Impact of Agro-Byproduct Supplementation on Carcass Traits and Meat Quality of Hair Sheep and Wool × Hair Crossbreds Grazing on Fescue Pasture
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Management and Experimental Design
2.2. Carcass Processing and Evaluation
2.3. Meat Composition
2.4. Statistical Analysis
3. Results and Discussion
3.1. Body Weight Gains and Carcass Traits
3.2. Quality Characteristics of Lamb Chops
3.3. Chemical Composition of Longissimus Muscle (LM) and Fat Depots
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pereira, P.M.; Vicente, A.F. Meat nutritional composition and nutritive role in the human diet. Meat Sci. 2013, 93, 586–592. [Google Scholar] [CrossRef] [PubMed]
- McNeill, S. Inclusion of red meat in healthful dietary patterns. Meat Sci. 2014, 98, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Vanderveen, J.E. Dietary recommendation for lipids and measure designed to facilitate implementation. In Food Lipids and Health; McDonald, E.R., Min, D.B., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 1996. [Google Scholar]
- Howes, N.L.; Bekhit, A.E.A.; Burritt, D.J.; Campbell, A.W. Opportunities and implications of pasture-based lamb fattening to enhance the long-chain fatty acid composition in meat. Comp. Rev. Food Sci. Food Saf. 2015, 14, 22–36. [Google Scholar] [CrossRef] [PubMed]
- NRC, National Research Council. Changes in the Sheep Industry in the United States: Making the Transition from Tradition; National Research Council, The National Academies Press: Washington, DC, USA, 2008; p. 366. [Google Scholar]
- Shiflett, J.S. American sheep industry updates nontraditional lamb market study. Sheep Ind. News 2020, 24, 9. [Google Scholar]
- Wildeus, S. Hair sheep genetic resources and their contribution to diversified small ruminant production in the United States. J. Anim. Sci. 1997, 75, 630–640. [Google Scholar] [CrossRef] [PubMed]
- Burke, J.M.; Apple, J.K. Growth performance and carcass traits of forage-fed hair sheep wethers. Small Rumin. Res. 2007, 67, 264–270. [Google Scholar] [CrossRef]
- Horton, G.M.J.; Burgher, C.C. Physiological and carcass characteristics of hair and wool breeds of sheep. Small Rumin. Res. 1992, 7, 51–60. [Google Scholar] [CrossRef]
- Burke, J.M.; Apple, J.K.; Roberts, W.J.; Boger, C.B.; Kegley, E.B. Effect of breed-type on performance and carcass traits of intensively managed hair sheep. Meat Sci. 2003, 63, 309–315. [Google Scholar] [CrossRef]
- Lewis, R.M.; Notter, D.R.; Hogue, D.E.; Magee, B.H. Ewe fertility in the STAR accelerated lambing system. J. Anim. Sci. 1996, 74, 1511–1522. [Google Scholar] [CrossRef]
- Jaques, J.; Berthiaume, R.; Cinq-Mars, D. Growth performance and carcass characteristics of Dorset lambs fed different concentrates: Forage ratios or fresh grass. Small Rumin. Res. 2011, 95, 113–119. [Google Scholar] [CrossRef]
- Lee, J.H.; Wildeus, S.; Nartea, T.J.; Lemma, B.; Kouakou, B. Effect of breed type, supplementation and sex in rotationally-grazed hair and wool x hair sheep lambs: Carcass characteristics. ASAS South. Sect. 2015, 47. [Google Scholar]
- Wildeus, S.; Lee, J.H.; Teutsch, C.D.; Nartea, T.J. Effect of breed type, supplementation and sex in rotationally-grazed hair and wool x hair sheep lambs: Growth and gastrointestinal parasites. ASAS South. Sect. 2015, 43. [Google Scholar]
- Nartea, T.J.; Wildeus, S.; Lee, J.H.; O’Brien, D.J. Breed and supplementation influence on consumer ratings of ground meat from pasture-raised lamb. J. Ext. 2017, 55, 41. [Google Scholar] [CrossRef]
- Wildeus, S.; Luginbuhl, J.M.; Turner, K.E.; Nutall, Y.L.; Collins, J.R. Grass- and alfalfa-hay-based diets with limited concentrate supplementation. Sheep Goat Res. J. 2007, 22, 15–19. [Google Scholar]
- Turner, K.E.; Belesky, D.P.; Cassida, K.A.; Zerby, H.N. Carcass merit and meat quality in Suffolk lambs, Katahdin lambs, and meat-goat kids finished on a grass-legume pasture with and without supplementation. Meat Sci. 2014, 98, 211–219. [Google Scholar] [CrossRef]
- Anderson, S.J.; Merrill, J.K.; Klopfenstein, T.J. Soybean hulls as an energy supplement for the grazing ruminant. J. Anim. Sci. 1988, 66, 2959–2964. [Google Scholar] [CrossRef]
- Ipharraguerre, I.R.; Clark, J.H. Soyhulls as an alternative feed for lactating dairy cows: A review. J. Dairy Sci. 2003, 86, 1052–1073. [Google Scholar] [CrossRef]
- Cordes, C.S.; Turner, K.E.; Paterson, J.A.; Bowman, J.G.P.; Forwood, J.R. Corn gluten feed supplementation of grass hay diets for beef cows and yearling heifers. J. Anim. Sci. 1988, 66, 522–531. [Google Scholar] [CrossRef]
- Lambe, N.R.; Navajas, E.A.; Schofield, C.P.; Fisher, A.V.; Simm, G.; Roehe, R.; Bünger, L. The use of various live animal measurements to predict carcass and meat quality in two divergent lamb breeds. Meat Sci. 2008, 80, 1138–1149. [Google Scholar] [CrossRef]
- Papi, N.; Mostafa-Tehrani, A.; Amanlou, H.; Memaria, M. Effects of dietary forage-to-concentrate ratios on performance and carcass characteristics of growing fat-tailed lambs. Anim. Feed Sci. Technol. 2011, 163, 93–98. [Google Scholar] [CrossRef]
- de Araújo, T.L.A.; Pereira, E.S.; Mizubuti, I.Y.; Ana, C.N.; Campos, A.C.N.; Pereira, M.W.F.; Heinzen, E.L.; Magalhães, H.C.R.; Bezerra, L.R.; da Silva, L.P.; et al. Effects of quantitative feed restriction and sex on carcass traits, meat quality and meat lipid profile of Morada Nova lambs. J. Anim. Sci. Biotechnol. 2017, 8, 46. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Vanguru, M.; More, D.A.; Kannan, G.; Terrill, T.H.; Kouakou, B. Flavor compounds and quality parameters of chevon as influenced by sericea lespedeza hay. J. Agric. Food Chem. 2012, 60, 3934–3939. [Google Scholar] [CrossRef] [PubMed]
- Krzywicki, K. The determination of haem pigments in meat. Meat Sci. 1982, 7, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Buege, C.E.; Aust, S.D. Microsomal lipid peroxidation. Methods Enzymol. 1978, 52, 302–304. [Google Scholar] [PubMed]
- AOAC. Official Methods of Analysis of the AOAC International, 16th ed.; Association of Official Analytical Chemists, International: Gaithersburg, MD, USA, 1995. [Google Scholar]
- AOCS. Official and Tentative Methods of Analysis, 5th ed.; American Oil Chemists’ Society: Champaign, IL, USA, 1993. [Google Scholar]
- Wildeus, S.; Turner, K.E.; Collins, J.R. Growth performance of Barbados Blackbelly, Katahdin and St. Croix hair sheep lambs fed pasture- or hay-based diets. Sheep Goat Res. J. 2005, 20, 37–41. [Google Scholar]
- Gardner, G.E.; Williams, A.; Ball, A.J.; Jacob, R.H.; Refshauge, G.; Hocking, E.J.; Behrendt, R.; Pethick, D.W. Carcass weight and dressing percentage are increased using Australian sheep breeding values for increased weight and muscling and reduced fat depth. Meat Sci. 2015, 99, 89–98. [Google Scholar] [CrossRef] [PubMed]
- McClure, K.E.; Van Keuren, R.W.; Althouse, P.G. Performance and carcass characteristics of weaned lambs either grazed on orchardgrass, ryegrass, or alfalfa or fed all-concentrate diets in drylot. J. Anim. Sci. 1994, 72, 3230–3237. [Google Scholar] [CrossRef] [PubMed]
- Suliman, G.M.; Al-Owaimer, A.N.; El-Waziry, A.M.; Hussein, E.O.S.; Abuelfatah, K.; Swelum, A.A. A comparative study of sheep breeds: Fattening performance, carcass characteristics, meat chemical composition and quality attributes. Front. Vet. Sci. 2021, 8, 647192. [Google Scholar] [CrossRef] [PubMed]
- Anderson, H.J.; Oksbjerg, N.; Young, J.F.; Therkildsen, M. Feeding and meat quality-a future approach. Meat Sci. 2005, 70, 543–554. [Google Scholar] [CrossRef]
- Lewis, R.M.; Emmans, G.C. Genetic selection, sex and feeding treatment affect the whole body chemical composition of sheep. Animal 2007, 1, 1427–1434. [Google Scholar] [CrossRef]
- Lee, J.H.; Kouakou, B.; Kannan, G. Chemical composition and quality characteristics of chevon from goats fed three different post-weaning diets. Small Rumin. Res. 2008, 75, 177–184. [Google Scholar] [CrossRef]
- Pannier, L.; Pethick, D.W.; Geesink, G.H.; Ball, A.J.; Jacob, R.H.; Gardner, G.E. Intramuscular fat in the longissimus muscle is reduced in lambs from sires selected for leanness. Meat Sci. 2014, 96, 1068–1075. [Google Scholar] [CrossRef]
- Lefaucheur, L. Second look into fibre typing-relation to meat quality. Meat Sci. 2010, 84, 257–270. [Google Scholar] [CrossRef]
- Mancini, R.A.; Hunt, M.C. Current research in meat color. Meat Sci. 2005, 71, 100–121. [Google Scholar] [CrossRef]
- Ranken, M.D. Handbook of Meat Product Technology; Blackwell Science Ltd.: London, UK, 2000; 212p. [Google Scholar]
- Melton, S.L.; Amiri, M.; Davis, G.W.; Backus, W.R. Flavor and chemical characteristics of ground beef from grass-, forage-grain and grain-finished steers. J. Anim. Sci. 1982, 55, 77–87. [Google Scholar] [CrossRef]
- Savell, J.W.; Mueller, S.L.; Baird, B.E. The chilling of carcasses. Meat Sci. 2005, 70, 449–459. [Google Scholar] [CrossRef]
- England, E. Factors affecting the transformation of muscle to meat. J. Anim. Sci. 2018, 96, 495. [Google Scholar] [CrossRef]
- Aaslying, M.D.; Bejerholm, C.; Ertbjerg, P.; Bertram, H.C.; Anderson, H.J. Cooking loss and juiciness of pork in relation to raw meat quality and cooking procedure. Food Qual. Prefer. 2003, 14, 277–288. [Google Scholar] [CrossRef]
- Abdullah, A.Y.; Qudsieh, R.I. Effect of slaughter weight and aging time on the quality of meat from Awassi ram lambs. Meat Sci. 2009, 82, 309–316. [Google Scholar] [CrossRef]
- Cannata, S.; Engle, T.E.; Moeller, S.J.; Zerby, H.N.; Radunz, A.E.; Green, M.D.; Bass, P.D.; Belk, K.E. Effect of visual marbling on sensory properties and quality traits of pork loin. Meat Sci. 2010, 85, 428–834. [Google Scholar] [CrossRef]
- Watanabe, G.; Motoyama, M.; Nakajima, I.; Sasaki, K. Relationship between water-holding capacity and intramuscular fat content in Japanese commercial pork loin. Asian Australas. J. Anim. Sci. 2018, 31, 914–918. [Google Scholar] [CrossRef]
- Webb, E.C.; Casey, N.H.; Simela, L. Goat meat quality. Small Rumin. Res. 2005, 60, 153–166. [Google Scholar] [CrossRef]
- Shackelford, S.D.; Leymaster, K.A.; Wheeler, T.L.; Koohmaraie, M. Effects of breed of sire on carcass composition and sensory traits of lamb. J. Anim. Sci. 2012, 90, 4131–4139. [Google Scholar] [CrossRef]
- Priolo, A.; Micol, D.; Agabriel, J.; Prache, S.; Dransfield, E. Effect of grass or concentrate feeding systems on lamb carcass and meat quality. Meat Sci. 2002, 62, 179–185. [Google Scholar] [CrossRef]
- Ekiz, B.; Yilmaz, A.; Ozcan, M.; Kocak, O. Effect of production systems on carcass measurements and meat quality of Kivircik lambs. Meat Sci. 2012, 90, 465–471. [Google Scholar] [CrossRef]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef]
- Geay, Y.; Bauchart, D.; Hocquette, J.F.; Culioli, J. Effect of nutritional factors on biochemical, structural and metabolic characteristics of muscles in ruminants, consequences on dietetic value and sensorial qualities of meat. Reprod. Nutr. Dev. 2001, 41, 1–26. [Google Scholar] [CrossRef]
- Roberts, S.D.; Kerth, C.R.; Braden, K.W.; Rankins, D.L., Jr.; Kriese-Anderson, L.; Prevatt, J.W. Finishing steers on winter annual ryegrass (Lolium multiflorum Lam.) with varied levels of corn supplementation I: Effects on animal performance, carcass traits, and forage quality. J. Anim. Sci. 2009, 87, 2690–2699. [Google Scholar] [CrossRef]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Enser, M. Effect of fatty acids on meat quality: A review. Meat Sci. 2003, 66, 21–32. [Google Scholar] [CrossRef]
- Noakes, M.N.; Nestle, P.I.; Clifton, T.M. Modifying the fatty acids profile of dairy products through feedlot technology lowers plasma cholesterol of humans consuming the products. Am. J. Clin. Nutr. 1996, 63, 42–46. [Google Scholar] [CrossRef]
- Marino, R.; Albenzio, M.; Annicchiarico, G.; Caroprese, M.; Muscio, A.; Santillo, A.; Sevi, A. Influence of genotype and slaughtering age on meat from Altamurana and Trimeticcio lambs. Small Rumin. Res. 2008, 78, 144–151. [Google Scholar] [CrossRef]
- Miguélez, E.; Zumalacárregui, J.; Osorio, M.; Figueira, A.; Fonseca, B.; Mateo, J. Quality traits of suckling lamb meat covered by the protected geographical indication “Lechazo de Castilla y León” European quality label. Small Rumin. Res. 2008, 77, 65–70. [Google Scholar] [CrossRef]
- Mazzone, G.; Giammarco, M.; Vignola, G.; Sardi, L.; Lambertini, L. Effect of the rearing season on carcass and meat quality of suckling Apennine light lambs. Meat Sci. 2010, 86, 474–478. [Google Scholar] [CrossRef]
- Webb, E.; O’Neill, H. The animal fat paradox and meat quality. Meat Sci. 2008, 80, 28–36. [Google Scholar] [CrossRef]
- Bauman, D.E.; Baumgard, L.H.; Corl, B.A.; Griinari, L.M. Biosynthesis of conjugated linoleic acid in ruminants. Proc. Am. Soc. Anim. Sci. 1999, 1, 1–15. [Google Scholar] [CrossRef]
- Juárez, M.; Horcada, A.; Alcalde, M.J.; Valera, M.; Polvillo, O.; Molina, A. Meat and fat quality of unweaned lambs as affected by slaughter weight and breed. Meat Sci. 2009, 83, 308–313. [Google Scholar] [CrossRef]
Item | Tall Fescue | Soyhull | Corn Gluten Feed |
---|---|---|---|
Chemical composition, %DM | |||
Dry matter, DM | 88.6 | 90.0 | 87.8 |
Ether extract, fat | 2.10 | 1.68 | 2.85 |
Crude protein, CP | 10.4 | 12.5 | 17.9 |
Ash | 6.61 | 4.52 | 6.37 |
Acid detergent fiber, ADF | 50.4 | 49.4 | 17.0 |
Total digestible nutrient, TDN | 58.2 | 56.0 | 76.0 |
Net energy, Mcal/kg | 0.66 | 0.75 | 1.32 |
Fatty acid, % | |||
C14:0 | 0.44 | 0.43 | 0.40 |
C16:0 | 21.02 | 14.09 | 10.95 |
C16:1n7 | 1.05 | 0.25 | 0.01 |
C18:0 | 2.86 | 4.98 | 3.18 |
C18:1n9 | 4.39 | 19.07 | 23.61 |
C18:2n6 | 14.21 | 48.05 | 54.95 |
C18:3n3 | 41.01 | 10.13 | 2.33 |
C18:3n3 | 49.71 | 7.69 | 2.33 |
∑SFA a | 22.22 | 19.26 | 14.53 |
∑MUFA b | 5.87 | 20.80 | 23.62 |
∑PUFA c | 63.27 | 55.34 | 57.28 |
∑n-3 d | 49.71 | 7.69 | 2.33 |
∑n-6 e | 13.56 | 47.65 | 54.95 |
∑n-6/n-3 | 0.27 | 6.20 | 23.58 |
Treatment | p-Value | |||||||
---|---|---|---|---|---|---|---|---|
Breed Type, B | Diet, D | Main | Interaction | |||||
Item | Purebred | Crossbred | Pasture Only | Pasture + CGF | Pasture + SH | B | D | B × D |
Average daily gain (ADG), g | 150.2 a | 204.5 b | 118.2 a | 208.3 b | 205.5 b | 0.0001 | 0.0001 | 0.0132 |
Fasting body weight (FBW), kg | 31.59 a | 42.26 b | 32.19 a | 40.03 b | 38.56 b | 0.0001 | 0.0001 | 0.1458 |
Hot carcass weight, kg | 13.75 a | 18.50 b | 13.27 a | 17.58 b | 17.50 b | 0.0001 | 0.0001 | 0.0602 |
Cold carcass weight, kg | 12.96 a | 17.52 b | 12.49 a | 16.74 b | 16.49 b | 0.0001 | 0.0001 | 0.1084 |
Carcass shrink, % | 5.75 | 5.20 | 5.87 | 4.88 | 5.69 | 0.6426 | 0.7638 | 0.6476 |
Dressing percentage, % | 43.26 | 43.62 | 41.07 a | 44.09 b | 45.17 b | 0.6660 | 0.0009 | 0.2467 |
Loin area, cm2 | 13.03 a | 15.61 b | 13.58 | 14.81 | 14.57 | 0.0183 | 0.5914 | 0.1427 |
Primal cut, kg | ||||||||
Neck | 0.86 | 1.03 | 0.84 | 1.04 | 0.95 | 0.0512 | 0.1841 | 0.6073 |
Shoulder | 3.52 a | 4.92 b | 3.45 a | 4.50 b | 4.71 b | 0.0001 | 0.0001 | 0.0519 |
Fore shank | 0.61 a | 0.83 b | 0.61 a | 0.79 b | 0.76 b | 0.0001 | 0.0034 | 0.1442 |
Breast | 0.29 a | 0.38 b | 0.30 a | 0.37 b | 0.34 b | 0.0004 | 0.0379 | 0.7241 |
Rack | 1.57 a | 2.08 b | 1.14 a | 2.11 b | 1.96 b | 0.0001 | 0.0001 | 0.0302 |
Loin | 0.95 a | 1.34 b | 0.94 a | 1.23 b | 1.27 b | 0.0001 | 0.0001 | 0.4599 |
Flank | 0.48 a | 0.66 b | 0.43 a | 0.66 b | 0.63 b | 0.0001 | 0.0001 | 0.7334 |
Leg | 4.54 a | 6.10 b | 4.49 a | 5.81 b | 5.67 b | 0.0001 | 0.0001 | 0.2562 |
Hind shank | 0.56 a | 0.73 b | 0.54 a | 0.69 b | 0.70 b | 0.0001 | 0.0001 | 0.3631 |
Treatment | p-Value | |||||||
---|---|---|---|---|---|---|---|---|
Breed Type, B | Diet, D | Main | Interaction | |||||
Parameter | Purebred | Crossbred | Pasture Only | Pasture + CGF | Pasture + SH | B | D | B × D |
Fresh | ||||||||
L* value, lightness | 36.93 | 37.21 | 37.89 a | 36.84 b | 36.48 b | 0.3296 | 0.0003 | 0.0001 |
a* value, redness | 12.77 a | 11.64 b | 12.15 | 12.44 | 12.04 | 0.0001 | 0.1194 | 0.0057 |
b* value, yellowness | 11.13 a | 10.33 b | 11.25 a | 10.75 b | 10.68 b | 0.0023 | 0.0057 | 0.0001 |
Myoglobin (Mb), mg/g | 8.04 | 7.35 | 6.95 | 7.83 | 8.30 | 0.5234 | 0.6075 | 0.08776 |
Metmyoglobin MetMb), % | 34.84 | 33.51 | 31.62 | 38.46 | 32.45 | 0.6340 | 0.0939 | 0.0001 |
TBARS, mg/kg | 0.67 | 0.76 | 0.80 a | 0.81 a | 0.54 b | 0.3071 | 0.0264 | 0.6002 |
Ultimate pH | 5.64 | 5.66 | 5.64 | 5.67 | 5.64 | 0.7820 | 0.8301 | 0.3941 |
Cooked | ||||||||
Cooking loss, % | 16.51 | 17.86 | 17.94 | 16.70 | 16.91 | 0.2686 | 0.6679 | 0.2048 |
WBSF, kg/cm3 | 3.00 a | 3.80 b | 3.46 a | 3.13 b | 3.61 a | 0.0001 | 0.0398 | 0.0080 |
Item | Treatment | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
Breed Type, B | Diet, D | Main | Interaction | |||||
Purebred | Crossbred | Pasture Only | Pasture + CGF | Pasture + SH | B | D | B × D | |
Proximate Composition, % | ||||||||
Moisture | 75.21 | 75.29 | 76.07 a | 74.73 b | 74.94 b | 0.7518 | 0.0001 | 0.1538 |
Crude protein | 20.93 a | 21.51 b | 21.11 | 21.41 | 21.15 | 0.0087 | 0.4849 | 0.9890 |
Ether extracted, fat | 1.48 | 1.50 | 0.78 a | 1.78 a | 1.92 b | 0.8691 | 0.0001 | 0.2339 |
Ash | 1.34 | 1.28 | 1.39 a | 1.29 ab | 1.24 b | 0.0784 | 0.0014 | 0.7554 |
Fatty acid, % | ||||||||
C10:0 | 0.60 | 0.44 | 0.97 a | 0.29 b | 0.30 b | 0.0808 | 0.0001 | 0.7089 |
C12:0 | 0.23 a | 0.28 b | 0.34 a | 0.20 b | 0.22 b | 0.0015 | 0.0001 | 0.0004 |
C14:0 | 1.42 | 1.30 | 1.42 | 1.34 | 1.32 | 0.4422 | 0.8694 | 0.5335 |
C14:1n5 | 0.43 | 0.48 | 0.56 a | 0.38 b | 0.43 b | 0.0968 | 0.0001 | 0.3962 |
C16:0, iso | 0.58 | 0.61 | 0.54 a | 0.59 a | 0.66 b | 0.1206 | 0.0003 | 0.4698 |
C16:0 | 16.44 a | 17.48 b | 15.86 a | 18.07 b | 16.95 ab | 0.0131 | 0.0004 | 0.5357 |
C16:1n7, trans | 0.95 | 0.98 | 1.02 a | 0.87 b | 1.00 a | 0.3334 | 0.0005 | 0.4836 |
C16:1n7 | 2.20 | 2.00 | 3.20 a | 1.59 b | 1.51 b | 0.3336 | 0.0001 | 0.8384 |
C17:0 | 1.32 | 1.36 | 1.47 a | 1.20 b | 1.36 a | 0.3245 | 0.0001 | 0.8520 |
C17:1n7 | 0.57 | 0.59 | 0.66 a | 0.50 b | 0.57 b | 0.1602 | 0.0001 | 0.4152 |
C18:0 | 21.3 | 21.7 | 21.2 | 21.79 | 21.60 | 0.4786 | 0.6569 | 0.3306 |
C18:1n9, trans | 0.40 | 0.41 | 0.42 | 0.39 | 0.40 | 0.4252 | 0.6881 | 0.4957 |
C18:1n11, trans | 1.10 | 1.19 | 1.37 a | 1.04 b | 1.02 b | 0.1142 | 0.0001 | 0.4882 |
C18:1n9 | 31.25 | 32.56 | 29.10 a | 32.79 b | 33.82 b | 0.1722 | 0.0006 | 0.5788 |
C18:2n6, trans | 0.26 | 0.28 | 0.40 a | 0.17 c | 0.24 b | 0.1166 | 0.0001 | 0.0420 |
C18:2n6 | 7.10 | 6.67 | 7.37 | 7.16 | 6.13 | 0.4839 | 0.2214 | 0.8565 |
C18:2, c9,t11 | 0.45 | 0.41 | 0.46 | 0.42 | 0.40 | 0.3759 | 0.6464 | 0.8367 |
C18:3n3 | 1.21 | 1.08 | 1.72 a | 0.76 b | 0.95 b | 0.2469 | 0.0001 | 0.1700 |
C18:3n6 | 0.53 | 0.58 | 0.50 a | 0.52 a | 0.64 b | 0.1574 | 0.0058 | 0.7175 |
C20:1n9 | 0.41 | 0.36 | 0.60 a | 0.27 b | 0.28 b | 0.3493 | 0.0006 | 0.5785 |
C20:2n6 | 0.38 | 0.37 | 0.51 a | 0.33 b | 0.29 b | 0.8896 | 0.0066 | 0.6442 |
C20:4n6 | 2.84 | 2.15 | 3.31 a | 2.10 b | 2.06 b | 0.0822 | 0.0184 | 0.4069 |
C20:5n3 | 0.71 | 0.54 | 1.06 a | 0.36 b | 0.46 b | 0.1943 | 0.0002 | 0.5808 |
C22:5n3 | 0.87 | 0.69 | 1.27 a | 0.52 b | 0.55 b | 0.2248 | 0.0007 | 0.3578 |
∑SFA d | 41.89 | 43.17 | 41.80 | 43.48 | 42.41 | 0.2088 | 0.2181 | 0.4901 |
∑MUFA e | 37.31 | 38.57 | 36.93 | 37.83 | 39.03 | 0.2481 | 0.0863 | 0.5343 |
∑PUFA f | 14.35 | 12.77 | 16.60 | 12.34 | 11.72 | 0.3080 | 0.0999 | 0.5125 |
∑n-3 g | 2.79 | 2.31 | 4.05 a | 1.64 b | 1.96 b | 0.2220 | 0.0004 | 0.3660 |
∑n-6 h | 11.56 | 10.46 | 12.55 | 10.70 | 9.76 | 0.3510 | 0.1498 | 0.5840 |
∑n-6/n-3 | 4.14 | 4.53 | 3.10 | 6.52 | 4.97 | 0.2865 | 0.0751 | 0.4768 |
Fatty Acid, % | Treatment | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
Breed Type, B | Diet, D | Main | Interaction | |||||
Purebred | Crossbred | Pasture Only | Pasture + CGF | Pasture + SH | B | D | B × D | |
C10:0 | 0.24 | 0.23 | 0.27 | 0.23 | 0.21 | 0.7630 | 0.1401 | 0.9981 |
C12:0 | 0.16 | 0.13 | 0.12 | 0.16 | 0.15 | 0.2156 | 0.4918 | 0.8632 |
C14:0 | 2.43 | 2.39 | 2.65 | 2.32 | 2.25 | 0.8154 | 0.1587 | 0.4383 |
C14:1n5 | 0.88 | 0.91 | 0.87 | 0.87 | 0.94 | 0.4786 | 0.3013 | 0.9748 |
C16:0, iso | 0.40 | 0.46 | 0.44 ab | 0.35 a | 0.49 b | 0.1131 | 0.0169 | 0.9059 |
C16:0 | 18.22 | 18.94 | 17.61 a | 19.62 b | 18.50 ab | 0.2270 | 0.0331 | 0.3693 |
C16:1n7, trans | 0.47 a | 0.54 a | 0.54 | 0.46 | 0.51 | 0.0496 | 0.1829 | 0.6436 |
C16:1n7 | 1.40 | 1.23 | 1.32 | 1.41 | 1.22 | 0.0870 | 0.2640 | 0.0754 |
C17:0 | 2.25 | 2.13 | 1.95 a | 2.12 ab | 2.51 b | 0.3866 | 0.0099 | 0.6467 |
C17:1n7 | 1.58 | 1.34 | 1.10 a | 1.57 ab | 1.71 b | 0.1241 | 0.0108 | 0.6216 |
C18:0 | 15.43 | 16.00 | 20.30 a | 13.90 b | 13.00 b | 0.7898 | 0.0224 | 0.1306 |
C18:1n9, trans | 0.36 | 0.38 | 0.44 | 0.33 | 0.35 | 0.7266 | 0.4332 | 0.8231 |
C18:1n11, trans | 0.39 | 0.45 | 0.57 a | 0.26 c | 0.43 b | 0.1255 | 0.0001 | 0.2527 |
C18:1n9 | 46.45 | 44.84 | 43.32 | 46.51 | 47.09 | 0.3160 | 0.1471 | 0.1328 |
C18:2n6, trans | 0.64 | 0.70 | 0.66 | 0.66 | 0.69 | 0.1191 | 0.6814 | 0.9622 |
C18:2n6 | 2.00 | 2.32 | 1.57 a | 2.59 b | 2.32 b | 0.0594 | 0.0001 | 0.9150 |
C18:2, c9,t11 | 0.20 | 0.21 | 0.29 a | 0.18 b | 0.16 b | 0.6176 | 0.0043 | 0.3783 |
C18:3n3 | 1.16 | 1.27 | 0.99 a | 1.15 a | 1.51 b | 0.2828 | 0.0004 | 0.9222 |
C18:3n6 | 0.75 | 0.84 | 0.88 a | 0.69 b | 0.83 a | 0.1333 | 0.0427 | 0.9106 |
C20:1n9 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.4684 | 0.7877 | 0.9766 |
C20:2n6 | 0.08 | 0.10 | 0.11 | 0.09 | 0.08 | 0.1128 | 0.0716 | 0.4754 |
C20:4n6 | 0.15 | 0.15 | 0.14 | 0.15 | 0.17 | 0.9051 | 0.3395 | 0.4574 |
C20:5n3 | 0.05 | 0.06 | 0.08 a | 0.04 b | 0.05 a | 0.8076 | 0.0013 | 0.3570 |
C22:5n3 | 0.17 | 0.18 | 0.19 a | 0.14 b | 0.18 ab | 0.5189 | 0.0158 | 0.4570 |
∑SFA c | 39.13 | 40.28 | 43.34 | 38.70 | 37.11 | 0.4729 | 0.1247 | 0.6217 |
∑MUFA d | 51.61 | 49.77 | 48.24 | 51.49 | 52.33 | 0.2970 | 0.2659 | 0.5626 |
∑PUFA e | 5.20 | 5.83 | 4.91 | 5.69 | 5.99 | 0.3952 | 0.1286 | 0.6483 |
∑n-3 f | 1.38 | 1.51 | 1.26 b | 1.33 b | 1.74 a | 0.5364 | 0.0058 | 0.5787 |
∑n-6 g | 3.82 | 4.32 | 3.65 | 4.36 | 4.25 | 0.3246 | 0.1899 | 0.6832 |
∑n-6/n-3 | 2.77 | 2.87 | 2.90 | 3.28 | 2.44 | 0.4305 | 0.0979 | 0.5787 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.H.; Wildeus, S.; O’Brien, D.; Kouakou, B. Impact of Agro-Byproduct Supplementation on Carcass Traits and Meat Quality of Hair Sheep and Wool × Hair Crossbreds Grazing on Fescue Pasture. Animals 2024, 14, 1217. https://doi.org/10.3390/ani14081217
Lee JH, Wildeus S, O’Brien D, Kouakou B. Impact of Agro-Byproduct Supplementation on Carcass Traits and Meat Quality of Hair Sheep and Wool × Hair Crossbreds Grazing on Fescue Pasture. Animals. 2024; 14(8):1217. https://doi.org/10.3390/ani14081217
Chicago/Turabian StyleLee, Jung Hoon, Stephan Wildeus, Dahlia O’Brien, and Brou Kouakou. 2024. "Impact of Agro-Byproduct Supplementation on Carcass Traits and Meat Quality of Hair Sheep and Wool × Hair Crossbreds Grazing on Fescue Pasture" Animals 14, no. 8: 1217. https://doi.org/10.3390/ani14081217
APA StyleLee, J. H., Wildeus, S., O’Brien, D., & Kouakou, B. (2024). Impact of Agro-Byproduct Supplementation on Carcass Traits and Meat Quality of Hair Sheep and Wool × Hair Crossbreds Grazing on Fescue Pasture. Animals, 14(8), 1217. https://doi.org/10.3390/ani14081217