The Influence of Selected Factors on the Nutritional Value of the Milk of Cold-Blooded Mares: The Example of the Sokólski Breed
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Research Material
Horses
2.2. Research Material
2.3. Analytical Methods
- SFA—sum of saturated fatty acids.
- MUFA—sum of monounsaturated fatty acids.
- PUFA—sum of polyunsaturated fatty acids.
- n-6 and n-3.
- n-6/n-3.
- DFA—desirable fatty acids (MUFA + PUFA + C18: 0) according to Medeiros et al. [43].
- HSFA—hypercholesterolaemic saturated fatty acids——according to Renna et al. [44].
- AI—(atherogenicity index) = according to Ulbricht and Southgate (1991) (qtd. in [45]).
- TI—(thrombogenicity index) = according to Ulbricht and Southgate (1991) (qtd. in [44]).
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. The Second Report on the State of the World’s Animal Genetic Resources for Food and Agriculture; Scherf, B.D., Pilling, D., Eds.; FAO Commission on Genetic Resources for Food and Agriculture Assessments: Rome, Italy, 2015. [Google Scholar]
- PZHK. The horse population in Poland. 2022. Available online: https://www.pzhk.pl/hodowla/statystyka-hodowlana/ (accessed on 3 December 2022). (In Polish).
- IZ PIB Horse Breeds Covered By a Conservation Programme. 2022. Available online: http://www.bioroznorodnosc.izoo.krakow.pl/konie/rasy/ (accessed on 8 December 2022). (In Polish).
- Polak, G. The socioeconomic aspect of the implementation of genetic resources conservation programs of Sztumski and Sokólski Coldblooded horses. Rocz. Nauk. Ekonom. Rol. Rozw. Obsz. Wiej. 2016, 103, 127–133. (In Polish) [Google Scholar]
- IZ PIB Genetic Resources Conservation Programme of the Sokólski Horses. 2021. Available online: /http://www.bioroznorodnosc.izoo.krakow.pl/konie/programy-ochrony/ (accessed on 18 December 2022).
- Niewiński, W.; Gawarecki, J.; Kopczyk, A.; Masłowski, M.; Morawiec, M.; Strzelecki, H.; Woźbińska, M.; Jaworski, Z.; Jastrzębska, E.; Polak, G.; et al. Cold-Blooded Horse Breeding Programme; Polski Związek Hodowców Koni (Polish Horse Breeders Association): Warsaw, Poland, 2014. (In Polish) [Google Scholar]
- Oftedal, O.T.; Hintz, H.F.; Shryver, H.F. Lactation in the horse: Milk composition and intake by foals. J. Nutr. 1983, 113, 2096–2106. [Google Scholar] [CrossRef] [PubMed]
- Miraglia, N.; Salimei, E.; Fantuz, F. Equine milk production and valorization of marginal areas—A review. Animals 2020, 10, 353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malacarne, M.; Martuzzi, F.; Summer, A.; Mariani, P. Protein and fat composition of mare’s milk: Some nutritional remarks with reference to human and cow’s milk. Int. Dairy J. 2002, 12, 869–877. [Google Scholar] [CrossRef]
- Pieszka, M.; Łuszczyński, J.; Zamachowska, M.; Augustyn, R.; Długosz, B.; Hędrzak, M. Is mare milk an appropriate food for people? A review. Ann. Anim. Sci. 2016, 16, 33–51. [Google Scholar] [CrossRef] [Green Version]
- Danków, R.; Pikul, J.; Osten-Sacken, N.; Teichert, J. Characteristics and salubrious properties of mare milk. Nauka Przyr. Technol. 2012, 6, 1–12. (In Polish) [Google Scholar]
- Uniacke-Lowe, T.; Huppertz, T.; Fox, P.F. Equine milk proteins: Chemistry, structure and nutritional significance. Int. Dairy J. 2010, 20, 609–629. [Google Scholar] [CrossRef]
- Guo, L.; Xu, W.-L.; Li, C.D.; Ya, M.; Guo, Y.-S.; Qian, J.-P.; Zhu, J.-J. Production technology, nutritional, and microbiological investigation of traditionally fermented mare milk (Chigee) from Xilin Gol in China. Food Sci. Nutr. 2020, 8, 257–264. [Google Scholar] [CrossRef]
- Musaev, A.; Sadykova, S.; Anambayeva, A.; Saizhanova, M.; Balkanay, G.; Kolbaev, M. Mare’s milk: Composition, properties, and application in medicine. Arch. Razi. Inst. 2021, 76, 1125–1135. [Google Scholar] [CrossRef]
- Lozovich, S. Medical uses of whole and fermented mare milk in Russia. Cult. Dairy Prod. J. 1995, 30, 18–21. [Google Scholar]
- Potočnik, K.; Gantner, V.; Kuterovac, K.; Cividini, A. Review—Mare’s milk: Composition and protein fraction in comparison with different milk species. Mljekarstvo 2011, 61, 107–113. [Google Scholar]
- Pastuszka, R.; Barłowska, J.; Litwińczuk, Z. Allergenicity of milk of different animal species in relation to human milk. Postep. Hig. Med. Dosw. 2016, 70, 1451–1459. [Google Scholar] [CrossRef]
- Rutkowska, J.; Adamska, A.; Białek, M. Comparison of fatty acid composition in mare’s and cow’s milk fat. Żywn. Nauka Technol. Jakość. 2011, 1, 28–38. [Google Scholar] [CrossRef]
- Barłowska, J.; Chabuz, W.; Król, J.; Szwajkowska, M.; Litwińczuk, Z. Wartość odżywcza i przydatność technologiczna mleka produkowanego w systemie intensywnym i tradycyjnym w 3 rejonach wschodniej Polski. Żywn. Nauka Technol. Jakość. 2012, 4, 122–135. [Google Scholar]
- Brodziak, A.; Król, J.; Barłowska, J.; Litwińczuk, Z.; Teter, A.; Kędzierska-Matysek, M. Differences in bioactive protein and vitamin status of milk obtained from Polish local breeds of cows. Ann. Anim. Sci. 2020, 20, 287–298. [Google Scholar] [CrossRef] [Green Version]
- Król, J.; Litwińczuk, Z.; Litwińczuk, A.; Brodziak, A. Content of protein and its fractions in milk of Simmental cows with regard to rearing technology. Ann. Anim. Sci. 2008, 8, 57–61. [Google Scholar]
- Król, J.; Brodziak, A.; Litwińczuk, Z.; Litwińczuk, A. Effect of age and stage of lactation on whey protein content in milk of cows of different breeds. Pol. J. Vet. Sci. 2013, 16, 395–397. [Google Scholar] [CrossRef]
- Król, J.; Brodziak, A.; Chabuz, W.; Litwińczuk, Z.; Barłowska, J. Effect of the feeding system and the production season on the protein fraction content in milk. Mljekarstvo 2019, 69, 98–107. [Google Scholar] [CrossRef]
- Litwińczuk, Z.; Barłowska, J.; Chabuz, W.; Brodziak, A. The nutritional value and technological suitability of milk from cows of 3 Polish breeds included in the programme of genetic resources conservation. Ann. Anim. Sci. 2012, 12, 423–432. [Google Scholar] [CrossRef] [Green Version]
- Litwińczuk, Z.; Barłowska, J.; Król, J.; Brodziak, A.; Matwijczuk, A.; Kowal, M. Chemical composition and technological suitability of milk with regard to the feeding system of cows. Med. Weter. 2015, 71, 231–235. [Google Scholar]
- Radkowska, I.; Herbut, E.; Radkowski, A. Concentration of bioactive components in the milk of Simmental cows depending on the feeding system. Ann. Anim. Sci. 2018, 18, 1081–1092. [Google Scholar] [CrossRef] [Green Version]
- Barłowska, J.; Polak, G.; Janczarek, I.; Próchniak, T. Chemical composition, whey protein profile, and fatty acid profile of milk from Sokólski horses in relation to Polish Halfbred horses. Ann. Anim. Sci 2023. ahead of print. [Google Scholar] [CrossRef]
- Cais-Sokolińska, D.; Danków, R.; Bierzuńska, P.; Kaczyński, Ł.K.; Chudy, S.; Teichert, J.; Dobek, A.; Skotarczak, E.; Pikul, J. Freezing point and other technological properties of milk of the Polish Coldblood horse breed. J. Dairy Sci. 2018, 101, 9637–9646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czyżak-Runowska, G.; Wójtowski, J.A.; Danków, R.; Stanisławski, D. Mare’s milk from a small polish specialized farm—Basic chemical composition, fatty acid profile, and healthy lipid indices. Animals 2021, 11, 1590. [Google Scholar] [CrossRef] [PubMed]
- Pieszka, M.; Łuszczyński, J.; Szeptalin, A. Comparison of mare’s milk composition of different breeds. Nauka Przyr. Technol. 2011, 5, 112. [Google Scholar]
- Pietrzak-Fiećko, R.; Tomczyński, R.; Smoczyński, S.S. Effect of lactation period on the fatty acid composition in mares’ milk from different breeds. Archiv. Tierzucht. 2013, 56, 335–343. [Google Scholar] [CrossRef] [Green Version]
- Ricard, A.; Robert, C.; Blouin, C.; Baste, F.; Torquet, G.; Morgenthaler, C.; Riviere, J.; Mach, N.; Mata, X.; Schilber, L. Endurance exercise ability in the horse: A trait with complex polygenic determinism. Front. Genet. 2017, 8, 89. [Google Scholar] [CrossRef] [Green Version]
- PN EN ISO 8968-3:2008; Milk—Determination of nitrogen content—Part 3: Block-digestion method (semi-micro rapid routine method). Polish Committee for Standardization: Warsaw, Poland, 2008. (In Polish)
- PN-ISO 2446:2010; Milk—Determination of fat content. Polish Committee for Standardization: Warsaw, Poland, 2010. (In Polish)
- PN-ISO 6731:2014-11; Milk, cream and evaporated milk—Determination of total solids content (Reference method). Polish Committee for Standardization: Warsaw, Poland, 2014. (In Polish)
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005; Method 942.05. [Google Scholar]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995. [Google Scholar]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Romero, C.; Perez-Andújar, O.; Olmedo, A.; Jiménez, S. Detection of cow’s milk in ewe’s or goat’s milk by HPLC. Chromatographia 1996, 42, 181–184. [Google Scholar] [CrossRef] [Green Version]
- AOCS. Official Method Ce 2-66. Preparation of Methyl Esters of Fatty Acids; American Oil Chemists’ Society: Urbana, IL, USA, 2017. [Google Scholar]
- PN-EN ISO 12966-1:2015-01; Animal and vegetable fats and oils—Gas chromatography of fatty acid methyl esters—Part 1: Guidelines on modern gas chromatography of fatty acid methyl esters. Polish Committee for Standardization: Warsaw, Poland, 2021. (In Polish)
- PN-EN ISO 5508:1996; Animal and vegetable fats and oils—Analysis by gas chromatography of methyl esters of fatty acids. Polish Committee for Standardization: Warsaw, Poland, 2016. (In Polish)
- Medeiros, E.; Queiroga, R.; Oliveira, M.; Medeiros, A.; Sabedot, M.; Bomfim, M.; Madruga, M. Fatty acid profile of cheese from dairy goats fed a diet enriched with castrol, sesame and faveleira vegetable oils. Molecules 2014, 19, 992–1003. [Google Scholar] [CrossRef] [Green Version]
- Renna, M.; Cornale, P.; Lussiana, C.; Malfatto, V.; Mimosi, A.; Battaglini, L.M. Fatty acid profile of milk from goats fed diets with different levels of conserved and fresh forages. Int. J. Dairy Technol. 2012, 65, 201–207. [Google Scholar] [CrossRef]
- Martínez Marín, A.L.; Gómez-Cortés, P.; Gómez Castro, A.G.; Juárez, M.; Pérez Alba, L.M.; Pérez Hernández, M.; de la Fuente, M.A. Animal performance and milk fatty acid profile of dairy goats fed diets with different unsaturated plant oils. J. Dairy Sci. 2011, 94, 5359–5368. [Google Scholar] [CrossRef] [Green Version]
- O’Callaghan, T.F.; Hennessy, D.; McAuliffe, S.; Kilcawley, K.N.; O’Donovan, M.; Dillon, P.; Ross, R.P.; Stanton, C. Effect of pasture versus indoor feeding systems on raw milk composition and quality over an entire lactation. J. Dairy Sci. 2016, 99, 9424–9440. [Google Scholar] [CrossRef] [Green Version]
- Janis, C. The evolutionary strategy of the equidae and the origins of rumen and cecal digestion. Evolution 1976, 30, 757–774. [Google Scholar] [CrossRef]
- Santos, A.S.; Rodrigues, M.A.M.; Bessa, R.J.B.; Ferreira, L.M.; Martin-Rosset, W. Understanding the equine cecum-colon ecosystem: Current knowledge and future perspectives. Animal 2011, 5, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Stępniak-Sołyga, P. Nutritional consequences of the structure and physiology of the equine digestive tract. Prz. Hod. 2003, 4, 23–25. (In Polish) [Google Scholar]
- Barłowska, J.; Grodzicki, T.; Topyła, B.; Litwińczuk, Z. Physicochemical properties of milk fat from 3 breeds of cows during summer and winter feeding. Archiv. Tierzucht. 2009, 52, 356–363. [Google Scholar] [CrossRef] [Green Version]
- Milewski, S.; Ząbek, K.; Antoszkiewicz, Z.; Tański, Z.; Sobczak, A. Impact of production season on the chemical composition and health properties of goat milk and rennet cheese. Emir. J. Food. Agric. 2008, 30, 107–114. [Google Scholar] [CrossRef]
- Mazhitova, A.T.; Kulmyrzaev, A.A. Determination of amino acid profile of mare milk produced in the highlands of the Kyrgyz Republic during the milking season. J. Dairy Sci. 2016, 99, 2480–2487. [Google Scholar] [CrossRef] [Green Version]
- Kuczyńska, B.; Puppel, K.; Metera, E.; Gołębiewski, M.; Sakowski, T.; Słoniewski, K. Differences in whey proteins content between cow’s milk collected in late pasture and early indoor feeding season from conventional and organic farms in Poland. J. Sci. Food Agric. 2012, 92, 2899–2904. [Google Scholar] [CrossRef]
- Tanhuanpää, E.; Knudsen, O. Component acids of mare’s milk fat. Acta Vet. Scand. 1965, 6, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Barreto, I.M.L.G.; Urbano, S.A.; Oliveira, C.A.A.; Macêdo, C.S.; Borba, L.H.F.; Chags, B.M.E.; Rangel, A.H.N. Chemical composition and lipid profile of mare colostrum and milk of the quarter horse breed. PLoS ONE 2020, 15, e0238921. [Google Scholar] [CrossRef] [PubMed]
- Pecka, E.; Dobrzański, Z.; Zachwieja, A.; Szulc, T.; Czyż, K. Studies of composition and major protein level in milk and colostrum of mares. Anim. Sci. J. 2011, 83, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Hinde, K.; Carpenter, A.J.; Clay, J.S.; Bradford, B.J. Holsteins favor heifers, not bulls: Biased milk production programmed during pregnancy as a function of fetal sex. PLoS ONE 2014, 9, e86169. [Google Scholar] [CrossRef] [Green Version]
- Trivers, R.L.; Willard, D.E. Natural selection of parental ability to vary the sex ratio of offspring. Science 1973, 179, 90–92. [Google Scholar] [CrossRef] [Green Version]
- Fujita, M.; Roth, E.; Lo, Y.-J.; Hurst, C.; Vollner, J.; Kendell, A. In poor families, mothers’ milk is richer for daughters than sons: A test of Trivers-Willard hypothesis in agropastoral settlements in Northern Kenya. Am. J. Phys. Anthropol. 2012, 149, 52–59. [Google Scholar] [CrossRef]
- Landete-Castillejos, T.; García, A.; López-Serrano, F.R.; Gallego, L. Maternal quality and differences in milk production and composition for male and female Iberian red deer calves (Cervus elaphus hispanicus). Behav. Ecol. Sociobiol. 2005, 57, 267–274. [Google Scholar] [CrossRef]
- Cameron, E.Z.; Linklater, W.L. Individual mares bias investment in sons and daughters in relation to their condition. Anim. Behav. 2000, 60, 359–367. [Google Scholar] [CrossRef] [Green Version]
Diet 1 | Diet 2 |
---|---|
|
|
Variable | Pasture | Lactation Number | Foal Gender | |||||
---|---|---|---|---|---|---|---|---|
No | Yes | 1 | 2–3 | 4–6 | Filly | Colt | ||
N Milk Samples | SE | 48 | 31 | 24 | 24 | 31 | 45 | 34 |
± SD | ± SD | ± SD | ± SD | ± SD | ± SD | ± SD | ||
Crude protein | 0.025 | 1.83 B ± 0.38 | 1.99 A ± 0.27 | 1.82 b ± 0.29 | 1.86 ab ± 0.39 | 2.00 a ± 0.35 | 2.02 a ± 0.36 | 1.81 b ± 0.37 |
Fat | 0.029 | 0.33 A ± 0.15 | 0.21 B ± 0.13 | 0.31 ab ± 0.23 | 0.21 b ± 0.25 | 0.41 a ± 0.31 | 0.39 A ± 0.23 | 0.26 B ± 0.13 |
Lactose | 0.027 | 6.76 a ± 0.24 | 6.63 b ± 0.25 | 6.77 AB ± 0.42 | 6.83 B ± 0.42 | 6.53 A ± 0.61 | 6.57 B ± 0.53 | 6.80 A ± 0.46 |
Dry matter | 0.040 | 9.25 a ± 0.67 | 9.15 b ± 0.52 | 9.24 ± 0.60 | 9.21 ± 0.47 | 9.29 ± 0.61 | 9.29 A ± 0.52 | 9.18 B ± 0.47 |
Ash | 0.003 | 0.34 a ± 0.08 | 0.33 b ± 0.05 | 0.34 ± 0.06 | 0.33 ± 0.08 | 0.33 ± 0.06 | 0.34 ± 0.06 | 0.34 ± 0.07 |
Whey Protein | Pasture | Lactation Number | Foal Gender | |||||
---|---|---|---|---|---|---|---|---|
No | Yes | 1 | 2–3 | 4–6 | Filly | Colt | ||
N Milk Samples | SE | 48 | 31 | 24 | 24 | 31 | 45 | 34 |
± SD | ± SD | ± SD | ± SD | ± SD | ± SD | ± SD | ||
Percentage of whey proteins in total protein | 0.316 | 54.97 A ± 5.88 | 52.01 B ± 3.81 | 55.08 ± 5.14 | 52.90 ± 5.97 | 52.97 ± 4.53 | 53.64 ± 4.12 | 53.69 ± 6.04 |
including: | ||||||||
β-Lactoglobulin (β-Lg) | 0.195 | 20.92 A ± 3.73 | 18.55 B ± 2.09 | 20.54 ± 3.37 | 19.89 ± 3.49 | 19.26 ± 3.06 | 19.42 ± 2.88 | 20.25 ± 3.61 |
α-Lactalbumin (α-La) | 0.127 | 15.49 A ± 2.49 | 14.78 B ± 1.85 | 15.79 a ± 2.25 | 14.76 b ± 1.92 | 14.95 ab ± 2.42 | 15.29 ± 2.27 | 15.08 ± 2.25 |
Total immunoglobulins (Ig) | 0.089 | 2.28 A ± 1.50 | 1.49 B ± 0.52 | 1.82 ± 0.70 | 2.07 ± 0.82 | 1.93 ± 1.81 | 1.87 ± 1.65 | 1.99 ± 0.79 |
Lactoferrin (Lf) | 0.040 | 2.20 A ± 0.66 | 1.86 B ± 0.63 | 2.02 AB ± 0.55 | 2.26 A ± 0.66 | 1.91 B ± 0.74 | 1.79 B ± 0.57 | 2.25 A ± 0.67 |
Serum albumin (SA) | 0.048 | 1.74 B ± 0.89 | 2.18 A ± 0.70 | 1.98 ± 0.61 | 2.07 ± 1.02 | 1.78 ± 0.86 | 1.78 B ± 0.76 | 2.05 A ± 0.88 |
Lysozyme (Lz) | 0.106 | 12.34 B ± 1.53 | 13.14 A ± 2.15 | 12.9 A ± 1.83 | 11.84 B ± 1.66 | 13.17 A ± 1.84 | 13.52 A ± 1.93 | 12.05 B ± 1.54 |
Fatty acid | Pasture | Lactation Number | Foal Gender | |||||
---|---|---|---|---|---|---|---|---|
No | Yes | 1 | 2–3 | 4–6 | Filly | Colt | ||
N Milk Samples | SE | 48 | 31 | 24 | 24 | 31 | 45 | 34 |
± SD | ± SD | ± SD | ± SD | ± SD | ± SD | ± SD | ||
C4:0 | 0.020 | 0.025 B ± 0.019 | 0.222 A ± 0.324 | 0.062 ± 0.080 | 0.072 ± 0.158 | 0.192 ± 0.093 | 0.067 B ± 0.128 | 0.187 A ± 0.326 |
C6:0 | 0.006 | 0.108 B ± 0.036 | 0.184 A ± 0.090 | 0.135 ± 0.049 | 0.126 ± 0.076 | 0.151 ± 0.087 | 0.135 ± 0.063 | 0.141 ± 0.081 |
C8:0 | 0.042 | 1.460 B ± 0.593 | 1.858 A ± 0.771 | 2.039 A ± 0.631 | 1.386 B ± 0.739 | 1.459 B ± 0.548 | 1.819 A ± 0.696 | 1.470 B ± 0.660 |
C10:0 | 0.129 | 4.918 ± 1.836 | 5.178 ± 2.329 | 6.453 A ± 1.671 | 4.770 B ± 1.934 | 4.042 B ± 1.749 | 5.181 ± 2.159 | 4.905 ± 1.958 |
C10:1 | 0.039 | 0.934 b ± 0.451 | 1.124 a ± 0.702 | 1.263 A ± 0.573 | 1.061 A ± 0.399 | 0.759 B ± 0.590 | 1.097 ± 0.651 | 0.945 ± 0.497 |
C12:0 | 0.170 | 6.837 ± 2.845 | 6.672 ± 2.380 | 8.193 A ± 2.277 | 7.196 A ± 2.406 | 5.249 B ± 2.398 | 6.375 ± 2.745 | 7.063 ± 2.577 |
C14:0 | 0.149 | 7.843 ± 2.661 | 7.790 ± 1.661 | 8.324 A ± 1.933 | 8.701 A ± 2.279 | 6.693 B ± 2.190 | 7.051 B ± 2.132 | 8.391 A ± 2.280 |
C14:1 | 0.018 | 0.659 A ± 0.366 | 0.433 B ± 0.233 | 0.472 B ± 0.207 | 0.785 A ± 0.429 | 0.474 B ± 0.253 | 0.386 B ± 0.156 | 0.704 A ± 0.371 |
C15:0 | 0.006 | 0.265 ± 0.050 | 0.264 ± 0.166 | 0.237 b ± 0.093 | 0.263 ab ± 0.100 | 0.289 a ± 0.128 | 0.231 B ± 0.119 | 0.289 A ± 0.099 |
C16:0 | 0.309 | 25.609 ± 3.598 | 26.367 ± 5.492 | 24.976 B ± 3.398 | 27.268 A ± 4.745 | 25.586 AB ± 4.768 | 24.392 B ± 4.336 | 27.033 A ± 4.214 |
C16:1n-9 | 0.018 | 0.835 A ± 0.221 | 0.290 B ± 0.127 | 0.608 ± 0.362 | 0.680 ± 0.284 | 0.576 ± 0.328 | 0.519 B ± 0.345 | 0.691 A ± 0.295 |
C16:1n-7 | 0.018 | 7.619 A ± 1.819 | 5.741 B ± 1.457 | 6.424 B ± 1.147 | 7.581 A ± 2.446 | 6.663 B ± 1.801 | 6.430 B ± 1.773 | 7.195 A ± 1.961 |
C17:0 | 0.005 | 0.132 B ± 0.032 | 0.261 A ± 0.109 | 0.157 b ± 0.058 | 0.182 ab ± 0.132 | 0.201 a ± 0.084 | 0.194 ± 0.092 | 0.176 ± 0.099 |
C17:1 | 0.008 | 0.354 B ± 0.083 | 0.533 A ± 0.130 | 0.405 B ± 0.126 | 0.376 B ± 0.103 | 0.483 A ± 0.148 | 0.465 A ± 0.104 | 0.397 B ± 0.150 |
C18:0 | 0.160 | 1.320 B ± 0.400 | 4.766 A ± 2.902 | 2.206 ± 1.092 | 2.419 ± 2.870 | 3.321 ± 2.910 | 2.933 ± 2.531 | 2.518 ± 2.489 |
C18:1n-9 | 0.332 | 20.785 A ± 5.528 | 17.903 B ± 4.023 | 18.662 B ± 4.281 | 18.271 B ± 4.694 | 21.548 A ± 5.677 | 20.652 a ± 5.764 | 18.885 b ± 4.566 |
C18:1n-7 | 0.042 | 1.665 ± 0.443 | 1.649 ± 0.983 | 1.522 ± 0.463 | 1.712 ± 0.733 | 1.729 ± 0.835 | 1.771 ± 0.745 | 1.576 ± 0.669 |
C18:2n-6 (LA) | 0.291 | 11.156 A ± 3.489 | 8.724 B ± 2.462 | 9.823 ± 3.005 | 9.852 ± 3.184 | 10.758 ± 3.668 | 10.557 ± 3.499 | 9.912 ± 3.197 |
C18:3n-6 (GLA) | 0.03 | 0.020 B ± 0.011 | 0.067 A ± 0.032 | 0.039 ± 0.025 | 0.031 ± 0.031 | 0.045 ± 0.037 | 0.047 A ± 0.032 | 0.033 B ± 0.031 |
C18:3n-3 (ALA) | 0.193 | 7.120 B ± 2.504 | 9.257 A ± 3.028 | 7.472 B ± 2.000 | 6.895 B ± 2.854 | 9.258 A ± 3.143 | 9.093 A ± 2.768 | 7.144 B ± 2.746 |
C18:2 cis9 trans11 (CLA) | 0.008 | 0.087 B ± 0.033 | 0.224 A ± 0.130 | 0.156 ± 0.115 | 0.115 ± 0.059 | 0.150 ± 0.131 | 0.184 A ± 0.134 | 0.110 B ± 0.073 |
C20:0 | 0.009 | 0.032 B ± 0.011 | 0.246 A ± 0.156 | 0.105 AB ± 0.093 | 0.069 B ± 0.075 | 0.166 A ± 0.198 | 0.130 ± 0.099 | 0.108 ± 0.170 |
C20:1 | 0.006 | 0.206 b ± 0.063 | 0.246 a ± 0.154 | 0.254 a ± 0.102 | 0.196 b ± 0.107 | 0.217 ab ± 0.114 | 0.279 A ± 0.097 | 0.180 B ± 0.100 |
∑ SFA | 0.639 | 48.538 B ± 9.272 | 53.793 A ± 7.981 | 52.863 B ± 6.851 | 52.427 B ± 9.228 | 47.333 A ± 9.834 | 48.500 B ± 9.669 | 52.208 A ± 8.415 |
∑ MUFA | 0.350 | 33.057 A ± 5.667 | 27.920 B ± 4.607 | 29.608 b ± 4.354 | 30.662 ab ± 5.621 | 32.449 a ± 6.753 | 31.600 ± 6.926 | 30.572 ± 4.859 |
∑ PUFA | 0.389 | 18.382 ± 4.674 | 18.272 ± 4.418 | 17.490 B ± 3.474 | 16.893 B ± 4.750 | 20.212 A ± 4.623 | 19.88 A ± 4.123 | 17.199 B ± 4.553 |
n-6 PUFA | 0.291 | 11.175 A ± 3.494 | 8.791 B ± 2.474 | 9.861 ± 3.004 | 9.883 ± 3.188 | 10.804 ± 3.660 | 10.604 ± 3.488 | 9.945 ± 3.201 |
n-3 PUFA | 0.193 | 7.120 B ± 2.504 | 9.257 A ± 3.028 | 7.472 B ± 2.000 | 6.895 B ± 2.854 | 9.258 A ± 3.143 | 9.093 A ± 2.768 | 7.144 B ± 2.746 |
Parameter | Pasture | Lactation Number | Foal Gender | |||||
---|---|---|---|---|---|---|---|---|
No | Yes | 1 | 2–3 | 4–6 | Filly | Colt | ||
N Milk Samples | SM | 48 | 31 | 24 | 24 | 31 | 45 | 34 |
± SD | ± SD | ± SD | ± SD | ± SD | ± SD | ± SD | ||
n-6/n-3 ratio | 0.039 | 1.684 A ± 0.630 | 1.032 B ± 0.391 | 1.421 ± 0.592 | 1.573 ± 0.600 | 1.305 ± 0.675 | 1.286 b ± 0.648 | 1.526 a ± 0.606 |
DFA (desirable fatty acids) | 0.597 | 52.760 ± 9.228 | 50.958 ± 6.593 | 49.304 B ± 6.746 | 49.973 B ± 8.272 | 55.982 A ± 8.088 | 54.414 A ± 8.296 | 50.289 B ± 7.904 |
HSFA (hypercholesterolaemic saturated fatty acids) | 0.517 | 40.289 ± 8.026 | 40.828 ± 6.141 | 41.493 A ± 6.152 | 43.166 A ± 7.363 | 37.528 B ± 7.219 | 37.819 B ± 6.788 | 42.487 A ± 7.089 |
AI (atherogenicity index) | 0.034 | 1.340 ± 0.571 | 1.478 ± 0.537 | 1.474 A ± 0.453 | 1.563 A ± 0.584 | 1.193 B ± 0.567 | 1.244 B ± 0.550 | 1.507 A ± 0.543 |
TI (thrombogenicity index) | 0.022 | 0.850 ± 0.308 | 0.908 ± 0.450 | 0.858 AB ± 0.231 | 1.008 A ± 0.430 | 0.775 B ± 0.385 | 0.752 B ± 0.366 | 0.962 A ± 0.350 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barłowska, J.; Polak, G.; Janczarek, I.; Tkaczyk, E. The Influence of Selected Factors on the Nutritional Value of the Milk of Cold-Blooded Mares: The Example of the Sokólski Breed. Animals 2023, 13, 1152. https://doi.org/10.3390/ani13071152
Barłowska J, Polak G, Janczarek I, Tkaczyk E. The Influence of Selected Factors on the Nutritional Value of the Milk of Cold-Blooded Mares: The Example of the Sokólski Breed. Animals. 2023; 13(7):1152. https://doi.org/10.3390/ani13071152
Chicago/Turabian StyleBarłowska, Joanna, Grażyna Polak, Iwona Janczarek, and Ewelina Tkaczyk. 2023. "The Influence of Selected Factors on the Nutritional Value of the Milk of Cold-Blooded Mares: The Example of the Sokólski Breed" Animals 13, no. 7: 1152. https://doi.org/10.3390/ani13071152
APA StyleBarłowska, J., Polak, G., Janczarek, I., & Tkaczyk, E. (2023). The Influence of Selected Factors on the Nutritional Value of the Milk of Cold-Blooded Mares: The Example of the Sokólski Breed. Animals, 13(7), 1152. https://doi.org/10.3390/ani13071152