From Nutritional Profiles to Digestibility Insights: Exploring Palm Kernel Cake and Decanter Cake in Broiler Diets
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Place and Ethical Form
2.2. Palm Kernel Cake and Decanter Cake Preparation
2.3. Experimental Design and Diets
2.4. Sampling
2.5. Chemical Analysis
2.5.1. Proximate Analysis
2.5.2. Measurement of Gross Energy
2.5.3. Amino Acid Analysis
2.5.4. Measurement of Titanium Dioxide
2.6. Calculations
2.6.1. Calculations of AID, BELs, and SID
2.6.2. Calculation of Apparent Metabolizable Energy
2.7. Statistical Analysis
3. Results
3.1. Chemical Composition of Palm Kernel Cake and Decanter Cake
3.1.1. Proximate Composition and Gross Energy Value
3.1.2. Amino Acid Contents
3.2. Apparent and Standardized Ileal Nutrient Digestibility
3.2.1. Proximate Nutrient Digestibility and Apparent Metabolizable Energy
3.2.2. Amino Acid Digestibility
4. Discussion
4.1. Chemical Composition
4.1.1. Proximate Nutrient Composition and Gross Energy
4.1.2. Amino Acid Contents
4.2. Nutrient Digestibility
4.2.1. Proximate Nutrient Digestibility and Apparent Metabolizable Energy
4.2.2. Amino Acid Digestibility
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AA | Amino Acid |
ADF | Acid Detergent Fiber |
ADL | Acid Detergent Lignin |
AID | Apparent Ileal Digestibility |
AME | Apparent Metabolizable Energy |
ANFs | Anti-Nutritional Factors |
AOAC | Association of Official Analytical Chemists |
BELs | Basal Endogenous Losses |
CF | Crude Fiber |
CP | Crude Protein |
DC | Decanter Cake |
DM | Dry Matter |
EE | Ether Extract |
GE | Gross Energy |
GLM | General Linear Model |
HPLC | High-Performance Liquid Chromatography |
IACUC | Institutional Animal Care and Use Committee |
ME | Metabolizable Energy |
NDF | Neutral Detergent Fiber |
NSP | Non-Starch Polysaccharides |
PKC | Palm Kernel Cake |
SAS | Statistical Analysis System |
SID | Standardized Ileal Digestibility |
TiO2 | Titanium Dioxide |
References
- Azizi, M.N.; Loh, T.C.; Foo, H.L.; Chung, E.L.T. Is palm kernel cake a suitable alternative feed ingredient for poultry? Animals 2021, 11, 338. [Google Scholar] [CrossRef] [PubMed]
- Abioye, K.J.; Harun, N.Y.; Sufian, S.; Yusuf, M.; Kamyab, H.; Hassan, M.A.; Jagaba, A.H.; Sikiru, S.; Ubaidullah, M.; Pandit, B.; et al. Regulation of ash slagging behavior of palm oil decanter cake by alum sludge addition. Chemosphere 2023, 330, 138452. [Google Scholar] [CrossRef] [PubMed]
- Maniam, G.P.; Hindryawati, N.; Nurfitri, I.; Jose, R.; Mohd, M.H.; Dahalan, F.A.; Yusoff, M.M. Decanter cake as a feedstock for biodiesel production: A first report. Energy Convers. Manag. 2013, 76, 527–532. [Google Scholar] [CrossRef]
- Azizi, M.N.; Loh, T.C.; Foo, H.L.; Izuddin, W.I. Growth performance, apparent ileal digestibility, and nutrient transporter gene expressions of broilers fed seaweed-supplemented diets. Trop. Anim. Sci. J. 2024, 47, 333–342. [Google Scholar] [CrossRef]
- Barua, M.; Abdollahi, M.R.; Zaefarian, F.; Wester, T.J.; Girish, C.K.; Chrystal, P.V.; Ravindran, V. Basal ileal endogenous amino acid flow in broiler chickens as influenced by age. Poult. Sci. 2021, 100, 101269. [Google Scholar] [CrossRef]
- Stein, H.H.; Sève, B.; Fuller, M.F.; Moughan, P.J.; De Lange, C.F.M. Invited review: Amino acid bioavailability and digestibility in pig feed ingredients: Terminology and application. J. Anim. Sci. 2007, 85, 172–180. [Google Scholar] [CrossRef]
- Alshelmani, M.I.; Loh, T.C.; Foo, H.L.; Sazili, A.Q.; Lau, W.H. Effect of feeding different levels of palm kernel cake fermented by Paenibacillus polymyxa ATCC 842 on nutrient digestibility, intestinal morphology, and gut microflora in broiler chickens. Anim. Feed Sci. Technol. 2016, 216, 216–224. [Google Scholar] [CrossRef]
- Aya, V.E.; Ayanwale, B.A.; Ijaiya, A.T.; Aremu, A. Performance and nutrient digestibility in broiler chicks as influenced by multienzyme addition to starter diets containing palm kernel meal. Biotechnol. Anim. Husb. 2013, 29, 93–104. [Google Scholar] [CrossRef]
- Usman Zamani, H.; Chwen Loh, T.; Ling Foo, H.; Samsudin, A.; Alshelmani, M. Effects of Feeding Palm Kernel Cake with Crude Enzyme Supplementation on Growth Performance and Meat Quality of Broiler Chicken. Int. J. Microbiol. Biotechnol. 2017, 2, 22–28. [Google Scholar]
- Sulabo, R.C.; Ju, W.S.; Stein, H.H. Amino acid digestibility and concentration of digestible and metabolizable energy in copra meal, palm kernel expellers, and palm kernel meal fed to growing pigs. J. Anim. Sci. 2013, 91, 1391–1399. [Google Scholar] [CrossRef]
- Son, A.R.; Hyun, Y.; Htoo, J.K.; Kim, B.G. Amino acid digestibility in copra expellers and palm kernel expellers by growing pigs. Anim. Feed Sci. Technol. 2014, 187, 91–97. [Google Scholar] [CrossRef]
- Barua, M.; Abdollahi, M.R.; Zaefarian, F.; Wester, T.J.; Girish, C.K.; Ravindran, V. Standardized ileal amino acid digestibility of protein sources for broiler chickens is influenced by the feed form. Poult. Sci. 2020, 99, 6925–6934. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Sorbara, J.O.B.; Pappenberger, G.; Abdollahi, M.R.; Ravindran, V. Toward standardized amino acid matrices for exogenous phytase and protease in corn–soybean meal–based diets for broilers. Poult. Sci. 2020, 99, 3196–3206. [Google Scholar] [CrossRef] [PubMed]
- Azizi, M.N.; Loh, T.C.; Foo, H.L.; Akit, H.; Izuddin, W.I.; Shazali, N.; Teik Chung, E.L.; Samsudin, A.A. Chemical compositions of brown and green seaweed, and effects on nutrient digestibility in broiler chickens. Animals 2021, 11, 2147. [Google Scholar] [CrossRef] [PubMed]
- Cowieson, A.; Sorbara, J.O.; Pappenberger, G.; Abdollahi, M.R.; Roos, F.F.; Ravindran, V. Additivity of apparent and standardized ileal amino acid digestibility of corn and soybean meal in broiler diets. Poult. Sci. 2019, 98, 3722–3728. [Google Scholar] [CrossRef]
- Kong, C.; Adeola, O. Additivity of amino acid digestibility in corn and soybean meal for broiler chickens and White Pekin ducks. Poult. Sci. 2013, 92, 2381–2388. [Google Scholar] [CrossRef]
- MS 1500:2019; Halal Food—General Requirements (Third Revision). Department of Standards Malaysia: Putrajaya, Malaysia, 2019. Available online: https://mysol.jsm.gov.my/preview-file/eyJpdiI6InRlWU1uTS91Z1RDcVJhWGNtb2VEVnc9PSIsInZhbHVlIjoiM3BGd2xYamJZUVQrM2JZU3lZNVE2dz09IiwibWFjIjoiMGYxMGRhODFjM2EwZTMxNDE4OGM2OGQ1ZjgyZWFmOGNmM2ZiNTlmMmFmNzk3Yjc2OWVkZjY0MGY2YmZmMzFiZSJ9 (accessed on 30 June 2025).
- AOAC International. Official Methods of Analysis of AOAC International; Latimer, G.W., Ed.; Oxford University Press: Oxford, UK, 2005; ISBN 9780197610138. [Google Scholar]
- Edwards, R.A.; McDonald, P.; Greenhalgh, J.F.D.; Morgan, C.A.; Sinclair, L.A.; Wilkinson, R.G. Animal Nutrition. Nature 2010, 111, 651. [Google Scholar] [CrossRef]
- Soest, P.V. Use of Detergents in the Analysis of Fibrous Feeds. II. A Rapid Method for the Determination of Fiber and Lignin. J. Assoc. Off. Agric. Chem. 1963, 46, 829–835. [Google Scholar] [CrossRef]
- Short, F.J.; Gorton, P.; Wiseman, J.; Boorman, K.N. Determination of titanium dioxide added as an inert marker in chicken digestibility studies. Anim. Feed Sci. Technol. 1996, 59, 215–221. [Google Scholar] [CrossRef]
- Moughan, P.J.; Marlies Leenaars, G.S. Endogenous amino acid flow in the stomach and small intestine of the young growing pig. J. Sci. Food Agric. 1992, 60, 437–442. [Google Scholar] [CrossRef]
- Scott, T.A.; Boldaji, F. Comparison of Inert Markers [Chromic Oxide or Insoluble Ash (CeliteTM)] for Determining Apparent Metabolizable Energy of Wheat- or Barley-Based Broiler Diets with or without Enzymes. Poult. Sci. 1997, 76, 594–598. [Google Scholar] [CrossRef] [PubMed]
- Chusut, W.; Kanchanasuta, S.; Inthorn, D. Optimization for biohydrogen purification process by chemical absorption techniques. Sustain. Environ. Res. 2023, 33, 35. [Google Scholar] [CrossRef]
- Kanchanasuta, S.; Pisutpaisal, N. Waste utilization of palm oil decanter cake on biogas fermentation. Int. J. Hydrogen Energy 2016, 41, 15661–15666. [Google Scholar] [CrossRef]
- Husin, A.H.; Hamzani, S.H.; Amirnordin, S.H.; Batcha, M.F.M.; Wahidon, R.; Wae-hayee, M. Drying Studies of Oil Palm Decanter Cake for Production of Green Fertilizer. J. Adv. Res. Fluid Mech. Therm. Sci. 2022, 97, 66–79. [Google Scholar] [CrossRef]
- e Silva, A.R.B.; Franzini, V.I. Potential of organic wastes typical of the Brazilian Amazon for fertilizer use in agriculture. Environ. Chall. 2024, 15, 100893. [Google Scholar] [CrossRef]
- Alshelmani, M.I.; Loh, T.C.; Foo, H.L.; Sazili, A.Q.; Lau, W.H. Effect of feeding different levels of palm kernel cake fermented by Paenibacillus polymyxa ATCC 842 on broiler growth performance, blood biochemistry, carcass characteristics, and meat quality. Anim. Prod. Sci. 2017, 57, 839–848. [Google Scholar] [CrossRef]
- Djulardi, A.; Nuraini, N.; Trisna, A. Palm oil sludge fermented with lentinus edodes in the diet of broilers. Int. J. Poult. Sci. 2018, 17, 306–310. [Google Scholar] [CrossRef]
- Stein, H.H.; Casas, G.A.; Abelilla, J.J.; Liu, Y.; Sulabo, R.C. Nutritional value of high fiber co-products from the copra, palm kernel, and rice industries in diets fed to pigs. J. Anim. Sci. Biotechnol. 2015, 6, 56. [Google Scholar] [CrossRef]
- Lawal, T.E.; Lyayi, E.A.; Adeniyi, B.A.; Adaramoye, O.A. Biodegradation of palm kernel cake with multienzyme complexes from fungi and its feeding value for broilers. Int. J. Poult. Sci. 2010, 9, 695–701. [Google Scholar] [CrossRef]
- Abubakr, A.; Alimon, A.R.; Yaakub, H.; Abdullah, N.; Ivan, M. Effect of feeding palm oil by-products based diets on muscle fatty acid composition in goats. PLoS ONE 2015, 10, e0119756. [Google Scholar] [CrossRef]
- Fadil, M.; Alimon, A.R.; Meng, G.Y.; Ebrahimi, M.; Farjam, A.S. Palm kernel cake as a potential ingredient in Muscovy ducks diet. Ital. J. Anim. Sci. 2014, 13, 112–115. [Google Scholar] [CrossRef]
- Akinyeye, R.O.; Adeyeye, E.I.; Fasakin, O.; Agboola, A. Physico-chemical properties and anti-nutritional factors of palm fruit products (elaeis guineensis jacq.) from ekiti state nigeria. Electron. J. Environ. Agric. Food Chem. 2011, 10, 2190–2198. [Google Scholar]
- Abdul Razak, M.N.; Ibrahim, M.F.; Yee, P.L.; Hassan, M.A.; Abd-Aziz, S. Utilization of oil palm decanter cake for cellulase and polyoses production. Biotechnol. Bioprocess Eng. 2012, 17, 547–555. [Google Scholar] [CrossRef]
- Wu, G. Principles of Animal Nutrition; CRC Press: Boca Raton, FL, USA, 2017; ISBN 9781315120065. [Google Scholar]
- Saha, S.K.; Pathak, N.N. Fundamentals of Animal Nutrition; Springer Nature: Singapore, 2021; ISBN 978-981-15-9124-2. [Google Scholar]
- Alimon, A.R. The Nutritive Value of Palm Kernel Cake for Animal Feed. Palm Oil Dev. 2004, 40, 12–14. [Google Scholar]
- Hakim, A.H.; Zulkifli, I.; Soleimani Farjam, A.; Awad, E.A.; Abdullah, N.; Chen, W.L.; Mohamad, R. Passage time, apparent metabolisable energy and ileal amino acids digestibility of treated palm kernel cake in broilers under the hot and humid tropical climate. Ital. J. Anim. Sci. 2020, 19, 194–202. [Google Scholar] [CrossRef]
- Abioye, K.J.; Harun, N.Y.; Umar, H.A.; Kolawole, A.H. Study of Physicochemical Properties of Palm Oil Decanter Cake for Potential Syngas Generation. Chem. Eng. Trans. 2023, 99, 709–714. [Google Scholar] [CrossRef]
- Blair, R. Nutrition and Feeding of Organic Poultry; CABI: Wallingford, UK, 2008; ISBN 9781845934064. [Google Scholar]
- Scanes, C.G.; Christensen, K.D. Poultry Science, 5th ed.; Waveland Press: Long Grove, IL, USA, 2020; ISBN 9781478635826. [Google Scholar]
- Alimon, A.R. Alternative Raw Materials for Animal Feed. War. Indones. Bull. Anim. Vet. Sci. 2009, 19, 117–124. [Google Scholar]
- Tang, X. The nutritive value of palm kernel cake and its application in low quality diets of broiler chickens. Pakistan J. Agric. Sci. 2021, 58, 1429–1436. [Google Scholar] [CrossRef]
- Ravindran, V. Progress in ileal endogenous amino acid flow research in poultry. J. Anim. Sci. Biotechnol. 2021, 12, 5. [Google Scholar] [CrossRef]
- Barua, M.; Abdollahi, M.R.; Zaefarian, F.; Wester, T.J.; Girish, C.K.; Chrystal, P.V.; Ravindran, V. Effect of age on the standardized ileal amino acid digestibility of soybean meal and canola meal in broilers. Anim. Nutr. 2024, 16, 11–22. [Google Scholar] [CrossRef]
- Selle, P.H.; Macelline, S.P.; Chrystal, P.V.; Liu, S.Y. A reappraisal of amino acids in broiler chicken nutrition. Worlds. Poult. Sci. J. 2023, 79, 429–447. [Google Scholar] [CrossRef]
- Parsons, C.M. Unresolved issues for amino acid digestibility in poultry nutrition. J. Appl. Poult. Res. 2020, 29, 1–10. [Google Scholar] [CrossRef]
- Lemme, A.; Ravindran, V.; Bryden, W.L. Ileal digestibility of amino acids in feed ingredients for broilers. Worlds. Poult. Sci. J. 2004, 60, 423–437. [Google Scholar] [CrossRef]
- Alshelmani, M.I.; Loh, T.C.; Foo, H.L.; Sazili, A.Q.; Lau, W.H. Effect of solid state fermentation on nutrient content and ileal amino acids digestibility of palm kernel cake in broiler chickens. Indian J. Anim. Sci. 2017, 87, 1135–1140. [Google Scholar] [CrossRef]
- Danish, F.; Amarkhil, R.; Jan, A.N.; Azizi, M.N.; Nasratullah, H. Dietary arginine as a growth promoter for broiler chickens. Nangarhar Univ. Int. J. Biosci. 2023, 2, 80–86. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Cao, Y.; Wang, C. Pretreatment of Palm Kernel Cake by Enzyme-Bacteria and Its Effects on Growth Performance in Broilers. Animals 2025, 15, 116. [Google Scholar] [CrossRef]
Components (%) | Treatment Groups | |
---|---|---|
PKC 1 | DC 2 | |
PKC | 90.30 | 0.00 |
DC | 0.00 | 90.30 |
Palm oil | 6.00 | 6.00 |
Calcium carbonate | 1.70 | 1.70 |
Sodium chloride | 0.40 | 0.40 |
Vitamin blend 3 | 0.50 | 0.50 |
Mineral blend 4 | 0.50 | 0.50 |
Choline chloride | 0.30 | 0.30 |
Titanium dioxide | 0.30 | 0.30 |
Total | 100.00 | 100.00 |
Nutrient | PKC 1 | DC 2 | p-Value |
---|---|---|---|
Dry matter % | 96.22 ± 0.07 | 96.08 ± 0.01 | 0.3201 |
Organic matter % | 91.03 ± 0.12 a | 82.51 ± 0.32 b | 0.0015 |
Ash % | 5.20 ± 0.6 b | 13.56 ± 0.33 a | 0.0012 |
Ether extract % | 9.33 ± 0.20 b | 11.17 ± 0.10 a | 0.0466 |
Crude protein % | 18.19 ± 0.20 a | 16.47 ± 0.08 b | 0.0058 |
Crude fiber % | 14.70 ± 0.34 b | 19.02 ± 0.15 a | 0.0106 |
Carbohydrate % | 67.29 ± 0.35 a | 58.80 ± 0.33 b | 0.0015 |
Neutral detergent fiber % | 79.14 ± 0.10 a | 77.23 ± 0.08 b | <0.0001 |
Acid detergent fiber % | 41.26 ± 0.24 b | 53.19 ± 0.27 a | <0.0001 |
Acid detergent lignin % | 13.50 ± 0.20 a | 10.78 ± 0.21 b | 0.0352 |
Hemicellulose % | 37.88 ± 0.29 a | 24.04 ± 0.33 b | <0.0001 |
Cellulose % | 27.77 ± 0.13 b | 42.41 ± 0.32 a | <0.0001 |
Gross energy (kcal/kg) | 4577.22 ± 18.77 b | 4746.73 ± 7.81 a | 0.0290 |
Amino Acids | PKC 1 | DC 2 | p-Value |
---|---|---|---|
Essential amino acids | |||
Threonine | 7.38 ± 0.04 b | 9.74 ± 0.04 a | 0.0029 |
Valine | 12.41 ± 0.05 b | 13.42 ± 0.14 a | 0.0247 |
Leucine | 15.55 ± 0.06 b | 17.91 ± 0.15 a | 0.0014 |
Phenylalanine | 8.14 ± 0.04 | 8.64 ± 0.03 | 0.0562 |
Lysine | 6.91 ± 0.07 a | 5.84 ± 0.05 b | 0.0017 |
Isoleucine | 8.96 ± 0.03 b | 11.40 ± 0.02 a | 0.0012 |
Methionine | 4.09 ± 0.01 a | 2.38 ± 0.04 b | 0.0012 |
Arginine | 23.90 ± 0.12 a | 8.47 ± 0.03 b | 0.0002 |
Histidine | 3.98 ± 0.01 | 4.07 ± 0.08 | 0.5019 |
Non-essential amino acids | |||
Proline | 9.29 ± 0.13 b | 11.50 ± 0.03 a | 0.0067 |
Aspartic acid | 20.06 ± 0.10 | 20.83 ± 0.14 | 0.2265 |
Alanine | 11.26 ± 0.03 b | 14.70 ± 0.05 a | 0.0013 |
Tyrosine | 4.46 ± 0.07 b | 5.84 ± 0.07 a | 0.0310 |
Serine | 9.70 ± 0.06 b | 10.93 ± 0.03 a | 0.0174 |
Glycine | 10.22 ± 0.07 | 10.95 ± 0.02 | 0.0515 |
Glutamic acid | 45.12 ± 0.15 a | 25.59 ± 0.05 b | 0.0003 |
Content (%) | AID 1 | SID 2 | ||||
---|---|---|---|---|---|---|
PKC | DC | p-Value | PKC | DC | p-Value | |
Dry matter | 61.96 ± 0.59 | 63.28 ± 1.05 | 0.7517 | 62.29 ± 0.59 | 63.60 ± 1.04 | 0.7521 |
Organic matter | 64.06 ± 0.65 | 67.86 ± 1.31 | 0.4019 | 64.36 ± 0.64 | 68.13 ± 1.30 | 0.4022 |
Ash | 37.28 ± 1.42 | 39.79 ± 1.86 | 0.1521 | 37.82 ± 1.41 | 40.30 ± 1.84 | 0.1520 |
Ether extract | 94.77 ± 0.12 a | 90.68 ± 0.30 b | 0.0074 | 94.82 ± 0.12 a | 90.76 ± 0.29 b | 0.0074 |
Crude protein | 46.57 ± 0.51 a | 39.40 ± 0.44 b | 0.0157 | 47.02 ± 0.50 a | 39.92 ± 0.43 b | 0.0156 |
Crude fiber | 36.97 ± 0.93 | 37.93 ± 1.23 | 0.3050 | 37.51 ± 0.92 | 38.46 ± 1.22 | 0.3047 |
Carbohydrate | 17.10 ± 1.41 | 18.15 ± 1.27 | 0.3131 | 17.81 ± 1.39 | 18.84 ± 1.26 | 0.3129 |
Neutral detergent fiber | 18.71 ± 1.26 | 17.79 ± 1.80 | 0.7839 | 19.40 ± 1.25 | 18.49 ± 1.78 | 0.7839 |
Acid detergent fiber | 20.18 ± 0.81 | 19.48 ± 1.23 | 0.6856 | 20.86 ± 0.80 | 20.17 ± 1.27 | 0.6857 |
Acid detergent lignin | 13.43 ± 1.04 | 15.18 ± 0.78 | 0.2215 | 14.17 ± 1.03 | 15.90 ± 0.77 | 0.2214 |
Metabolizable energy (kcal/kg) | 2079.47 ± 44.33 | 2011.11 ± 37.9 | 0.3019 | - | - | - |
Content | AID 1 | SID 2 | ||||
---|---|---|---|---|---|---|
PKC | DC | p-Value | PKC | DC | p-Value | |
Essential amino acids | ||||||
Threonine | 26.74 ± 1.60 | 36.32 ± 1.44 | 0.1497 | 27.47 ± 1.59 | 36.96 ± 1.43 | 0.1504 |
Valine | 48.62 ± 0.67 | 41.30 ± 1.31 | 0.0533 | 49.13 ± 0.67 | 41.89 ± 1.29 | 0.0530 |
Leucine | 44.42 ± 0.83 | 40.26 ± 1.27 | 0.2069 | 44.97 ± 0.82 | 40.86 ± 1.26 | 0.2068 |
Phenylalanine | 50.34 ± 1.53 | 39.86 ± 1.14 | 0.0936 | 50.83 ± 1.51 | 40.46 ± 1.13 | 0.0936 |
Lysine | 6.66 ± 1.51 | 6.97 ± 0.81 | 0.6069 | 7.60 ± 1.50 | 7.90 ± 0.81 | 0.6067 |
Isoleucine | 42.33 ± 0.81 | 41.08 ± 1.24 | 0.5168 | 42.91 ± 0.80 | 41.67 ± 1.23 | 0.5164 |
Methionine | 58.16 ± 0.27 a | 32.48 ± 1.81 b | 0.0179 | 58.58 ± 0.27 a | 33.15 ± 1.79 b | 0.0179 |
Arginine | 64.49 ± 0.93 a | 13.23 ± 1.43 b | 0.0040 | 64.84 ± 0.92 a | 14.09 ± 1.42 b | 0.0040 |
Histidine | 37.33 ± 0.86 | 32.26 ± 2.02 | 0.3808 | 37.95 ± 0.86 | 32.93 ± 2.01 | 0.3813 |
Non-essential amino acids | ||||||
Proline | 37.79 ± 1.64 | 43.13 ± 1.43 | 0.0082 | 38.32 ± 1.63 | 43.70 ± 1.41 | 0.0082 |
Aspartic acid | 31.99 ± 0.88 b | 43.44 ± 0.74 a | 0.0028 | 32.67 ± 0.87 b | 44.01 ± 0.74 a | 0.0028 |
Alanine | 39.59 ± 0.89 b | 45.93 ± 0.63 a | 0.0046 | 40.19 ± 0.62 b | 46.48 ± 0.88 a | 0.0046 |
Tyrosine | 40.05 ± 0.31 | 37.53 ± 0.76 | 0.0801 | 40.66 ± 0.31 | 38.16 ± 0.75 | 0.0790 |
Serine | 39.54 ± 1.54 | 38.78 ± 1.36 | 0.7211 | 40.15 ± 1.52 | 39.39 ± 1.34 | 0.7200 |
Glycine | 39.30 ± 1.79 | 40.25 ±1.25 | 0.6726 | 39.90 ± 1.78 | 40.84 ± 1.24 | 0.6734 |
Glutamic acid | 58.12 ± 1.52 a | 41.26 ± 1.15 b | 0.0049 | 58.53 ± 0.51 a | 41.85 ± 1.14 b | 0.0049 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azizi, M.N.; Loh, T.C.; Chung, E.L.T.; Ab Aziz, M.F.; Foo, H.L.; Liu, J.; Aiman Farzana, Z.; Samuel Raj, L. From Nutritional Profiles to Digestibility Insights: Exploring Palm Kernel Cake and Decanter Cake in Broiler Diets. Animals 2025, 15, 1966. https://doi.org/10.3390/ani15131966
Azizi MN, Loh TC, Chung ELT, Ab Aziz MF, Foo HL, Liu J, Aiman Farzana Z, Samuel Raj L. From Nutritional Profiles to Digestibility Insights: Exploring Palm Kernel Cake and Decanter Cake in Broiler Diets. Animals. 2025; 15(13):1966. https://doi.org/10.3390/ani15131966
Chicago/Turabian StyleAzizi, Mohammad Naeem, Teck Chwen Loh, Eric Lim Teik Chung, Muhamad Faris Ab Aziz, Hooi Ling Foo, Jiaxiang Liu, Zakaria Aiman Farzana, and Letchumanan Samuel Raj. 2025. "From Nutritional Profiles to Digestibility Insights: Exploring Palm Kernel Cake and Decanter Cake in Broiler Diets" Animals 15, no. 13: 1966. https://doi.org/10.3390/ani15131966
APA StyleAzizi, M. N., Loh, T. C., Chung, E. L. T., Ab Aziz, M. F., Foo, H. L., Liu, J., Aiman Farzana, Z., & Samuel Raj, L. (2025). From Nutritional Profiles to Digestibility Insights: Exploring Palm Kernel Cake and Decanter Cake in Broiler Diets. Animals, 15(13), 1966. https://doi.org/10.3390/ani15131966