Characteristics and Functions of Different Intestinal Segments in Juvenile Greater Amberjack (Seriola dumerili)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Fish Sample Collection
2.2. H&E Staining and AB-PAS Staining of the Intestine
2.3. Determination of Antioxidant-Related Indices and Digestive Enzyme Activities
2.4. Transcriptome Sequencing Analysis
2.5. Gut Microbiota Testing
2.6. Validation of DEGs with Quantitative Real-Time PCR (qRT-PCR)
2.7. Statistical Analysis
3. Results
3.1. Structural Characteristics of S. dumerili Intestine
3.2. Differences in Enzyme Activities and Biochemical Indices Across Intestinal Segments
3.3. Transcriptome Sequencing and Differentially Expressed Genes (DEGs)
3.4. Expression of Representative DEGs Related to Nutrient Digestion and Absorption
3.5. Analysis of Microbiota Diversity in Different Gut Segments
3.6. Structural Composition of the Gut Microbiota
3.7. Validation of DEGs with qRT-PCR
4. Discussion
4.1. Structural and Functional Zonation of Intestinal Segments
4.2. Digestive Enzyme Activities in Different Intestinal Segments
4.3. Immune-Related Indicators in Different Intestinal Segments
4.4. Differential Expression of Digestion and Absorption Related Genes in Different Intestinal Segments of S. dumerili
4.5. Gut Microbiota and Functional Specialization Across Intestinal Segments
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, G.F.; Chen, X.J.; Du, J.; Mou, Z.B. Fish digestive system: It’s structure, function and the distributions and characteristics of digestive enzymes. Chin. J. Fish. 2009, 4, 49–55. [Google Scholar]
- Ye, G.; Dong, X.; Yang, Q.; Chi, S.; Liu, H.; Zhang, H.; Tan, B.; Zhang, S. A Formulated Diet Improved Digestive Capacity, Immune Function and Intestinal Microbiota Structure of Juvenile Hybrid Grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂) When Compared with Chilled Trash Fish. Aquaculture 2020, 523, 735230. [Google Scholar] [CrossRef]
- Estruch, G.; Collado, M.C.; Peñaranda, D.S.; Tomás Vidal, A.; Jover Cerdá, M.; Pérez Martínez, G.; Martinez-Llorens, S. Impact of Fishmeal Replacement in Diets for Gilthead Sea Bream (Sparus aurata) on the Gastrointestinal Microbiota Determined by Pyrosequencing the 16S rRNA Gene. PLoS ONE 2015, 10, e0136389. [Google Scholar] [CrossRef]
- Clements, K.D.; Angert, E.R.; Montgomery, W.L.; Choat, J.H. Intestinal Microbiota in Fishes: What’s Known and What’s Not. Mol. Ecol. 2014, 23, 1891–1898. [Google Scholar] [CrossRef]
- Wang, W.; Feng, Y.; Tarique, I.; Liu, J.; Chen, S.; Wang, Y.; Zhu, Z.; Meng, X.; Peng, L.; Yang, P. Cellular Evidence of Mucus Cell Immunological and Differentiation Characteristics in Allogeneic Crucian Carp Intestinal Lamina Propria. Fish Shellfish Immunol. 2023, 141, 109024. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.X.; Lei, J.L.; Chang, J.; Jia, Y.D.; Gao, C.R. Effects of fresh frozen trash fish and commercial feeds on growth, lipid metabolism and antioxidant function of Turbot (Scophthalmus maximus L.). Chin. J. Anim. Nutr. 2013, 25, 2696–2704. [Google Scholar]
- Gisbert, E.; Piedrahita, R.H.; Conklin, D.E. Ontogenetic Development of the Digestive System in California Halibut (Paralichthys Californicus) with Notes on Feeding Practices. Aquaculture 2004, 232, 455–470. [Google Scholar] [CrossRef]
- Ferreira, M.; Sousa, V.; Oliveira, B.; Canadas-Sousa, A.; Abreu, H.; Dias, J.; Kiron, V.; Valente, L.M.P. An In-Depth Characterisation of European Seabass Intestinal Segments for Assessing the Impact of an Algae-Based Functional Diet on Intestinal Health. Sci. Rep. 2023, 13, 11686. [Google Scholar] [CrossRef]
- Bezerra, R.D.S.; Santos, J.F.D.; Lino, M.A.D.S.; Vieira, V.L.A.; Carvalho, L.B. Characterization of Stomach and Pyloric Caeca Proteinases of Tambaqui (Colossoma macropomum). J. Food Biochem. 2000, 24, 189–199. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, Y.; Liu, H.; Cao, Q.; Feng, L.; Zhang, Z.; Jiang, W.; Wu, P.; Liu, Y.; Luo, W.; et al. Dietary Leucine Improves Fish Intestinal Barrier Function by Increasing Humoral Immunity, Antioxidant Capacity, and Tight Junction. Int. J. Mol. Sci. 2023, 24, 4716. [Google Scholar] [CrossRef]
- Calduch-Giner, J.A.; Sitjà-Bobadilla, A.; Pérez-Sánchez, J. Gene Expression Profiling Reveals Functional Specialization along the Intestinal Tract of a Carnivorous Teleostean Fish (Dicentrarchus labrax). Front. Physiol. 2016, 7, 359. [Google Scholar] [CrossRef] [PubMed]
- Le, H.T.M.D.; Shao, X.; Krogdahl, Å.; Kortner, T.M.; Lein, I.; Kousoulaki, K.; Lie, K.K.; Sæle, Ø. Intestinal Function of the Stomachless Fish, Ballan Wrasse (Labrus bergylta). Front. Mar. Sci. 2019, 6, 140. [Google Scholar] [CrossRef]
- Schroers, V.; Van Der Marel, M.; Neuhaus, H.; Steinhagen, D. Changes of Intestinal Mucus Glycoproteins after Peroral Application of Aeromonas Hydrophila to Common Carp (Cyprinus carpio). Aquaculture 2009, 288, 184–189. [Google Scholar] [CrossRef]
- Pu, H.Y.; Zhai, B.X.; Liu, H.L. Histological studies on post-embryonic development of digestive system in larval catfish Silurus asotus. J. Fish. Sci. China 2004, 11, 1–8. [Google Scholar]
- Cabillon, N.A.R.; Lazado, C.C. Mucosal Barrier Functions of Fish under Changing Environmental Conditions. Fishes 2019, 4, 2. [Google Scholar] [CrossRef]
- Lee, P.-T.; Yamamoto, F.Y.; Low, C.-F.; Loh, J.-Y.; Chong, C.-M. Gut Immune System and the Implications of Oral-Administered Immunoprophylaxis in Finfish Aquaculture. Front. Immunol. 2021, 12, 773193. [Google Scholar] [CrossRef]
- Dawood, M.A.O. Nutritional Immunity of Fish Intestines: Important Insights for Sustainable Aquaculture. Rev. Aquac. 2021, 13, 642–663. [Google Scholar] [CrossRef]
- Wu, N.; Waagbø, R.; Wan, M.; Feijoo, C.G.; Jiang, W.-D. Editorial: Gastrointestinal Immunity and Crosstalk With Internal Organs in Fish. Front. Immunol. 2021, 12, 734538. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Z.G.; Chen, S.Z.; Cheng, H.X.; Wang, W. Study on the Type, Distribution, Development and Secreting Activity of Mucous Cells in the Intestine Tract of Catfish (Silurus asotus). Fen Zi Xi Bao Sheng Wu Xue Bao 2007, 40, 24–30. [Google Scholar]
- Zhang, Y.; Nie, P. Humoral immune factors of fish: A review. J. Fish. China 2000, 24, 376–381. [Google Scholar]
- Rombout, J.H.; Taverne-Thiele, A.J.; Villena, M.I. The Gut-Associated Lymphoid Tissue (GALT) of Carp (Cyprinus carpio L.): An Immunocytochemical Analysis. Dev. Comp. Immunol. 1993, 17, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Burrells, C.; Williams, P.D.; Southgate, P.J.; Crampton, V.O. Immunological, Physiological and Pathological Responses of Rainbow Trout (Oncorhynchus mykiss) to Increasing Dietary Concentrations of Soybean Proteins. Vet. Immunol. Immunopathol. 1999, 72, 277–288. [Google Scholar] [CrossRef]
- Li, D.; Yang, Y.; Wang, T.; Zhang, W.; Hua, S.; Ruan, Q.; Wang, X.; Zhu, C.; Meng, Z. Liver Transcriptome Shows Differences between Acute Hypoxia-Tolerant and Intolerant Individuals of Greater Amberjack (Seriola dumerili). Animals 2023, 13, 2717. [Google Scholar] [CrossRef]
- Desai, A.R.; Links, M.G.; Collins, S.A.; Mansfield, G.S.; Drew, M.D.; Van Kessel, A.G.; Hill, J.E. Effects of Plant-Based Diets on the Distal Gut Microbiome of Rainbow Trout (Oncorhynchus mykiss). Aquaculture 2012, 350–353, 134–142. [Google Scholar] [CrossRef]
- Navarro-Guillén, C.; Yúfera, M.; Perera, E. Biochemical Features and Modulation of Digestive Enzymes by Environmental Temperature in the Greater Amberjack, Seriola dumerili. Front. Mar. Sci. 2022, 9, 960746. [Google Scholar] [CrossRef]
- Molina-Roque, L.; Simó-Mirabet, P.; Barany, A.; Caderno, A.; Navarro-Guillén, C.; Galafat, A.; Torres, M.; Fuentes, J.; Mancera, J.M.; Perera, E.; et al. Enzymatic Treatment of Plant Proteins in Combination with Algae-Based Nutraceutical Inclusion in Aquafeeds Improves Growth Performance and Physiological Traits in the Greater Amberjack (Seriola dumerili). Aquaculture 2025, 598, 742012. [Google Scholar] [CrossRef]
- Pérez, J.A.; Papadakis, I.E.; Papandroulakis, N.; Cruces, L.; Cotou, E.; Gisbert, E.; Lorenzo, A.; Mylonas, C.C.; Rodríguez, C. The Ontogeny of Greater Amberjack Digestive and Antioxidant Defence Systems under Different Rearing Conditions: A Histological and Enzymatic Approach. Aquac. Nutr. 2020, 26, 1908–1925. [Google Scholar] [CrossRef]
- Panteli, N.; Feidantsis, K.; Demertzioglou, M.; Paralika, V.; Karapanagiotis, S.; Mylonas, C.C.; Kormas, K.A.; Mente, E.; Makridis, P.; Antonopoulou, E. The Probiotic Phaeobacter Inhibens Provokes Hypertrophic Growth via Activation of the IGF-1/Akt Pathway during the Process of Metamorphosis of Greater Amberjack (Seriola dumerili, Risso 1810). Animals 2023, 13, 2154. [Google Scholar] [CrossRef]
- Milián-Sorribes, M.C.; Peres, H.; Tomás-Vidal, A.; Moutinho, S.; Peñaranda, D.S.; Jover-Cerdá, M.; Oliva-Teles, A.; Martínez-Llorens, S. Hepatic, Muscle and Intestinal Oxidative Status and Plasmatic Parameters of Greater Amberjack (Seriola dumerili, Risso, 1810) Fed Diets with Fish Oil Replacement and Probiotic Addition. Int. J. Mol. Sci. 2023, 24, 6768. [Google Scholar] [CrossRef]
- Lavecchia, A.; Manzari, C.; Pousis, C.; Mansi, L.; Cox, S.N.; Mylonas, C.C.; Zupa, R.; Lo Giudice, C.; De Virgilio, C.; Picardi, E.; et al. Dysregulation of Testis mRNA Expression Levels in Hatchery-Produced vs Wild Greater Amberjack Seriola dumerili. Sci. Rep. 2023, 13, 13662. [Google Scholar] [CrossRef]
- Xia, J.H.; Lin, G.; Fu, G.H.; Wan, Z.Y.; Lee, M.; Wang, L.; Liu, X.J.; Yue, G.H. The Intestinal Microbiome of Fish under Starvation. BMC Genom. 2014, 15, 266. [Google Scholar] [CrossRef]
- Escaffre, A.-M.; Kaushik, S.; Mambrini, M. Morphometric Evaluation of Changes in the Digestive Tract of Rainbow Trout (Oncorhynchus mykiss) Due to Fish Meal Replacement with Soy Protein Concentrate. Aquaculture 2007, 273, 127–138. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Singer, E.; Bushnell, B.; Coleman-Derr, D.; Bowman, B.; Bowers, R.M.; Levy, A.; Gies, E.A.; Cheng, J.-F.; Copeland, A.; Klenk, H.-P.; et al. High-Resolution Phylogenetic Microbial Community Profiling. ISME J. 2016, 10, 2020–2032. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Subramanian, S.; Faith, J.J.; Gevers, D.; Gordon, J.I.; Knight, R.; Mills, D.A.; Caporaso, J.G. Quality-Filtering Vastly Improves Diversity Estimates from Illumina Amplicon Sequencing. Nat. Methods 2013, 10, 57–59. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME Improves Sensitivity and Speed of Chimera Detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly Accurate OTU Sequences from Microbial Amplicon Reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Zupa, R.; Rodríguez, C.; Mylonas, C.C.; Rosenfeld, H.; Fakriadis, I.; Papadaki, M.; Pérez, J.A.; Pousis, C.; Basilone, G.; Corriero, A. Comparative Study of Reproductive Development in Wild and Captive-Reared Greater Amberjack Seriola dumerili (Risso, 1810). PLoS ONE 2017, 12, e0169645. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME Allows Analysis of High-Throughput Community Sequencing Data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed]
- Kembel, S.W.; Cowan, P.D.; Helmus, M.R.; Cornwell, W.K.; Morlon, H.; Ackerly, D.D.; Blomberg, S.P.; Webb, C.O. Picante: R Tools for Integrating Phylogenies and Ecology. Bioinformatics 2010, 26, 1463–1464. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xu, B.; Zhang, Z.; Zhou, L.; Zhang, G.; Zhang, Y.; Wang, C. Comparison of the Intestinal Structure and Intestinal Microbiome between Two Geographically Isolated Populations of Culter Alburnus. Animals 2022, 12, 342. [Google Scholar] [CrossRef] [PubMed]
- Song, R.; Wang, Z.; Lin, S.; Guo, X.; Wang, Y.; Zhang, L.; Ye, H.; Shao, J. Intestinal Tissue, Digestive Enzyme, and Antioxidant Enzyme Activities in the Early Development Stage of Endangered Brachymystax Tsinlingensis. Animals 2024, 14, 3042. [Google Scholar] [CrossRef]
- Milián-Sorribes, M.C.; Martínez-Llorens, S.; Peñaranda, D.S.; Jauralde, I.; Jover-Cerdá, M.; Tomás-Vidal, A. Growth, Survival, and Intestinal Health Alterations in Mediterranean Yellowtail (Seriola dumerili) Due to Alternatives to Fishmeal and Fish Oil. Curr. Issues Mol. Biol. 2024, 46, 753–772. [Google Scholar] [CrossRef]
- Seong, T.; Matsuyoshi, J.; Haga, Y.; Kabeya, N.; Kitagima, R.; Miyahara, J.; Koshiishi, T.; Satoh, S. Utilization of Microalgae Schizochytrium Sp. in Non-Fish Meal, Non-Fish Oil Diet for Yellowtail (Seriola quinqueradiata). Aquac. Res. 2022, 53, 2042–2052. [Google Scholar] [CrossRef]
- Kjær, M.A.; Vegusdal, A.; Berge, G.M.; Galloway, T.F.; Hillestad, M.; Krogdahl, Å.; Holm, H.; Ruyter, B. Characterisation of Lipid Transport in Atlantic Cod (Gadus morhua) When Fasted and Fed High or Low Fat Diets. Aquaculture 2009, 288, 325–336. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, X.; Han, D.; Jin, J.; Yang, Y.; Xie, S. Responses to Fishmeal and Soybean Meal-Based Diets by Three Kinds of Larval Carps of Different Food Habits. Aquac. Nutr. 2015, 21, 552–568. [Google Scholar] [CrossRef]
- Martínez-Álvarez, R.M.; Morales, A.E.; Sanz, A. Antioxidant Defenses in Fish: Biotic and Abiotic Factors. Rev. Fish Biol. Fish. 2005, 15, 75–88. [Google Scholar] [CrossRef]
- Groschwitz, K.R.; Hogan, S.P. Intestinal Barrier Function: Molecular Regulation and Disease Pathogenesis. J. Allergy Clin. Immunol. 2009, 124, 3–20. [Google Scholar] [CrossRef]
- Hammer, A.M.; Morris, N.L.; Earley, Z.M.; Choudhry, M.A. The First Line of Defense: The Effects of Alcohol on Post-Burn Intestinal Barrier, Immune Cells, and Microbiome. Alcohol Res. Curr. Rev. 2015, 37, 209–222. [Google Scholar]
- Takiue, S.; Akiyoshi, H. Light and Scanning Electron Microscope Examination of the Digestive Tract in Peppered Moray Eel, Gymnothorax Pictus (Elopomorpha). Anat. Rec. 2013, 296, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Wang, J.J.; Guo, X.; Li, Y.; Wu, Y.; Liu, H.; Zhao, Y. Physicochemical and Functional Properties of the Antarctic Krill Proteins Modified by Succinylation. LWT 2022, 154, 112832. [Google Scholar] [CrossRef]
- Walker, M.M.; Warwick, A.; Ung, C.; Talley, N.J. The Role of Eosinophils and Mast Cells in Intestinal Functional Disease. Curr. Gastroenterol. Rep. 2011, 13, 323–330. [Google Scholar] [CrossRef]
- Fu, S.-J. The Growth Performance of Southern Catfish Fed Diets with Raw, Precooked Cornstarch and Glucose at Two Levels. Aquac. Nutr. 2005, 11, 257–261. [Google Scholar] [CrossRef]
- Danthi, S.J.; Liang, B.; Smicker, O.; Coupland, B.; Gregory, J.; Gefteas, E.; Tietz, D.; Klodnitsky, H.; Randall, K.; Belanger, A.; et al. Identification and Characterization of Inhibitors of a Neutral Amino Acid Transporter, SLC6A19, Using Two Functional Cell-Based Assays. SLAS Discov. Adv. Sci. Drug Discov. 2019, 24, 111–120. [Google Scholar] [CrossRef]
- Pérez-Jiménez, A.; Cardenete, G.; Morales, A.E.; García-Alcázar, A.; Abellán, E.; Hidalgo, M.C. Digestive Enzymatic Profile of Dentex Dentex and Response to Different Dietary Formulations. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 2009, 154, 157–164. [Google Scholar] [CrossRef]
- Johnson, F.; Giulivi, C. Superoxide Dismutases and Their Impact upon Human Health. Mol. Aspects Med. 2005, 26, 340–352. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Fourman, S.; Fitzgerald, M.; Liu, M.; Nair, S.; Oses-Prieto, J.; Burlingame, A.; Morris, J.H.; Davidson, W.S.; Tso, P.; et al. Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) Is a Novel Receptor for Apolipoprotein A4 (APOA4) in Adipose Tissue. Sci. Rep. 2021, 11, 13289. [Google Scholar] [CrossRef]
- Ma, Z.; Huang, Z.; Zhang, C.; Liu, X.; Zhang, J.; Shu, H.; Ma, Y.; Liu, Z.; Feng, Y.; Chen, X.; et al. Hepatic Acat2 Overexpression Promotes Systemic Cholesterol Metabolism and Adipose Lipid Metabolism in Mice. Diabetologia 2023, 66, 390–405. [Google Scholar] [CrossRef]
- McComb, R.B.; Bowers, G.N.; Posen, S. Alkaline Phosphatase; Plenum Press: New York, NY, USA, 1979; ISBN 978-0-306-40214-2. [Google Scholar]
- Wan, X.; Bi, J.; Gao, X.; Tian, F.; Wang, X.; Li, N.; Li, J. Partial Enteral Nutrition Preserves Elements of Gut Barrier Function, Including Innate Immunity, Intestinal Alkaline Phosphatase (IAP) Level, and Intestinal Microbiota in Mice. Nutrients 2015, 7, 6294–6312. [Google Scholar] [CrossRef] [PubMed]
- Krogdahl, Å.; Sundby, A.; Holm, H. Characteristics of Digestive Processes in Atlantic Salmon (Salmo Salar). Enzyme pH Optima, Chyme pH, and Enzyme Activities. Aquaculture 2015, 449, 27–36. [Google Scholar] [CrossRef]
- Refstie, S.; Glencross, B.; Landsverk, T.; Sørensen, M.; Lilleeng, E.; Hawkins, W.; Krogdahl, Å. Digestive Function and Intestinal Integrity in Atlantic Salmon (Salmo salar) Fed Kernel Meals and Protein Concentrates Made from Yellow or Narrow-Leafed Lupins. Aquaculture 2006, 261, 1382–1395. [Google Scholar] [CrossRef]
- Zhang, W.; Tan, B.; Deng, J.; Yang, Q.; Chi, S.; Pang, A.; Xin, Y.; Liu, Y.; Zhang, H. PRR-Mediated Immune Response and Intestinal Flora Profile in Soybean Meal-Induced Enteritis of Pearl Gentian Groupers, Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂. Front. Immunol. 2022, 13, 814479. [Google Scholar] [CrossRef]
- Ohno, Y.; Kawano, F.; Hirazawa, N. Susceptibility by Amberjack (Seriola dumerili), Yellowtail (S. quinqueradiata) and Japanese Flounder (Paralichthys olivaceus) to Neobenedenia Girellae (Monogenea) Infection and Their Acquired Protection. Aquaculture 2008, 274, 30–35. [Google Scholar] [CrossRef]
- Wold, P.-A.; Hoehne-Reitan, K.; Cahu, C.L.; Infante, J.Z.; Rainuzzo, J.; Kjørsvik, E. Comparison of Dietary Phospholipids and Neutral Lipids: Effects on Gut, Liver and Pancreas Histology in Atlantic Cod (Gadus morha L.) Larvae. Aquac. Nutr. 2009, 15, 73–84. [Google Scholar] [CrossRef]
- Olsen, R.E.; Hansen, A.-C.; Rosenlund, G.; Hemre, G.-I.; Mayhew, T.M.; Knudsen, D.L.; Tufan Eroldoğan, O.; Myklebust, R.; Karlsen, Ø. Total Replacement of Fish Meal with Plant Proteins in Diets for Atlantic Cod (Gadus morhua L.) II—Health Aspects. Aquaculture 2007, 272, 612–624. [Google Scholar] [CrossRef]
- Urán, P.A.; Gonçalves, A.A.; Taverne-Thiele, J.J.; Schrama, J.W.; Verreth, J.A.J.; Rombout, J.H.W.M. Soybean Meal Induces Intestinal Inflammation in Common Carp (Cyprinus carpio L.). Fish Shellfish Immunol. 2008, 25, 751–760. [Google Scholar] [CrossRef]
- Chen, P.; Huang, Y.; Bayir, A.; Wang, C. Characterization of the Isoforms of Type IIb Sodium-Dependent Phosphate Cotransporter (Slc34a2) in Yellow Catfish, Pelteobagrus fulvidraco, and Their Vitamin D3-Regulated Expression under Low-Phosphate Conditions. Fish Physiol. Biochem. 2017, 43, 229–244. [Google Scholar] [CrossRef]
- Chen, P.; Tang, Q.; Wang, C. Characterizing and Evaluating the Expression of the Type IIb Sodium-Dependent Phosphate Cotransporter (Slc34a2) Gene and Its Potential Influence on Phosphorus Utilization Efficiency in Yellow Catfish (Pelteobagrus fulvidraco). Fish Physiol. Biochem. 2016, 42, 51–64. [Google Scholar] [CrossRef]
- Xu, H.; Bi, Q.; Meng, X.; Duan, M.; Wei, Y.; Liang, M. Response of Lipid and Fatty Acid Composition of Turbot to Starvation under Different Dietary Lipid Levels in the Previous Feeding Period. Food Res. Int. 2022, 151, 110905. [Google Scholar] [CrossRef] [PubMed]
- Gawlicka, A.K.; Horn, M.H. Trypsin Gene Expression by Quantitative in Situ Hybridization in Carnivorous and Herbivorous Prickleback Fishes (Teleostei: Stichaeidae): Ontogenetic, Dietary, and Phylogenetic Effects. Physiol. Biochem. Zool. 2006, 79, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Imentai, A.; Gilannejad, N.; Martínez-Rodríguez, G.; López, F.J.M.; Martínez, F.P.; Pěnka, T.; Dzyuba, V.; Dadras, H.; Policar, T. Effects of First Feeding Regime on Gene Expression and Enzyme Activity in Pikeperch (Sander lucioperca) Larvae. ResearchGate 2025, 9. [Google Scholar] [CrossRef]
- Teng, T.; Zhao, X.; Li, C.; Guo, J.; Wang, Y.; Pan, C.; Liu, E.; Ling, Q. Cloning and Expression of IGF-I, IGF-II, and GHR Genes and the Role of Their Single-Nucleotide Polymorphisms in the Growth of Pikeperch (Sander lucioperca). Aquac. Int. 2020, 28, 1547–1561. [Google Scholar] [CrossRef]
- Carlile, M.; Nalbant, P.; Preston-Fayers, K.; McHaffie, G.S.; Werner, A. Processing of Naturally Occurring Sense/Antisense Transcripts of the Vertebrate Slc34a Gene into Short RNAs. Physiol. Genom. 2008, 34, 95–100. [Google Scholar] [CrossRef] [PubMed]
- van der Knaap, I.; Slabbekoorn, H.; Moens, T.; Van den Eynde, D.; Reubens, J. Effects of Pile Driving Sound on Local Movement of Free-Ranging Atlantic Cod in the Belgian North Sea. Environ. Pollut. 2022, 300, 118913. [Google Scholar] [CrossRef]
- Kasapkara, Ç.S.; Akar, M.; Özbek, M.N.; Tüzün, H.; Aldudak, B.; Baran, R.T.; Tanyalçın, T. Mutations in BTD Gene Causing Biotinidase Deficiency: A Regional Report. J. Pediatr. Endocrinol. Metab. 2015, 28, 421–424. [Google Scholar] [CrossRef]
- Kozyraki, R.; Verroust, P.; Cases, O. Cubilin, the Intrinsic Factor-Vitamin B12 Receptor. Vitam. Horm. 2022, 119, 65–119. [Google Scholar] [CrossRef]
- Wen, A.; Greenberg, A.; Giacomini, K.; Newman, J.; Park, B.; Yee, S.W.; Zhu, Y. OR18-06-23 The Impacts of Slc19a3 Deletion and Intestinal SLC19A3 Insertion on Thiamine Distribution and Brain Metabolism in the Mouse. Curr. Dev. Nutr. 2023, 7, 101796. [Google Scholar] [CrossRef]
- Sotiriou, S.; Gispert, S.; Cheng, J.; Wang, Y.; Chen, A.; Hoogstraten-Miller, S.; Miller, G.F.; Kwon, O.; Levine, M.; Guttentag, S.H.; et al. Ascorbic-Acid Transporter Slc23a1 Is Essential for Vitamin C Transport into the Brain and for Perinatal Survival. Nat. Med. 2002, 8, 514–517. [Google Scholar] [CrossRef]
- Baars, A.; Oosting, A.; Lohuis, M.; Koehorst, M.; El Aidy, S.; Hugenholtz, F.; Smidt, H.; Mischke, M.; Boekschoten, M.V.; Verkade, H.J.; et al. Sex Differences in Lipid Metabolism Are Affected by Presence of the Gut Microbiota. Sci. Rep. 2018, 8, 13426. [Google Scholar] [CrossRef] [PubMed]
- Parolini, C. Effects of Fish N-3 PUFAs on Intestinal Microbiota and Immune System. Mar. Drugs 2019, 17, 374. [Google Scholar] [CrossRef]
- Navarro-Guillén, C.; Gilannejad, N.; Pérez-Hilario, D.; Martínez-Rodríguez, G.; Yúfera, M. Gut Transit of Daily Consecutive Meals in Greater Amberjack Juveniles Reared at Different Temperatures. Aquaculture 2023, 567, 739244. [Google Scholar] [CrossRef]
- Stojanov, S.; Berlec, A.; Štrukelj, B. The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel Disease. Microorganisms 2020, 8, 1715. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Cantabrana, C.; Delgado, S.; Ruiz, L.; Ruas-Madiedo, P.; Sánchez, B.; Margolles, A. Bifidobacteria and Their Health-Promoting Effects. Microbiol. Spectr. 2017, 5. [Google Scholar] [CrossRef] [PubMed]
- Son, V.M.; Chang, C.-C.; Wu, M.-C.; Guu, Y.-K.; Chiu, C.-H.; Cheng, W. Dietary Administration of the Probiotic, Lactobacillus Plantarum, Enhanced the Growth, Innate Immune Responses, and Disease Resistance of the Grouper Epinephelus coioides. Fish Shellfish Immunol. 2009, 26, 691–698. [Google Scholar] [CrossRef]
- Robertson, P.A.W.; O’Dowd, C.; Burrells, C.; Williams, P.; Austin, B. Use of Carnobacterium Sp. as a Probiotic for Atlantic Salmon (Salmo salar L.) and Rainbow Trout (Oncorhynchus mykiss, Walbaum). Aquaculture 2000, 185, 235–243. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, C.; Zhao, J.; Xu, H.; Hou, Q.; Zhang, H. Lactobacillus Casei Zhang and Vitamin K2 Prevent Intestinal Tumorigenesis in Mice via Adiponectin-Elevated Different Signaling Pathways. Oncotarget 2017, 8, 24719–24727. [Google Scholar] [CrossRef]
- Bagi, A.; Riiser, E.S.; Molland, H.S.; Star, B.; Haverkamp, T.H.A.; Sydnes, M.O.; Pampanin, D.M. Gastrointestinal Microbial Community Changes in Atlantic Cod (Gadus morhua) Exposed to Crude Oil. BMC Microbiol. 2018, 18, 25. [Google Scholar] [CrossRef]
Indices | Foregut | Midgut | Hindgut |
---|---|---|---|
Brush border microvillus length (µm) | 27.89 ± 4.60 a | 22.01 ± 4.53 b | 28.23 ± 5.36 a |
Muscular thickness (µm) | 289.49 ± 30.40 a | 167.28 ± 14.41 c | 239.30 ± 15.24 b |
Mucosal folds height (µm) | 984.51 ± 96.65 b | 865.85 ± 58.11 b | 1182.01 ± 111.44 a |
Total mucus cell | 133.17 ± 10.07 b | 166.5 ± 9.97 a | 32.33 ± 3.14 c |
Group | Shannon | Simpson | Chao | ACE | Pielou | Pd |
---|---|---|---|---|---|---|
FI | 2.47 | 0.52 | 760.63 | 766.36 | 0.27 | 168.49 |
HI | 3.25 | 0.64 | 553.44 | 599.86 | 0.38 | 48.52 |
MI | 3.10 | 0.69 | 567.81 | 605.70 | 0.36 | 90.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, K.; Jiang, M.; Yan, M.; Huang, Y.; Yang, T.; Zhu, C. Characteristics and Functions of Different Intestinal Segments in Juvenile Greater Amberjack (Seriola dumerili). Animals 2025, 15, 1672. https://doi.org/10.3390/ani15111672
Zhu K, Jiang M, Yan M, Huang Y, Yang T, Zhu C. Characteristics and Functions of Different Intestinal Segments in Juvenile Greater Amberjack (Seriola dumerili). Animals. 2025; 15(11):1672. https://doi.org/10.3390/ani15111672
Chicago/Turabian StyleZhu, Kunfeng, Mouyan Jiang, Mengyao Yan, Yang Huang, Tonglin Yang, and Chunhua Zhu. 2025. "Characteristics and Functions of Different Intestinal Segments in Juvenile Greater Amberjack (Seriola dumerili)" Animals 15, no. 11: 1672. https://doi.org/10.3390/ani15111672
APA StyleZhu, K., Jiang, M., Yan, M., Huang, Y., Yang, T., & Zhu, C. (2025). Characteristics and Functions of Different Intestinal Segments in Juvenile Greater Amberjack (Seriola dumerili). Animals, 15(11), 1672. https://doi.org/10.3390/ani15111672