Effects of Prepartum L-Tryptophan Supplementation on the Postpartum Performance of Holstein Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemical Agents
2.2. Experimental Design
2.3. Serum Indicator Testing
2.4. Milk Indicator Testing
2.5. Melatonin and Tryptophan Assay
2.6. Statistical Analysis
3. Results
3.1. The Effects of Prepartum L-Tryptophan Supplementation on the Levels of Tryptophan and Melatonin in the Serum and Milk of Cows
3.2. The Effects of Prepartum L-Tryptophan Supplementation on Glucose and Lipid Metabolism in Cows
3.3. The Effects of Prepartum L-Tryptophan Supplementation on Immune and Antioxidant Performance in Cows
3.4. The Effects of Prepartum L-Tryptophan Supplementation on Postpartum Reproductive Performance in Cows
3.4.1. Reproductive Hormones
3.4.2. Postpartum Diseases in Cows
3.4.3. Postpartum Pregnancy Rate in Cows
3.5. The Effects of Prepartum L-Tryptophan Supplementation on Postpartum Colostrum Immunoglobulin Levels
3.6. The Effects of Prepartum L-Tryptophan Supplementation on Postpartum Daily Milk Yield and Compositions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de Vries, M.J.; Veerkamp, R.F. Energy balance of dairy cattle in relation to milk production variables and fertility. J. Dairy Sci. 2000, 83, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Nan, X.; Wang, H.; Zhao, Y.; Guo, Y.; Xiong, B. Effects of Propylene Glycol on Negative Energy Balance of Postpartum Dairy Cows. Animals 2020, 10, 1526. [Google Scholar] [CrossRef] [PubMed]
- Li, S.L.; Hao, Y.Y.; Wang, W.; Wang, Y.J. Research Progress on Glucose-Lipid Metabolism and Healthy Feeding in Transition Dairy Cows. Chin. J. Anim. Nutr. 2020, 32, 4708–4715. [Google Scholar] [CrossRef]
- Xu, K.; Liu, H.; Bai, M.; Gao, J.; Wu, X.; Yin, Y. Redox Properties of Tryptophan Metabolism and the Concept of Tryptophan Use in Pregnancy. Int. J. Mol. Sci. 2017, 18, 1595. [Google Scholar] [CrossRef] [PubMed]
- Ingvartsen, K.L.; Moyes, K. Nutrition, immune function and health of dairy cattle. Animal 2013, 7 (Suppl. S1), 112–122. [Google Scholar] [CrossRef] [PubMed]
- Zebeli, Q.; Ghareeb, K.; Humer, E.; Metzler-Zebeli, B.U.; Besenfelder, U. Nutrition, rumen health and inflammation in the transition period and their role on overall health and fertility in dairy cows. Res. Vet. Sci. 2015, 103, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Harms, R.H.; Russell, G.B. Evaluation of tryptophan requirement of the commercial layer by using a corn-soybean meal basal diet. Poult. Sci. 2000, 79, 740–742. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.; Fang, J.; Yin, Y.L.; Feng, Z.M.; Tang, Z.R.; Wu, G. Tryptophan metabolism in animals: Important roles in nutrition and health. Front. Biosci. (Schol. Ed.) 2011, 3, 286–297. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Adewole, D.; Liu, S.; Xi, P.; Yang, C.; Yin, Y. Tryptophan Supplementation Increases Reproduction Performance, Milk Yield, and Milk Composition in Lactating Sows and Growth Performance of Their Piglets. J. Agric. Food Chem. 2019, 67, 5096–5104. [Google Scholar] [CrossRef]
- Wu, G. Amino acids: Metabolism, functions, and nutrition. Amino Acids 2009, 37, 1–17. [Google Scholar] [CrossRef]
- Yue, Y.; Guo, Y.; Yang, Y. Effects of dietary L-tryptophan supplementation on intestinal response to chronic unpredictable stress in broilers. Amino Acids 2017, 49, 1227–1236. [Google Scholar] [CrossRef] [PubMed]
- Rogers, S.R.; Pesti, G.M. Effect of tryptophan supplementation to a maize-based diet on lipid metabolism in laying hens. Br. Poult. Sci. 1992, 33, 195–200. [Google Scholar] [CrossRef]
- Harden, J.L.; Lewis, S.M.; Lish, S.R.; Suárez-Fariñas, M.; Gareau, D.; Lentini, T.; Johnson-Huang, L.M.; Krueger, J.G.; Lowes, M.A. The tryptophan metabolism enzyme L-kynureninase is a novel inflammatory factor in psoriasis and other inflammatory diseases. J. Allergy Clin. Immunol. 2016, 137, 1830–1840. [Google Scholar] [CrossRef] [PubMed]
- Cruz, M.H.; Leal, C.L.; da Cruz, J.F.; Tan, D.X.; Reiter, R.J. Role of melatonin on production and preservation of gametes and embryos: A brief review. Anim. Reprod. Sci. 2014, 145, 150–160. [Google Scholar] [CrossRef]
- Tordjman, S.; Chokron, S.; Delorme, R.; Charrier, A.; Bellissant, E.; Jaafari, N.; Fougerou, C. Melatonin: Pharmacology, Functions and Therapeutic Benefits. Curr. Neuropharmacol. 2017, 15, 434–443. [Google Scholar] [CrossRef]
- Marseglia, L.; Manti, S.; D’Angelo, G.; Arrigo, T.; Cuppari, C.; Salpietro, C.; Gitto, E. Potential use of melatonin in procedural anxiety and pain in children undergoing blood withdrawal. J. Biol. Regul. Homeost. Agents 2015, 29, 509–514. [Google Scholar]
- Jan, J.E.; Reiter, R.J.; Wasdell, M.B.; Bax, M. The role of the thalamus in sleep, pineal melatonin production, and circadian rhythm sleep disorders. J. Pineal Res. 2009, 46, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.K.; Kwon, B. Immune regulation through tryptophan metabolism. Exp. Mol. Med. 2023, 55, 1371–1379. [Google Scholar] [CrossRef] [PubMed]
- Kjaer, J.B.; Bessei, W. The interrelationships of nutrition and feather pecking in the domestic fowl. Arch. Geflugelkd. 2013, 77, 1–9. [Google Scholar] [CrossRef]
- Wang, X.; Wong, K.; Ouyang, W.; Rutz, S. Targeting IL-10 Family Cytokines for the Treatment of Human Diseases. Cold Spring Harb. Perspect. Biol. 2019, 11, a028548. [Google Scholar] [CrossRef]
- Liu, X.T.; Wang, A.; Yang, X.R.; Zhang, K. Effect of tryptophan on growth performance, antioxidant function and immune organ development of laying ducklings. Feed Ind. 2012, 33, 5–8. (In Chinese) [Google Scholar]
- Raju, T.N.; Kanth, V.R.; Reddy, P.U. Influence of kynurenines in pathogenesis of cataract formation in tryptophan-deficient regimen in Wistar rats. Indian J. Exp. Biol. 2007, 45, 543–548. [Google Scholar] [PubMed]
- Zhang, H.M.; Zhang, Y. Melatonin: A well-documented antioxidant with conditional pro-oxidant actions. J. Pineal Res. 2014, 57, 131–146. [Google Scholar] [CrossRef]
- Tan, D.X.; Manchester, L.C.; Sainz, R.M.; Mayo, J.C.; Leon, J.; Hardeland, R.; Poeggeler, B.; Reiter, R.J. Interactions between melatonin and nicotinamide nucleotide: NADH preservation in cells and in cell-free systems by melatonin. J. Pineal Res. 2005, 39, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.X.; Hardeland, R. Targeting Host Defense System and Rescuing Compromised Mitochondria to Increase Tolerance against Pathogens by Melatonin May Impact Outcome of Deadly Virus Infection Pertinent to COVID-19. Molecules 2020, 25, 4410. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Shi, J.; Tian, J.; Tao, J.; Chai, M.; Wang, J.; Xu, Z.; Song, Y.; Zhu, K.; Ji, P.; et al. Exogenous melatonin reduces somatic cell count of milk in Holstein cows. Sci. Rep. 2017, 7, 43280. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.B.; Lee, K.W.; Wang, T.; Lee, J.S.; Jung, U.S.; Nejad, J.G.; Oh, Y.K.; Baek, Y.C.; Kim, K.H.; Lee, H.G. Intravenous administration of L-tryptophan stimulates gastrointestinal hormones and melatonin secretions: Study on beef cattle. J. Anim. Sci. Technol. 2019, 61, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.T.; Ghassemi Nejad, J.; Moon, J.O.; Lee, H.G. Dietary supplementation of acetate-conjugated tryptophan alters feed intake, milk yield and composition, blood profile, physiological variables, and heat shock protein gene expression in heat-stressed dairy cows. J. Therm. Biol. 2021, 98, 102949. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Yao, S.; Bai, L.; Bai, S.; Liu, G. The effects of rumen-protected tryptophan (RPT) on production performance and relevant hormones of dairy cows. PeerJ 2022, 10, e13831. [Google Scholar] [CrossRef]
- Hsueh, A.J.; Kawamura, K.; Cheng, Y.; Fauser, B.C. Intraovarian control of early folliculogenesis. Endocr. Rev. 2015, 36, 1–24. [Google Scholar] [CrossRef]
- Kawashima, C.; Fukihara, S.; Maeda, M.; Kaneko, E.; Montoya, C.A.; Matsui, M.; Shimizu, T.; Matsunaga, N.; Kida, K.; Miyake, Y.; et al. Relationship between metabolic hormones and ovulation of dominant follicle during the first follicular wave post-partum in high-producing dairy cows. Reproduction 2007, 133, 155–163. [Google Scholar] [CrossRef]
- Hurley, W.L.; Theil, P.K. Perspectives on immunoglobulins in colostrum and milk. Nutrients 2011, 3, 442–474. [Google Scholar] [CrossRef] [PubMed]
- Tezuka, H.; Ohteki, T. Regulation of IgA Production by Intestinal Dendritic Cells and Related Cells. Front. Immunol. 2019, 10, 1891. [Google Scholar] [CrossRef]
- Lopez, A.J.; Heinrichs, A.J. Invited review: The importance of colostrum in the newborn dairy calf. J. Dairy Sci. 2022, 105, 2733–2749. [Google Scholar] [CrossRef] [PubMed]
- He, M.C.; Li, S.T.; Wang, Z.; Shu, Y.S.; Gui, X.E.; Zhu, J.; Li, J.C.; Wu, J.J. Effects of chicken-derived compound probiotics on immunoglobulin and Toll-like receptor pathway of broilers. J. South China Agric. Univ. 2021, 42, 26–33. (In Chinese) [Google Scholar] [CrossRef]
- Illg, D.J.; Sommerfeldt, J.L.; Schingoethe, D.J. Lactational and systemic responses to the supplementation of protected methionine in soybean meal diets1. J. Dairy Sci. 1987, 70, 620–629. [Google Scholar] [CrossRef]
- Kollmann, M.T.; Locher, M.; Hirche, F.; Eder, K.; Meyer, H.H.; Bruckmaier, R.M. Effects of tryptophan supplementation on plasma tryptophan and related hormone levels in heifers and dairy cows. Domest. Anim. Endocrinol. 2008, 34, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Paulicks, B.R.; Pampuch, F.G.; Roth-Maier, D.A. Studies on the tryptophan requirement of lactating sows. Part 1: Estimation of the tryptophan requirement by performance. J. Anim. Physiol. Anim. Nutr. 2006, 90, 474–481. [Google Scholar] [CrossRef]
- Renaud, D.L.; Kelton, D.F.; Duffield, T.F. Short communication: Validation of a test-day milk test for β-hydroxybutyrate for identifying cows with hyperketonemia. J. Dairy Sci. 2019, 102, 1589–1593. [Google Scholar] [CrossRef]
- Nuber, U.; van Dorland, H.A.; Bruckmaier, R.M. Effects of butafosfan with or without cyanocobalamin on the metabolism of early lactating cows with subclinical ketosis. J. Anim. Physiol. Anim. Nutr. 2016, 100, 146–155. [Google Scholar] [CrossRef]
Item | % |
---|---|
Ingredient, % of feed | |
Steam-flaked corn | 3.50 |
Sprayed corn husk | 2.20 |
Low-fat DDGS | 2.20 |
Cereal grass | 4.40 |
Domestic oats | 13.20 |
Corn silage | 57.00 |
Concentrate supplement 1 | 17.50 |
Nutrient composition, % of DM | |
CP | 15.00 |
NDF | 44.00 |
NFC | 34.70 |
EE | 2.60 |
Trp (%mp) 2 | 1.46 |
Met (%mp) | 2.16 |
Lys (%mp) | 6.78 |
Total Number | Healthy Number | Number of Cases | Disease Incidence (%) | Incidence of Retained Fetal Membranes | Incidence of Metritis | Incidence of Mastitis | Incidence of Lameness | Incidence of Postpartum Paralysis | |
---|---|---|---|---|---|---|---|---|---|
Control | 45 | 27 | 18 | 40.00 b | 3 | 7 | 5 | 1 | 2 |
50 g Trp | 45 | 35 | 10 | 22.22 ab | 2 | 3 | 4 | 1 | 0 |
100 g Trp | 45 | 36 | 9 | 20.00 a | 2 | 5 | 1 | 0 | 1 |
Total Number | Number of Pregnancies at First Breeding | Pregnancy Rate at First Breeding (%) | Number of Pregnancies at Two-Time Breeding | Cumulative Pregnancy Rate from Two-Time Breeding (%) | |
---|---|---|---|---|---|
Control | 45 | 5 | 11.11 a | 11 | 24.44 b |
50 g Trp | 45 | 5 | 11.11 a | 16 | 35.56 ab |
100 g Trp | 45 | 10 | 22.22 a | 20 | 44.44 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Yao, S.; Liu, Y.; Han, H.; Wang, W.; Yi, Q.; Yan, L.; Ji, P.; Zhang, L.; Liu, G. Effects of Prepartum L-Tryptophan Supplementation on the Postpartum Performance of Holstein Cows. Animals 2024, 14, 1278. https://doi.org/10.3390/ani14091278
Liu X, Yao S, Liu Y, Han H, Wang W, Yi Q, Yan L, Ji P, Zhang L, Liu G. Effects of Prepartum L-Tryptophan Supplementation on the Postpartum Performance of Holstein Cows. Animals. 2024; 14(9):1278. https://doi.org/10.3390/ani14091278
Chicago/Turabian StyleLiu, Xuening, Songyang Yao, Yunjie Liu, Huigang Han, Weijia Wang, Qi Yi, Laiqing Yan, Pengyun Ji, Lu Zhang, and Guoshi Liu. 2024. "Effects of Prepartum L-Tryptophan Supplementation on the Postpartum Performance of Holstein Cows" Animals 14, no. 9: 1278. https://doi.org/10.3390/ani14091278
APA StyleLiu, X., Yao, S., Liu, Y., Han, H., Wang, W., Yi, Q., Yan, L., Ji, P., Zhang, L., & Liu, G. (2024). Effects of Prepartum L-Tryptophan Supplementation on the Postpartum Performance of Holstein Cows. Animals, 14(9), 1278. https://doi.org/10.3390/ani14091278