Changes of Hepcidin, Ferritin and Iron Levels in Cycling Purebred Spanish Mares
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Blood Samples
2.3. Determination of Serum iron (Fe), Ferritin (Ferr), Hepcidin (Hepc), 17β-Estradiol (E2) and Progesterone (P4) Concentrations
2.4. Statistical Analyses
3. Results
4. Discussion
4.1. Effects of Estrous Cycle on the Fe and Ferr Homeostasis
4.2. Effects of Estradiol-17β and Progesterone on Fe and Ferr Homeostasis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carter, E.I.; Valli, V.E.; McSherry, B.J.; Milne, F.J.; Robinson, G.A.; Lumsden, J.H. The kinetics of hematopoiesis in the light horse. I. The lifespan of peripheral blood cells in the normal horse. Can. J. Comp. Med. 1974, 38, 303–313. [Google Scholar]
- National Research Council (NRC). The Nutrient Requirements of Horses, 6th ed.; Natl Acad. Press: Washington, DC, USA, 2007.
- Oliveira Filho, J.P.; Badial, P.R.; Cunha, P.H.J.; Cruz, T.F.; Araújo, J.P., Jr.; Divers, T.J.; Winand, N.J.; Borges, A.S. Cloning, sequencing and expression analysis ofthe equine hepcidin gene by real-time PCR. Vet. Immunol. Immunopathol. 2010, 135, 34–42. [Google Scholar] [CrossRef]
- Nemeth, E.; Tuttle, M.S.; Powelson, J.; Vaughn, M.B.; Donovan, A.; Ward, D.M.; Ganz, T.; Kaplan, J. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004, 306, 2090–2093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganz, T.; Nemeth, E. Hepcidin and iron homeostasis. Biochim. Biophys. Acta 2012, 1823, 1434–1443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belza, A.; Henriksen, M.; Ersbøll, A.K.; Thilsted, S.H.; Tetens, I. Day-to-day variation in iron-status measures in young iron-deplete women. Br. J. Nutr. 2005, 94, 551–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angeli, A.; Lainé, F.; Lavenu, A.; Ropert, M.; Lacut, K.; Gissot, V.; Sylvie Sacher-Huvelin, S.; Jezequel, C.; Moignet, A.; Laviolle, B.; et al. Joint model of iron and hepcidin during the menstrual cycle in healthy women. AAPS J. 2016, 18, 490–504. [Google Scholar] [CrossRef] [Green Version]
- Lainé, F.; Angeli, A.; Ropert, M.; Jezequel, C.; Bardou-Jacquet, E.; Deugnier, Y.; Gissot, V.; Lacut, K.; Sacher-Huvelin, S.; Lavenu, A.; et al. Variations of hepcidin and iron-status parameters during the menstrual cycle in healthy women. Br. J. Haematol. 2016, 175, 980–982. [Google Scholar] [CrossRef]
- Suzuki, Y.; Sakuraba, K.; Sunohara, M.; Takaragawa, M. Variations in iron status linked to menstrual cycles among Japanese female athletes. Int. J. Anal. Bio-Sci. 2018, 6, 45–50. [Google Scholar]
- Zheng, H.; Badenhorst, C.E.; Lei, T.H.; Liao, Y.H.; Muhamed, A.M.C.; Fujii, N.; Kondo, N.; Mündel, T. Menstrual phase and ambient temperature do not influence iron regulation in the acute exercise period. Am. J. Physiol. 2021, 320, R780–R790. [Google Scholar] [CrossRef]
- Alfaro-Magallanes, V.M.; Romero-Parra, N.; Barba-Moreno, L.; Rael, B.; Benito, P.J.; Díaz, Á.E.; Cupeiro, R.; Peinado, A.B. Serum iron availability, but not iron stores, is lower in naturally menstruating than in oral contraceptive athletes. Eur. J. Sport Sci. 2022, 6, 231–240. [Google Scholar] [CrossRef]
- Peinado, A.B.; Alfaro-Magallanes, V.M.; Romero-Parra, N.; Barba-Moreno, L.; Rael, B.; Maestre-Cascales, C.; Rojo-Tirado, M.A.; Castro, E.A.; Benito, P.J.; Ortega-Santos, C.P.; et al. Methodological approach of the iron and muscular damage: Female metabolism and menstrual cycle during exercise project (IronFEMME study). Int. J. Environ. Res. Public Health 2021, 18, 735. [Google Scholar] [CrossRef] [PubMed]
- Lehtihet, M.; Bonde, Y.; Beckman, L.; Berinder, K.; Hoybye, C.; Rudling, M.; Sloan, J.H.; Konrad, R.J.; Angelin, B. Circulating hepcidin-25 is reduced by endogenous estrogen in humans. PLoS ONE 2016, 11, e0148802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajbouj, K.; Shafarin, J.; Allam, H.; Madkour, M.; Awadallah, S.; El-Serafy, A.; Sandeep, D.; Hamad, M. Elevated levels of estrogen suppress hepcidin synthesis and enhance serum iron availability in premenopausal women. Exp. Clin. Endocrinol. Diabetes 2018, 126, 453–459. [Google Scholar] [CrossRef]
- Hamad, M.; Bajbouj, K.; Taneera, J. The case for an estrogen-iron axis in health and disease. Exp. Clin. Endocrinol. Diabetes 2020, 128, 270–277. [Google Scholar] [CrossRef]
- Qian, Y.; Zhang, S.; Guo, W.; Ma, J.; Chen, Y.; Wang, L.; Zhao, M.; Liu, S. Polychlorinated biphenyls (PCBs) inhibit hepcidin expression through an estrogen-like effect associated with disordered systemic iron homeostasis. Chem. Res. Toxicol. 2015, 28, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Rhee, D.K.; Malhotra, R.; Mayeur, C.; Hurst, L.A.; Ager, E.; Shelton, G.; Kramer, Y.; McCulloh, D.; Keefe, D.; et al. Progesterone receptor membrane component-1 regulates hepcidin biosynthesis. J. Clin. Investig. 2016, 126, 389–401. [Google Scholar] [CrossRef]
- Wijekoon, S.; Tsogbadrakh, M.; Sunaga, T.; Wang, Y.; Mwale, C.; Kim, S.; Alimaa, D.; Okumura, M. Pentosan polysulfate regulates hepcidin expression in native Mongolian horses. J. Vet. Med. Sci. 2022, 84, 1437–1441. [Google Scholar] [CrossRef]
- Oliveira-Filho, J.P.; Badial, P.R.; Cunha, P.H.J.; Bordon, A.P. Freund’s adjuvant induced inflammation: Clinical findings and its effect on hepcidin mRNA expression in horses. Pesq. Vet. Bras. 2014, 34, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Oliveira-Filho, J.P.; Badial, P.R.; Cunha, P.H.; Peiró, J.R.; Araújo, J.P., Jr.; Divers, T.J.; Winand, N.J.; Borges, A.S. Lipopolysaccharide infusion up-regulates hepcidin mRNA expression in equine liver. Innate Immun. 2012, 18, 438–446. [Google Scholar] [CrossRef]
- Hou, Y.; Zhang, S.; Wang, L.; Li, J.; Qu, G.; He, J.; Rong, H.; Ji, H.; Liuet. Estrogen regulates iron homeostasis through governing hepatic hepcidin expression via an estrogen response element. Gene 2012, 511, 398–403. [Google Scholar] [CrossRef]
- Ratcliffe, W.A.; Carter, G.D.; Dowsett, M.; Hillier, S.G.; Middle, J.G.; Reed, M.J. Oestradiol assays: Applications and guidelines for the provision of a clinical biochemistry service. Ann. Clin. Biochem. 1988, 25, 466–483. [Google Scholar] [CrossRef]
- Satué, K.; Marcilla, M.; Medica, P.; Ferlazzo, A.; Fazio, E. Sequential concentrations of placental growth factor and haptoglobin, and their relation to oestrone sulphate and progesterone in pregnant Spanish Purebred mare. Theriogenology 2018, 115, 77–83. [Google Scholar] [CrossRef]
- Satué, K.; Calvo, A.; Muñoz, A.; Fazio, E.; Medica, P. Interrelationship between reproductive hormones and acute phase proteins during estrous cycle and pregnancy in Spanish purebred broodmares. Vet. Anim. Sci. 2021, 14, 100212. [Google Scholar] [CrossRef]
- Aguree, S.; Murray-Kolb, L.E.; Diaz, F.; Gernand, A.D. Menstrual cycle-associated changes in micronutrient biomarkers concentration: A prospective cohort study. J. Am. Nutr. Assoc. 2022, 24, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Inoue, K.; Sugiyama, M. Changes in body iron status, heart rate, and unspecific symptoms across menstrual cycle in marginally iron-deficient young women. J. Clin. Biochem. Nutr. 1998, 24, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Barba-Moreno, L.; Alfaro-Magallanes, V.M.; de Jonge, X.A.K.J.; Díaz, A.E.; Cupeiro, R.; Peinado, A.B. Hepcidin and interleukin-6 responses to endurance exercise over the menstrual cycle. Eur. J. Sport Sci. 2020, 22, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Galetti, V.; Stoffel, N.; Sieber, C.; Zeder, C.; Moretti, D.; Zimmermann, M. Threshold ferritin and hepcidin concentrations indicating early iron deficiency in young women based on upregulation of iron absorption. EClinicalMedicine 2021, 39, 101052. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.; Yetley, E.A.; Calvo, M.S. Variations in iron-status measures during the menstrual cycle. Am. J. Clin. Nutr. 1993, 58, 705–709. [Google Scholar] [CrossRef]
- Ginther, O.J.; Gastal, E.L.; Gastal, M.O.; Beg, M.A. Regulation of circulating gonadotropins by the negative effects of ovarian hormones in mares. Biol. Reprod. 2005, 73, 315–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gastal, E.L. Recent advances and new concepts on follicle and endocrine dynamics during the equine periovulatory period. Anim. Reprod. 2009, 6, 144–158. [Google Scholar]
- Yang, Q.; Jian, J.; Katz, S.; Abramson, S.B.; Huang, X. 17β-Estradiol inhibits iron hormone hepcidin through an estrogen responsive element half-site. Endocrinology 2012, 153, 3170–3178. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, Y.; Tajima, S.; Izawa-Ishizawa, Y.; Kihira, Y.; Ishizawa, K.; Tomita, S.; Tsuchiya, K.; Tamaki, T. Estrogen regulates hepcidin expression via GPR30-BMP6-dependent signaling in hepatocytes. PLoS ONE 2012, 7, e40465. [Google Scholar] [CrossRef]
- Bajbouj, K.; Shafarin, J.; Muhammad, J.S.; Ali, A.; Unnikannan, H.; Suleiman, B.; Al-Jabi, N.; Menon, K.; Hamad, M. Estrogen signaling differentially alters iron metabolism in monocytes in an Interleukin 6-dependent manner. Immunobiology 2020, 225, 151995. [Google Scholar] [CrossRef]
- Straub, R.H. The complex role of estrogens in inflammation. Endocr. Rev. 2007, 28, 521–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaskins, A.J.; Wilchesky, M.; Mumford, S.L.; Whitcomb, B.W.; Browne, R.W.; Wactawski-Wende, J.; Perkins, N.J.; Schisterman, E.F. Endogenous reproductive hormones and C-reactive protein across the menstrual cycle: The BioCycle Study. Am. J. Epidemiol. 2012, 175, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Samimi, A.S.; Aghamiri, S.M.; Babaei, H.; Heidarabadypor, R. Changes of acute-phase proteins during different phases of the estrous cycle in Ovsynch-synchronized Holstein cows. Iran. J. Vet. Res. 2020, 21, 226–229. [Google Scholar] [PubMed]
- Sciorsci, R.L.; Galgano, M.; Mutinati, M.; Rizzo, A. Oxidative state in the estrus cycle of the buffaloes: A preliminary study. Trop. Anim. Health Prod. 2020, 52, 1331–1334. [Google Scholar] [CrossRef]
- Cook, C.J.; Crewther, B.T.; Kilduff, L.P.; Agnew, L.L.; Fourie, P.; Serpell, B.G. Testosterone and dihydrotestosterone changes in male and female athletes relative to training status. Int. J. Sports Physiol. Perform. 2021, 16, 1700–1706. [Google Scholar] [CrossRef]
- Latour, C.; Kautz, L.; Besson-Fournier, C.; Island, M.L.; Canonne-Hergaux, F.; Loréal, O.; Ganz, T.; Coppin, E.; Rothet, M.P. Testosterone perturbs systemic iron balance through activation of epidermal growth factor receptor signaling in the liver and repression of hepcidin. Hepatology 2014, 59, 683–694. [Google Scholar] [CrossRef]
- Nemeth, E.; Ganz, T. 2009. The role of hepcidin in iron metabolism. Acta Haematol. 2009, 122, 78–86. [Google Scholar] [CrossRef] [Green Version]
- Matta, R.A.; AbdElftah, M.E.; Essawy, M.G.; Abdelfadel Saedii, A. Interplay of serum hepcidin with female sex hormones, metabolic syndrome, and abdominal fat distribution among premenopausal and postmenopausal women. Egypt J. Intern. Med. 2022, 34, 8. [Google Scholar] [CrossRef]
- Chandra, S.; Gupta, N.; Patel, S. Study of iron status indicators in different phases of menstrual cycle in first year medical college females. Int. J. Res. Med. Sci. 2017, 5, 46–49. [Google Scholar] [CrossRef]
- Ferreira, C.; Santambrogio, P.; Martin, M.E.; Andrieu, V.; Feldmann, G.; Hénin, D.; Beaumont, C.H. Ferritin knockout mice: A model of hyperferritinemia in the absence of iron overload. Blood 2001, 98, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Peeling, P.; Sim, M.; Badenhorst, C.E.; Dawson, B.; Govus, A.D.; Abbiss, C.R.; Swinkels, D.S.; Trinder, D. Iron status and the acute post-exercise hepcidin response in athletes. PLoS ONE 2014, 9, e93002. [Google Scholar] [CrossRef]
- Andersen, S.; Petersen, H.H.; Ersbøll, A.K.; Falk-Rønne, J.; Jacobsen, S. Vaccination elects a prominent acute phase response in horses. Vet. J. 2012, 191, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, S.; Nielsen, J.V.; Kjelgaard-Hansen, M.; Toelboell, T.; Fjeldborg, J.; Halling-Thomsen, M.; Martinussen, T.; Thoefner, M.B. Acute phase response to surgery of varying intensity in horses: A preliminary study. Vet. Surg. 2009, 38, 762–769. [Google Scholar] [CrossRef] [PubMed]
- Inoue, Y.; Matsui, A.; Asai, Y.; Aoki, F.; Matsui, T.; Yano, H. Effect of exercise on iron metabolism in horses. Biol. Trace Elem. Res. 2005, 107, 33–42. [Google Scholar] [CrossRef]
Parameters | Days of Cycle | Mean ± SD | Range |
---|---|---|---|
Fe (μg/dL) | −5 | 173.2 ± 24.9 | 140–202 |
0 | 182.7 ± 11.3 | 165–201 | |
+5 | 157.7 ± 21.2 | 183–188 | |
+16 | 136.6 ± 17.9 | 110–160 | |
Ferr (μg/dL) | −5 | 181.2 ± 19.8 | 134–202 |
0 | 182.2 ± 14.0 | 158–202 | |
+5 | 148.4 ± 32.9 | 56–189 | |
+16 | 198.2 ± 6.4 | 189–208 | |
Hepc (μg/dL) | −5 | 132.2 ± 24.3 | 100–189 |
0 | 73.2 ± 9.48 | 56–89 | |
+5 | 141.0 ± 12.92 | 110–159 | |
+16 | 170.1 ± 17.5 | 135–190 | |
E2 (pg/mL) | −5 | 24.3 ± 0.77 | 22.2–25.3 |
0 | 44.62 ± 3.58 | 36.9–49.0 | |
+5 | 31.3 ± 0.10 | 31.2–31.4 | |
+16 | 26.8 ± 1.32 | 23.3–27.8 | |
P4 (ng/mL) | −5 | 0.71 ± 0.04 | 0.63–0.74 |
0 | 0.17 ± 0.01 | 0.13–0.18 | |
+5 | 2.52 ± 0.08 | 2.34–2.56 | |
+16 | 7.04 ± 6.56 | 1.10–22.5 |
Ferr (μg/dL) | Hepc (ng/dL) | E2 (pg/mL) | P4 (ng/mL) | |
---|---|---|---|---|
Fe (μg/dL) | 0.53 | −0.72 | 0.40 | −0.52 |
Ferr (μg/dL) | −0.02 | −0.08 | 0.28 | |
Hepc (ng/mL) | −0.75 | 0.54 | ||
E2 (pg/mL) | −0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satué, K.; Fazio, E.; La Fauci, D.; Medica, P. Changes of Hepcidin, Ferritin and Iron Levels in Cycling Purebred Spanish Mares. Animals 2023, 13, 1229. https://doi.org/10.3390/ani13071229
Satué K, Fazio E, La Fauci D, Medica P. Changes of Hepcidin, Ferritin and Iron Levels in Cycling Purebred Spanish Mares. Animals. 2023; 13(7):1229. https://doi.org/10.3390/ani13071229
Chicago/Turabian StyleSatué, Katiuska, Esterina Fazio, Deborah La Fauci, and Pietro Medica. 2023. "Changes of Hepcidin, Ferritin and Iron Levels in Cycling Purebred Spanish Mares" Animals 13, no. 7: 1229. https://doi.org/10.3390/ani13071229
APA StyleSatué, K., Fazio, E., La Fauci, D., & Medica, P. (2023). Changes of Hepcidin, Ferritin and Iron Levels in Cycling Purebred Spanish Mares. Animals, 13(7), 1229. https://doi.org/10.3390/ani13071229