKrcal, Carina, and Theresia Licka. 2025. "Temperatures of the Mouthpiece of the Bit of Carriage Horses over a Period of 11 Months" Animals 15, no. 17: 2623. https://doi.org/10.3390/ani15172623
APA StyleKrcal, C., & Licka, T. (2025). Temperatures of the Mouthpiece of the Bit of Carriage Horses over a Period of 11 Months. Animals, 15(17), 2623. https://doi.org/10.3390/ani15172623