Systematic Review and Meta-Analysis of Thermal Stress Assessment in Poultry Using Infrared Thermography in Specific Body Areas
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Information Sources
2.2. Selection Criteria
- The studies had to include laying hens, broiler chickens, and turkeys as study subjects;
- The studies had to contain a thermoneutral group and at least one group experiencing thermal stress (i.e., control group compared to heat or cold stress-affected group);
- The studies had to include a body temperature control to confirm the accuracy of thermographic changes;
- The studies had to contain results in at least two parts: the start and endpoints of thermal stress;
- The studies had to contain results of thermographic changes in different parts of the body;
- The studies had to include results presented as means with standard deviations (SDs) and/or standard errors (SEs). Articles that reported nonparametric results and results including ranges or subjective values were excluded.
- The papers had to be written in English.
- Reviews and opinion papers were excluded.
2.3. Data Analysis
3. Results
3.1. Categories of Analysis
3.2. Qualitative Synthesis
3.2.1. Thermal Stress Assessment in Laying Hens Using IRT
3.2.2. Thermal Stress Assessment in Broilers and Turkeys Using IRT
3.3. Quantitative Synthesis
3.3.1. Analysis of Studies That Investigated Body Temperature Changes in Poultry During Heat Stress
3.3.2. Analysis of Studies That Investigated Body Temperature Changes in Poultry During Cold Stress
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OECD/FAO. OECD-FAO Agricultural Outlook 2023–2032; OECD Publishing: Paris, France, 2023. [Google Scholar] [CrossRef]
- Candido, M.G.; Tinoco, I.F.F.; Albino, L.F.T.; Freitas, L.C.S.; Santos, T.C.; Cecon, P.R.; Gates, R.S. Effects of heat stress on pullet cloacal and body temperature. Poult. Sci. 2020, 99, 2469–2477. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Lee, Y.; Lee, S.; Ki, S.; Lee, K. Physiological and behavioral responses of laying hens exposed to long-term high temperature. J. Therm. Biol. 2021, 99, 103017. [Google Scholar] [CrossRef] [PubMed]
- Dedousi, A.; Kritsa, M.Z.; Sossidou, E.N. Thermal Comfort, Growth Performance and Welfare of Olive Pulp Fed Broilers during Hot Season. Sustainability 2023, 15, 10932. [Google Scholar] [CrossRef]
- Kim, D.H.; Song, J.Y.; Park, J.; Kwon, B.Y.; Lee, K.W. The Effect of Low Temperature on Laying Performance and Physiological Stress Responses in Laying Hens. Animals 2023, 13, 3824. [Google Scholar] [CrossRef] [PubMed]
- Giloh, M.; Shinder, D.; Yahav, S. Skin surface temperature of broiler chickens is correlated to body core temperature and is indicative of their thermoregulatory status. Poult. Sci. 2012, 91, 175–188. [Google Scholar] [CrossRef]
- Kim, N.Y.; Kim, S.J.; Oh, M.; Jang, S.Y.; Moon, S.H. Changes in facial surface temperature of laying hens under different thermal conditions. Anim. Biosci. 2021, 34, 1235–1242. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Titto, C.G.; de Mira Geraldo, A.; Martínez-Burnes, J.; Gómez, J.; Hernández-Ávalos, I.; Casas, A.; Domínguez, A.; José, N.; Bertoni, A.; et al. Efficacy and Function of Feathers, Hair, and Glabrous Skin in the Thermoregulation Strategies of Domestic Animals. Animals 2021, 11, 3472. [Google Scholar] [CrossRef]
- Nascimento, G.R.; Nääs, I.A.; Pereira, D.I.; Baracho, M.S.; Garcia, R. Assessment of broiler surface temperature variation when exposed to different air temperatures. Braz. J. Poult. Sci. 2011, 13, 259–263. [Google Scholar] [CrossRef]
- Andrade, D.V. Thermal windows and heat exchange. Temperature 2015, 2, 451. [Google Scholar] [CrossRef]
- Mayes, S.L.; Strawford, M.L.; Noble, S.D.; Classen, H.L.; Crowe, T.G. Cloacal and surface temperatures of tom turkeys exposed to different rearing temperature regimes during the first 12 weeks of growth. Poult. Sci. 2015, 94, 1105–1114. [Google Scholar] [CrossRef]
- Ramamneh, D.S.; Makagon, M.M.; Hester, P.Y. The ability of White Leghorn hens with trimmed comb and wattles to thermoregulate. Poult. Sci. 2016, 95, 1726–1735. [Google Scholar] [CrossRef] [PubMed]
- Loyau, T.; Zerjal, T.; Rodenburg, T.B.; Fablet, J.; Tixier-Boichard, M.; Pinard-van der Laan, M.H.; Mignon-Grasteau, S. Heritability of body surface temperature in hens estimated by infrared thermography at normal or hot temperatures and genetic correlations with egg and feather quality. Animal 2016, 10, 1594–1601. [Google Scholar] [CrossRef] [PubMed]
- Fantin Ruvio, J.; Schassi, L.; Borges Araujo, H.; Alves Damasceno, F.; Yanagi Junior, T. Estimation of heat dissipation in broiler chickens during the first two weeks of life. Braz. J. Agric. 2017, 92, 248–260. [Google Scholar]
- Leishman, E.M.; Ellis, J.; van Staaveren, N.; Barbut, S.; Vanderhout, R.J.; Osborne, V.R.; Wood, B.J.; Harlander-Matauschek, A.; Baes, C.F. Meta-analysis to predict the effects of temperature stress on meat quality of poultry. Poult. Sci. 2021, 100, 101471. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. J. Clin. Epidemiol. 2009, 62, 1006–1012. [Google Scholar] [CrossRef]
- Huedo-Medina, T.B.; Sánchez-Meca, J.; Marín-Martínez, F.; Botella, J. Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol. Methods 2006, 11, 193–206. [Google Scholar] [CrossRef]
- FLIR 62101-0101 T420 High Resolution Infrared Thermal Imaging Camera. Available online: https://www.rapidonline.com/flir-62101-0101-t420-high-resolution-infrared-thermal-imaging-camera-320x240-60-7903 (accessed on 25 October 2024).
- Tequimpent. Flir B60 High-Resolution Therman Imager with PIP. Available online: https://www.tequipment.net/FlirB60.html (accessed on 25 October 2024).
- Thermal Imaging Thermography. CX300/CX600. Available online: http://coxcamera.koreasme.com/productsCX300_03.html (accessed on 25 October 2024).
- B335 FLIR. Available online: https://www.leasametric.com/en/product/flir-b335/ (accessed on 25 October 2024).
- Andrade, R.R.; Tinoco, I.F.; Baeta, F.C.; Barbari, M.; Conti, L.; Cecon, P.R.; Candido, M.G.L.; Martins, I.T.A.; Teles-Junior, C.G.S. Evaluation of the surface temperature of laying hens in different thermal environments during the initial stage of age based on thermographic images. Agron. Res. 2017, 15, 629–638. [Google Scholar]
- Leasa Metric. Testo 880 Thermal imager. Available online: https://www.cleanair.com/wp-content/uploads/2020/12/testo-880-Instruction-manual.pdf?srsltid=AfmBOopagMsQmAJkDcNvkZf9UzWx-LXDQCqoEy7dhm8LN4oM5-IJFDTu (accessed on 25 October 2024).
- GeoOptic. Thermal Image Fluke FLK-TI55FT207.5. Available online: https://www.geooptic.ru/product/fluke-flk-ti55ft20-54-7-5?srsltid=AfmBOopyavEb1TJQPgfZGB0CSD0KgJzcSsXcbmD6zxZKfswN5q5JUDsZ (accessed on 25 October 2024).
- Ribeiro, B.P.V.B.; Yanagi Junior, T.; de Oliveira, D.D.; de Lima, R.R.; Zangeronimo, M.G. Thermoneutral zone for laying hens based on environmental conditions, enthalpy and thermal comfort indexes. J. Therm. Biol. 2020, 93, 102678. [Google Scholar] [CrossRef]
- Souza Junior, J.B.F.; de Morais Oliveira, V.R.; de Queiroz, J.P.A.; Da Silva, N.; de Arruda, A.M.V.; de Macedo Costa, L.L. The climate type influences the body surface temperature of naked neck hens. LRRD 2016, 28, 80. Available online: http://www.lrrd.org/lrrd28/5/souz28080.html (accessed on 20 January 2024).
- Franco, E.; Nääs, I.A. Broiler production efficiency: An analysis using thermal infrared images. Braz. J. Biosyst. Eng. 2022, 16, 1102. [Google Scholar] [CrossRef]
- Akter, S.; Cheng, B.; West, D.; Liu, Y.; Qian, Y.; Zou, X.; Classen, J.; Cordova, H.; Oviedo, E.; Wang-Li, L. Impacts of air velocity treatments under summer condition: Part I-heavy broiler’s surface temperature response. Animals 2022, 12, 328. [Google Scholar] [CrossRef] [PubMed]
- Baracho, M.S.; Nääs, I.A.; Cassiano, J.A.; Oliveira, K.R. Surface temperature distribution in broiler houses. Braz. J. Poult. Sci. 2011, 13, 177–182. [Google Scholar] [CrossRef]
- Uemura, D.; Regmi, P.; Grimes, J.; Wang-Li, L.; Shah, S. Low Airspeed Impacts on Tom Turkey Response to Moderate Heat Stress. AgriEngineering 2023, 5, 1971–1988. [Google Scholar] [CrossRef]
- Chepete, H.J.; Xin, H. Cooling layin hens by intermittent partial surface sprinkling. Trans. ASAE 2000, 43, 965–971. [Google Scholar] [CrossRef]
- Brugaletta, G.; Teyssier, J.R.; Rochell, S.J.; Dridi, S.; Sirri, F. A review of heat stress in chickens. Part I: Insights into physiology and gut health. Front. Physiol. 2022, 13, 934381. [Google Scholar] [CrossRef]
- Siddiqui, S.H.; Kang, M.; Kang, D.; Choi, H.W.; Shim, K. Meta-Analysis and Systematic Review of the Thermal Stress Response: Gallus gallus domesticus Show Low Immune Responses During Heat Stress. Front. Physiol. 2022, 13, 809648. [Google Scholar] [CrossRef]
- Fouad, A.M.; Chen, W.; Ruan, D.; Wang, S.; Xia, W.G.; Zheng, C.T. Impact of heat stress on meat, egg quality, immunity and fertility in poultry and nutritional factors that overcome these effects A review. Int. J. Poult. Sci. 2016, 15, 81–95. [Google Scholar] [CrossRef]
- Okinda, C.; Nyalala, I.; Korohou, T.; Okinda, C.; Wang, J.; Achieng, T.; Wamalwa, P.; Mang, T.; Shen, M. A review on computer vision systems in monitoring of poultry: A welfare perspective. Artif. Intell. Agric. 2020, 4, 184–208. [Google Scholar] [CrossRef]
- Lowe, P.C.; Merkley, J.W. Association of Genotypes for Rate of Feathering in Broilers with Production and Carcass Composition Traits. Poult. Sci. 1986, 65, 1853–1858. [Google Scholar] [CrossRef]
- Gous, R.M.; Moran, E.T.; Stilborn, H.R.; Bradford, G.D.; Emmans, G.C. Evaluation of the parameters needed to describe the overall growth, the chemical growth, and the growth of feathers and breast muscles of broilers. Poult. Sci. 1999, 78, 812–821. [Google Scholar] [CrossRef]
- Zhao, Y.; Xin, H.; Dong, B. Use of infrared thermography to assess laying-hen feather coverage. Poult. Sci. 2013, 92, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Nääs, I.A.; Romanini, C.E.B.; Neves, D.P.; Nascimento, G.R.; Verecelino, R.A. Broilers surface temperature distribution of 42 day old chickems. Sci. Agric. 2010, 67, 497–502. [Google Scholar] [CrossRef]
- Stukelj, M.; Hajdinjak, M.; Pusnik, I. Stress-free measurement of body temperature of pigs by using thermal imaging–Useful fact or wishful thinking. Comput. Electron. Agric. 2020, 193, 106656. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Geng, J.; Pan, J.; Huang, X.; Rao, X. Feather Damage Monitoring System Using RGB-Depth-Thermal Model for Chickens. Animals 2023, 13, 126. [Google Scholar] [CrossRef]
- Sadeghi, M.; Banakar, A.; Minaei, S.; Orooji, M.; Shoushtari, A.; Li, G. Early Detection of Avian Diseases Based on Thermography and Artificial Intelligence. Animals 2023, 13, 2348. [Google Scholar] [CrossRef]
- Onagbesan, O.M.; Uyanga, V.A.; Oso, O.; Tona, K.; Oke, O.E. Alleviating heat stress effects in poultry: Updates on methods and mechanisms of actions. Front. Vet. Sci. 2023, 10, 1255520. [Google Scholar] [CrossRef]
References | Thermal Stress | Age (Days of Age) | Species (°C) | Control Group (°C) | Groups Exposed to Heat/Cold Stress (°C) | Camera Model | Emissivity | FPA Size * | NEDT ** | Measurement Uncertainty | Distance |
---|---|---|---|---|---|---|---|---|---|---|---|
Ramamneh et al. 2016 [12] | Heat stress | 189–191 | Laying hen | 20.5–26.5 | 34.6 | FLIR-T62101 | 0.98 | 320 × 240 [18] | - | +/−2 °C [18] | 1 m |
Kim et al. 2021 [3] | Heat stress | 378–420 | Laying hen | 22 | 32 | Cat S60 equipped with FLIR Lepton | - | 80 × 60 | - | +/−3 °C | 0.8 m |
Candido et al. 2020 [2] | Heat stress | 1–119 | Laying hen | 20 | 35 | ThermaCam b60 FLIR Systems | 0.95 | 2048 × 1536 | 0.07 mK [19] | +/−2 °C | 1.3 m |
Kim et al. 2021 [7] | Heat/Cold stress | 175 | Laying hen | 22 | 30/10 | CX320; COX Co. | - | 640 × 480 [20] | 60 mK [20] | - | 1.5 m |
Layou et al. 2016 [13] | Heat stress | 245–525 | Laying hen | 18–20 | 28–30 | FLIR B335 | Featherless-0.98 Feathered 0.896 | 320 × 240 [21] | 50 mK [21] | +/−0.05 °C | - |
Andrade et al. 2017 [22] | Heat/Cold stress | 1–42 | Laying hen | 19–31 | 22–38/17–28 | ThermaCAM b60 FLIR Systems | 0.95 | 180 × 180 [19] | 0.07 mK [19] | +/−2 °C | 1.3 m |
Giloh et al. 2012 [6] | Heat stress | 1–36 | Broiler chicken | 21.6–30.6 | 35.2–38.1 | PM545 FLIR System | - | 320 × 240 | - | +/−0.1 °C | - |
Nascimento et al. 2011 [9] | Heat/Cold stress | 7–35 | Broiler chicken | 25 | 32/18 | TESTO 880 | 0.95 | 160 × 120 [23] | <0.1 [23] | +/−0.5 °C [23] | - |
Fantin et al. 2017 [14] | Cold stress | 7–14 | Broiler chicken | 30 | 24–27 | Fluke TI55FT20/54/7 | 0.95 | - | −50 mK [24] | +/−2 °C [24] | - |
Mayes et al. 2015 [11] | Cold stress | 7–48 | Turkey | 19–29 | 15–25 | FLIR S60 | 1 | 320 × 240 | - | +/−2 °C | 0.91–1.22 m |
Body Areas | Components | References |
---|---|---|
Head parts | Wattle, eye, earlobe, beak, comb | [3,6,7,11,12,13,22] |
Body | Chest, back, wing, overall body | [2,3,6,9,11,12,13,14,22] |
Face | General head, left side of the face, right side of the face | [2,3,6,7,11,22] |
Leg | Leg, shank | [2,3,11,12,13,22] |
Variable | Effect Size | Fixed Effect | ||||
---|---|---|---|---|---|---|
Effect Size (95% Confidence Interval) | p-Value | Age p-Value | Species p-Value | Q Test p-Value | I2 | |
Head parts | −1.85 [−2.56; −1.14] | <0.0001 | 0.45 | 0.02 | <0.0001 | 99% |
Body | −3.65 [−5.21; −2.08] | <0.0001 | 0.11 | 0.003 | <0.0001 | 100% |
Face | −2.23 [−3.30; −1.16] | 0.0008 | 0.65 | 0.03 | <0.0001 | 95% |
Leg | −1.97 [−2.97; −0.97] | 0.002 | 0.0005 | 0.20 | 0.0001 | 99% |
Variable | Effect Size | Fixed Effect | ||||
---|---|---|---|---|---|---|
Effect Size (95% Confidence Interval) | p-Value | Age p-Value | Species p-Value | Q Test p-Value | I2 | |
Head parts | 0.64 [0.175; 1.11] | 0.01 | 0.004 | 0.03 | <0.0001 | 87% |
Body | 3.50 [2.72; 4.28] | <0.0001 | 0.67 | 0.15 | <0.0001 | 96% |
Face | 0.98 [0.34; 1.61] | 0.005 | 0.05 | 0.24 | <0.0001 | 87% |
Leg | 1.29 [0.82; 1.75] | <0.0001 | 0.15 | 0.28 | <0.0001 | 74% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Sánchez, R.C.; Martínez-Castañeda, F.E.; Domínguez-Olvera, D.A.; Trujillo-Ortega, M.E.; Díaz-Sánchez, V.M.; Sánchez-Ramírez, E.; Posadas-Hernández, E.; Mejía-Flores, I.; Hernandez, E. Systematic Review and Meta-Analysis of Thermal Stress Assessment in Poultry Using Infrared Thermography in Specific Body Areas. Animals 2024, 14, 3171. https://doi.org/10.3390/ani14223171
Hernández-Sánchez RC, Martínez-Castañeda FE, Domínguez-Olvera DA, Trujillo-Ortega ME, Díaz-Sánchez VM, Sánchez-Ramírez E, Posadas-Hernández E, Mejía-Flores I, Hernandez E. Systematic Review and Meta-Analysis of Thermal Stress Assessment in Poultry Using Infrared Thermography in Specific Body Areas. Animals. 2024; 14(22):3171. https://doi.org/10.3390/ani14223171
Chicago/Turabian StyleHernández-Sánchez, Roberto Carlos, Francisco Ernesto Martínez-Castañeda, Daniel Alonso Domínguez-Olvera, Maria Elena Trujillo-Ortega, Víctor Manuel Díaz-Sánchez, Ezequiel Sánchez-Ramírez, Elizabeth Posadas-Hernández, Itzayana Mejía-Flores, and Elein Hernandez. 2024. "Systematic Review and Meta-Analysis of Thermal Stress Assessment in Poultry Using Infrared Thermography in Specific Body Areas" Animals 14, no. 22: 3171. https://doi.org/10.3390/ani14223171
APA StyleHernández-Sánchez, R. C., Martínez-Castañeda, F. E., Domínguez-Olvera, D. A., Trujillo-Ortega, M. E., Díaz-Sánchez, V. M., Sánchez-Ramírez, E., Posadas-Hernández, E., Mejía-Flores, I., & Hernandez, E. (2024). Systematic Review and Meta-Analysis of Thermal Stress Assessment in Poultry Using Infrared Thermography in Specific Body Areas. Animals, 14(22), 3171. https://doi.org/10.3390/ani14223171