Effects of Heat Stress in Dairy Cows Raised in the Confined System: A Scientometric Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Inclusion Criteria and Screening
2.3. Data Extraction
2.4. Scientometric Analysis Methods
3. Results and Discussion
3.1. Publication Characteristics
3.2. Co-Country/Territory Analysis
3.3. Publishing Areas
3.4. High-Cited Documents Analysis
Ranking | Title | Journal | Year | Total Citations | Annual Citation Rate | Citation |
---|---|---|---|---|---|---|
1 | Effects of heat stress on production in dairy cattle | Journal of Dairy Science | 2003 | 912 | 45.6 | West [14] |
2 | Heat stress in lactating dairy cows: a review | Livestock Production Science | 2002 | 701 | 33.38 | Kadzere et al. [69] |
3 | Heat stress and seasonal effects on reproduction in the dairy cow—a review | Theriogenology | 2003 | 392 | 19.6 | De Rensis and Scaramuzzi [70] |
4 | Major advances associated with environmental effects on dairy cattle | Journal of Dairy Science | 2006 | 336 | 19.76 | Collier et al. [71] |
5 | Comparison of ovarian function and circulating steroids in estrous cycles of Holstein heifers and lactating cows | Journal of Dairy Science | 2004 | 295 | 15.53 | Sartori et al. [72] |
6 | Is the temperature–humidity index the best indicator of heat stress in lactating dairy cows in a subtropical environment? | Journal of Dairy Science | 2009 | 278 | 19.86 | Dikmen and Hansen [73] |
7 | The relationship of the temperature–humidity index with milk production of dairy cows in a Mediterranean climate | Animal Research | 2002 | 247 | 11.76 | Bouraoui et al. [74] |
8 | Invited review: Effects of heat stress on dairy cattle welfare | Journal of Dairy Science | 2017 | 240 | 40 | Polsky and Von Keyserlink [75] |
9 | Effects of hot, humid weather on milk temperature, dry matter intake and milk yield of lactating dairy cows | Journal of Dairy Science | 2003 | 229 | 11.45 | West et al. [76] |
10 | Factors affecting conception rate after artificial insemination and pregnancy loss in lactating dairy cows | Animal Reproduction Science | 2004 | 215 | 11.32 | Chebel et al. [77] |
3.5. Cluster Analysis of Keywords and Titles of Countries
3.5.1. Cluster Analysis of Keyword Clusters
3.5.2. Clustering Analysis of the Titles
3.6. Keyword Co-Occurrence Analysis
Clustering of Keyword Clusters
3.7. Analysis of Journals, Authors and Institutions
3.8. Limitations of the Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lees, A.M.; Sejian, V.; Wallage, A.L.; Steel, C.C.; Mader, T.L.; Lees, J.C.; Gaughan, J.B. The impact of heat load on cattle. Animals 2019, 9, 322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mota-Rojas, D.; Titto, C.G.; Orihuela, A.; Martínez-Burnes, J.; Gómez-Prado, J.; Torres-Bernal, F.; Flores-Padilla, K.; Carvajal-De la Fuente, V.; Wang, D. Physiological and behavioral mechanisms of thermoregulation in mammals. Animals 2021, 11, 1733. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, L.; Chen, X.; Lu, Y.; Wang, D. Effects of heat stress on body temperature, milk production, and reproduction in dairy cows: A novel idea for monitoring and evaluation of heat stress—A review. Asian-Australas. J. Anim. Sci. 2019, 32, 1332–1339. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.; Devi, P.; Sharma, N.; Somagond, Y.M. Impact of thermal stress on milk production, composition and fatty acid profile in dairy cows: A review. J. Entomol. Zool. Stud. 2020, 8, 1278–1283. [Google Scholar]
- Kim, S.H.; Ramos, S.C.; Valencia, R.A.; Cho, Y.I.; Lee, S.S. Heat Stress: Effects on Rumen Microbes and Host Physiology, and Strategies to Alleviate the Negative Impacts on Lactating Dairy Cows. Front. Microbiol. 2022, 13, 804562. [Google Scholar] [CrossRef]
- Burhans, W.S.; Rossiter Burhans, C.A.; Baumgard, L.H. Invited review: Lethal heat stress: The putative pathophysiology of a deadly disorder in dairy cattle. J. Dairy Sci. 2022, 105, 3716–3735. [Google Scholar] [CrossRef]
- Eerdenburg, F.J.C.M.v.E.; Hof, T.; Doeve, B.; Ravesloot, L.; Zeinstra, E.C.; Nordquist, R.E.; Staay, F.J.v.d. The Relation between Hair-Cortisol Concentration and VariousWelfare Assessments of Dutch Dairy Farms. Animals 2021, 11, 821. [Google Scholar] [CrossRef]
- Shi, R.; Dou, J.; Liu, J.; Sammad, A.; Luo, H.; Wang, Y.; Guo, G.; Wang, Y. Genetic parameters of hair cortisol as an indicator of chronic stress under different environments in Holstein cows. J. Dairy Sci. 2021, 104, 6985–6999. [Google Scholar] [CrossRef]
- Collier, R.J.; Renquist, B.J.; Xiao, Y. A 100-Year Review: Stress physiology including heat stress. J. Dairy Sci. 2017, 100, 10367–10380. [Google Scholar] [CrossRef]
- Sammad, A.; Wang, Y.J.; Umer, S.; Lirong, H.; Khan, I.; Khan, A.; Ahmad, B.; Wang, Y. Nutritional physiology and biochemistry of dairy cattle under the influence of heat stress: Consequences and opportunities. Animals 2020, 10, 793. [Google Scholar] [CrossRef]
- Ouellet, V.; Cabrera, V.E.; Fadul-Pacheco, L. Charbonneau The relationship between the number of consecutive days with heat stress and milk production of Holstein dairy cows raised in a humid continental climate. J. Dairy Sci. 2019, 102, 8537–8545. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.M.F.; Titto, E.A.L.; Almeida, J.A.A. Influência do Estresse Térmico na Fisiologia e Produtividade dos Animais. In Adaptação dos Ruminantes aos Climas Quentes, 1st ed.; Coelho, A.V.A., Caetano, M., Coelho, S.C.A., Eds.; Editora Appris: Curitiba, Brazil, 2019; Volume 1, pp. 11–32. [Google Scholar]
- Shu, H.; Wang, W.; Guo, L.; Bindelle, J. Recent advances on early detection of heat strain in dairy cows using animal-based indicators: A review. Animals 2021, 11, 980. [Google Scholar] [CrossRef] [PubMed]
- West, J.W. Effects of Heat-Stress on Production in Dairy Cattle. J. Dairy Sci. 2003, 86, 2131–2144. [Google Scholar] [CrossRef] [PubMed]
- Manzoor, A.; Maqbool, I.; Ganaie, Z.; Afzal, I.; Khan, H.; Zaffe, B. Mitigating winter vagaries in dairy animals: A review. Int. J. Vet. Sci. Anim. Husbandy 2019, 4, 01–05. [Google Scholar]
- Sejian, V.; Bhatta, R.; Gaughan, J.B.; Dunshea, F.R.; Lacetera, N. Review: Adaptation of animals to heat stress. Animal 2018, 12, S431–S444. [Google Scholar] [CrossRef] [Green Version]
- National Weather Service. Central Region. In Livestock Hot Weather Stress. Regional Operations Manual Letter; National Academy Press: Washington, DC, USA, 1976; pp. 31–76. [Google Scholar]
- Rosenberg, L.; Biad, B.; Verns, S. Human and animal biometeorology. In Microclimate, the Biological Environment; Wiley- Interscience Publication: New York, NY, USA; pp. 423–467.
- Bohmanova, J.; Misztal, I.; Cole, J.B. Temperature-humidity indices as indicators of milk production losses due to heat stress. J. Dairy Sci. 2007, 90, 1947–1956. [Google Scholar] [CrossRef]
- Collier, R.J.; Hall, L.W.; Rungruang, S.; Zimbleman, R.B. Quantifying Heat Stress and Its Impact on Metabolism and Performance; Department of Animal Sciences University of Arizona: Tucson, AZ, USA, 2012; pp. 74–84. [Google Scholar]
- Lacetera, N. Impact of climate change on animal health and welfare. Anim. Front. 2019, 9, 26–31. [Google Scholar] [CrossRef] [Green Version]
- IPCC Climate Change 2021—The Physical Science Basis—Summary for Policemakers. In Climate Change 2021: The Physical Science Basis; IPCC: Geneva, Switzerland, 2021; pp. 1–40.
- Wankar, A.K.; Rindhe, S.N.; Doijad, N.S. Heat stress in dairy animals and current milk production trends, economics, and future perspectives: The global scenario. Trop. Anim. Health Prod. 2021, 53, s11250–s020. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.; Li, R.; Wu, Y.; Zhang, D.; Xu, H.; Zhang, Y.; Qi, Z. Effect of seasonal thermal stress on oxidative status, immune response and stress hormones of lactating dairy cows. Anim. Nutr. 2021, 7, 216–223. [Google Scholar] [CrossRef]
- Thornton, P.; Nelson, G.; Mayberry, D.; Herrero, M. Impacts of heat stress on global cattle production during the 21st century: A modelling study. Lancet Planet. Heal. 2022, 6, e192–e201. [Google Scholar] [CrossRef]
- Vieira, F.M.C.; Soares, A.A.; Herbut, P.; Vismara, E.d.S.; Godyń, D.; Santos, A.C.Z.D.; Lambertes, T.d.S.; Caetano, W.F. Spatio-thermal variability and behaviour as bio-thermal indicators of heat stress in dairy cows in a compost barn: A case study. Animals 2021, 11, 1197. [Google Scholar] [CrossRef] [PubMed]
- Spiers, D.E.; Spain, J.N.; Ellersieck, M.R.; Lucy, M.C. Strategic application of convective cooling to maximize the thermal gradient and reduce heat stress response in dairy cows. J. Dairy Sci. 2018, 101, 8269–8283. [Google Scholar] [CrossRef]
- Li, J.; Goerlandt, F.; Van Nunen, K.; Ponnet, K.; Reniers, G. Conceptualizing the Contextual Dynamics of Safety Climate and Safety Culture Research: A Comparative Scientometric Analysis. Int. J. Environ. Res. Public Health 2022, 19, 813. [Google Scholar] [CrossRef] [PubMed]
- Mazov, N.A.; Gureev, V.N.; Glinskikh, V.N. The Methodological Basis of Defining Research Trends and Fronts. Sci. Technol. Inf. Process 2020, 47, 221–231. [Google Scholar] [CrossRef]
- Li, J.; Goerlandt, F.; Reniers, G. An overview of scientometric mapping for the safety science community: Methods, tools, and framework. Saf. Sci. 2021, 134, 105093. [Google Scholar] [CrossRef]
- Lin, H.; Zhu, Y.; Ahmad, N.; Han, Q. A scientometric analysis and visualization of global research on brownfields. Environ. Sci. Pollut. Res. 2019, 26, 17666–17684. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Grp, P. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement (Reprinted from Annals of Internal Medicine). Phys. Ther. 2009, 89, 873–880. [Google Scholar] [CrossRef]
- Chen, C. How to Use CiteSpace; C-2015-2020. 2020. Available online: https://citespace.podia.com/ebook-how-to-use-citespace (accessed on 8 August 2022).
- Chen, C.; Ibekwe-SanJuan, F.; Hou, J. The Structure and Dynamics of Cocitation Clusters: A Multiple-Perspective Cocitation Analysis. J. Am. Soc. Inf. Sci. Technol. 2010, 64, 1852–1863. [Google Scholar] [CrossRef] [Green Version]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Azevedo, S.G.; Sequeira, T.; Santos, M.; Nikuma, D. Climate change and sustainable development: The case of Amazonia and policy implications. Environ. Sci. Pollut. Res. 2020, 27, 7745–7756. [Google Scholar] [CrossRef]
- Hirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janni, K.A.; Endres, M.I.; Reneau, J.K.; Schoper, W.W. Compost dairy barn layout and management recommendations. Appl. Eng. Agric. 2007, 23, 97–102. [Google Scholar] [CrossRef]
- Damasceno, F.A.; Barbari, M.; Leso, L.; Monge, J.L. Instalações Compost Barn. In Compot Barn como alternativa para a pecuária leiteira, 1st ed.; Amaral, J., Ed.; Gulliver: Divinópolis, Brazil, 2020; Volume 1, pp. 33–36. [Google Scholar]
- Leso, L.; Barbari, M.; Lopes, M.A.; Damasceno, F.A.; Galama, P.; Taraba, J.L.; Kuipers, A. Invited review: Compost-bedded pack barns for dairy cows. J. Dairy Sci. 2020, 103, 1072–1099. [Google Scholar] [CrossRef] [PubMed]
- Galama, P.J.; Ouweltjes, W.; Endres, M.I.; Sprecher, J.R.; Leso, L.; Kuipers, A.; Klopčič, M. Symposium review: Future of housing for dairy cattle. J. Dairy Sci. 2020, 103, 5759–5772. [Google Scholar] [CrossRef]
- Damasceno, F.A. Compost Bedded Pack Barns System and Computational Simulation of Airflow Through Naturally Ventilated Reduced Model. Ph.D. Thesis, Federal University of Viçosa, Viçosa, Brazil, 2012. Volume 4. [Google Scholar]
- Endres, M.I.; Barberg, A.E. Behavior of dairy cows in an alternative bedded-pack housing system. J. Dairy Sci. 2007, 90, 4192–4200. [Google Scholar] [CrossRef]
- Biasato, I.; D’Angelo, A.; Bertone, I.; Odore, R.; Bellino, C. Compost bedded-pack barn as an alternativehousing system for dairy cattle in Italy: Effectson animal health and welfare and milk and milkproduct quality 2019. Ital. J. Anim. Sci. 2019, 18, 1142–1153. [Google Scholar] [CrossRef]
- Odore, R.; Biasato, I.; Gardini, G.; Angelo, A.D.; Bellino, C. Effects of Compost-Bedded Pack Barn on Circulating Cortisol and Beta-Endorphins in Dairy Cows: A Case Study. Animals 2021, 11, 3318. [Google Scholar] [CrossRef]
- Leso, L.; Uberti, M.; Morshed, W.; Barbari, M. A survey of Italian compost dairy barns. J. Agric. Eng. 2013, 44, 120–124. [Google Scholar] [CrossRef]
- Astiz, S.; Sebastian, F.; Fargas, O.; Fernández, M.; Calvet, E. Enhanced udder health and milk yield of dairy cattle on compost bedding systems during the dry period: A comparative study. Livest. Sci. 2014, 159, 161–164. [Google Scholar] [CrossRef]
- Emanuelson, U.; Brügemann, K.; Klopčič, M.; Leso, L.; Ouweltjes, W.; Zentner, A.; Blanco-Penedo, I. Animal Health in Compost-Bedded Pack and Cubicle Dairy Barns in Six European Countries. Animals 2022, 12, 396. [Google Scholar] [CrossRef]
- Galama, P.; van Dooren, H.J.; de Boer, H.; Ouweltjes, W.; Smolders, G.; Blanken, K.; Poelarends, J.; Wageningen, U.R. Vrijloopstal Wiersma. In Livestock Research Partner in livestock innovations, 1st ed.; Galama, P., Ed.; P. Wageningen UR: Wageningen, The Netherlands, 2012; Volume 1, pp. 1–76. [Google Scholar]
- Klaas, I.C.; Bjerg, B.; Friedmann, S.; Bar, D. Cultivated barns for dairy cows. Dan. Veterinærtidsskrift 2010, 93, 20–29. [Google Scholar]
- Oliveira, C.E.A.; Damasceno, F.A.; Ferraz, G.A.S.; Do Nascimento, J.A.C.; Vega, F.A.O.; Tinôco, I.F.F.; Andrade, R.R. Assessment of spatial variability of bedding variables in compost bedded pack barns with climate control system. An. Acad. Bras. Cienc. 2021, 93, e20200384. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, V.C.; Damasceno, F.A.; Oliveira, C.E.A.; Ferraz, P.F.P.; Ferraz, G.A.S.; Saraz, J.A.O. Compost-bedded pack barns in the state of Minas Gerais: Architectural and technological characterization. Agron. Res. 2019, 17, 2016–2028. [Google Scholar] [CrossRef]
- Pilatti, J.A.; Vieira, F.M.C.; Rankrape, F.; Vismara, E.S. Diurnal behaviors and herd characteristics of dairy cows housed in a compost-bedded pack barn system under hot and humid conditions. Animal 2018, 13, 399–406. [Google Scholar] [CrossRef] [Green Version]
- Costa, J.H.C.; Burnett, T.A.; von Keyserlingk, M.A.G.; Hötzel, M.J. Prevalence of lameness and leg lesions of lactating dairy cows housed in southern Brazil: Effects of housing systems. J. Dairy Sci. 2018, 101, 2395–2405. [Google Scholar] [CrossRef] [PubMed]
- Fávero, S.; Portilho, F.V.R.; Oliveira, A.C.R.; Langoni, H.; Pantoja, J.C.F. Factors associated with mastitis epidemiologic indexes, animal hygiene, and bulk milk bacterial concentrations in dairy herds housed on compost bedding. Livest. Sci. 2015, 181, 220–230. [Google Scholar] [CrossRef] [Green Version]
- Lovarelli, D.; Finzi, A.; Mattachini, G.; Riva, E. A survey of dairy cattle behavior in different barns in northern italy. Animals 2020, 10, 713. [Google Scholar] [CrossRef] [Green Version]
- Vitali, A.; Felici, A.; Esposito, S.; Bernabucci, U.; Bertocchi, L.; Maresca, C.; Nardone, A.; Lacetera, N. The effect of heat waves on dairy cow mortality. J. Dairy Sci. 2015, 98, 4572–4579. [Google Scholar] [CrossRef] [Green Version]
- Morignat, E.; Perrin, J.B.; Gay, E.; Vinard, J.L.; Calavas, D.; Hénaux, V. Assessment of the impact of the 2003 and 2006 heat waves on cattle mortality in France. PLoS ONE 2014, 9, e93176. [Google Scholar] [CrossRef]
- Bishop-Williams; Olaf, B.K.E.; Pearl, D.L.; Karen, H.; Kelton, D.F. Heat stress related dairy cow mortality during heat waves and control periods in rural Southern Ontario from 2010-2012. BMC Vet. Res. 2015, 11, 291. [Google Scholar] [CrossRef] [Green Version]
- Manica, E.; Coltri, P.P.; Pacheco, V.M.; Martello, L.S. Changes in the pattern of heat waves and the impacts on Holstein cows in a subtropical region. Int. J. Biometeorol. 2022, 66, 2477–2488. [Google Scholar] [CrossRef] [PubMed]
- The 6th National Risk Assessment. Hazardous Heat. First Street Foundation. 2022, pp. 1–121. Available online: https://report.firststreet.org/6th-National-Risk-Assessment-Hazardous-Heat.pdf (accessed on 15 August 2022).
- Zhao, X. A scientometric review of global BIM research: Analysis and visualization. Autom. Constr. J. 2017, 80, 37–47. [Google Scholar] [CrossRef]
- Lovmar, L.; Ahlford, A.; Jonsson, M.; Syvänen, A.-C. Silhouette scores for assessment of SNP genotype clusters. BioMed Cent. 2005, 6, 35. [Google Scholar] [CrossRef] [PubMed]
- Lord, E.; Willems, M.; Lapointe, F.J.; Makarenkov, V. Using the stability of objects to determine the number of clusters in datasets. Inf. Sci. 2017, 393, 29–46. [Google Scholar] [CrossRef]
- Fournel, S.; Ouellet, V.; Charbonneau, É. Practices for alleviating heat stress of dairy cows in humid continental climates: A literature review. Animals 2017, 7, 37. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.-F.; Zhao, X.-M.; Cai, H.; Yi, J.-M.; Hua, G.-H. Dihydropyridine Enhances the Antioxidant Capacities of Lactating Dairy Cows under Heat Stress Condition. Animals 2020, 10, 1812. [Google Scholar] [CrossRef]
- Shu, H.; Guo, L.; Bindelle, J.; Fang, T.; Xing, M.; Sun, F.; Chen, X.; Zhang, W.; Wang, W. Evaluation of environmental and physiological indicators in lactating dairy cows exposed to heat stress. Int. J. Biometeorol. 2022, 66, 1219–1232. [Google Scholar] [CrossRef]
- Fan, C.; Su, D.; Tian, H.; Li, X.; Li, Y.; Ran, L.; Hu, R.; Cheng, J. Liver metabolic perturbations of heat-stressed lactating dairy cows. Asian-Australas. J. Anim. Sci. 2018, 31, 1244–1251. [Google Scholar] [CrossRef]
- Kadzere, C.T.; Murphy, M.R.; Silanikove, N.; Maltz, E. Heat stress in lactating dairy cows: A review. Livest. Prod. Sci. 2002, 77, 59–91. [Google Scholar] [CrossRef]
- De Rensis, F.; Scaramuzzi, R.J. Heat stress and seasonal effects on reproduction in the dairy cow—A review. Theriogenology 2003, 60, 1139–1151. [Google Scholar] [CrossRef]
- Collier, R.J.; Dahl, G.E.; Vanbaale, M.J. Major advances associated with environmental effects on dairy cattle. J. Dairy Sci. 2006, 89, 1244–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sartori, R.; Haughian, J.M.; Shaver, R.D.; Rosa, G.J.M.; Wiltbank, M.C. Comparison of ovarian function and circulating steroids in estrous cycles of Holstein heifers and lactating cows. J. Dairy Sci. 2004, 87, 905–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dikmen, S.; Hansen, P.J. Is the temperature-humidity index the best indicator of heat stress in lactating dairy cows in a subtropical environment? J. Dairy Sci. 2009, 92, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Bouraoui, R.; Lahmar, M.; Majdoub, A.; Djemali, M.; Belyea, R. The relationship of temperature-humidity index with milk production of dairy cows in a Mediterranean climate. Anim. Res. 2002, 51, 479–491. [Google Scholar] [CrossRef] [Green Version]
- Polsky, L.; von Keyserlingk, M.A.G. Invited review: Effects of heat stress on dairy cattle welfare. J. Dairy Sci. 2017, 100, 8645–8657. [Google Scholar] [CrossRef] [Green Version]
- West, J.W.; Mullinix, B.G.; Bernard, J.K. Effects of hot, humid weather on milk temperature, dry matter intake, and milk yield of lactating dairy cows. J. Dairy Sci. 2003, 86, 232–242. [Google Scholar] [CrossRef] [Green Version]
- Chebel, R.C.; Santos, J.E.P.; Reynolds, J.P.; Cerri, R.L.A.; Juchem, S.O.; Overton, M. Factors affecting conception rate after artificial insemination and pregnancy loss in lactating dairy cows. Anim. Reprod. Sci. 2004, 84, 239–255. [Google Scholar] [CrossRef]
- Ramón-moragues, A.; Carulla, P.; Mínguez, C.; Villagrá, A.; Estellés, F. Dairy cows activity under heat stress: A case study in Spain. Animals 2021, 11, 2305. [Google Scholar] [CrossRef]
- Tucker, C.B.; Jensen, M.B.; Passillé, A.M.d.; Hanninen, L.; Rushen, J. Invited review: Lying time and the welfare of dairy cows. J. Dairy Sci. 2021, 104, 20–46. [Google Scholar] [CrossRef]
- Allen, J.D.; Hall, L.W.; Collier, R.J.; Smith, J.F. Effect of core body temperature, time of day, and climate conditions on behavioral patterns of lactating dairy cows experiencing mild to moderate heat stress. J. Dairy Sci. 2015, 98, 118–127. [Google Scholar] [CrossRef] [Green Version]
- Pilatti, J.A.; Vieira, F.M.C.; dos Santos, L.F.; Vismara, E.S.; Herbut, P. Behaviour, hygiene, and lameness of dairy cows in a com-post barn during cold seasons in a subtropical climate. Ann. Anim. Sci. 2021, 21, 1555–1569. [Google Scholar] [CrossRef]
- McDonald, P.V.; von Keyserlingk, M.A.G.; Weary, D.M. Hot weather increases competition between dairy cows at the drinker. J. Dairy Sci. 2020, 103, 3447–3458. [Google Scholar] [CrossRef] [PubMed]
- Santana, M.L.; Bignardi, A.B.; Pereira, R.J.; Menéndez-Buxadera, A.; Faro, L. El Random regression models to account for the effect of genotypeby environment interaction due to heat stress on the milk yieldof Holstein cows under tropical conditions. Anim. Genet. 2016, 57, 119–127. [Google Scholar] [CrossRef]
- Amamou, H.; Beckers, Y.; Mahouachi, M.; Hammami, H. Thermotolerance indicators related to production and physiological responses to heat stress of holstein cows. J. Therm. Biol. 2019, 82, 90–98. [Google Scholar] [CrossRef]
- Santana, M.L.; Bignardi, A.B.; Pereira, R.J.; Stefani, G.; El Faro, L. Genetics of heat tolerance for milk yield and quality in Holsteins. Animal 2017, 11, 4–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, S.R. Behavioural, physiological, neuro-endocrine and molecular responses of cattle against heat stress: An updated review. Trop. Anim. Health Prod. 2021, 53. [Google Scholar] [CrossRef] [PubMed]
- Koch, F.; Albrecht, D.; Görs, S.; Kuhla, B. Jejunal mucosa proteomics unravel metabolic adaptive processes to mild chronic heat stress in dairy cows. Sci. Rep. 2021, 11. [Google Scholar] [CrossRef]
- Tao, S.; Orellana, R.M.; Weng, X.; Marins, T.N.; Dahl, G.E.; Bernard, J.K. Symposium review: The influences of heat stress on bovine mammary gland function. J. Dairy Sci. 2018, 101, 5642–5654. [Google Scholar] [CrossRef] [Green Version]
- De Rensis, F.; Saleri, R.; Garcia-Ispierto, I.; Scaramuzzi, R.; López-Gatius, F. Effects of heat stress on follicular physiology in dairy cows. Animals 2021, 11, 3406. [Google Scholar] [CrossRef]
- Joo, S.S.; Lee, S.J.; Park, D.S.; Kim, D.H.; Gu, B.H.; Park, Y.J.; Rim, C.Y.; Kim, M.; Kim, E.T. Changes in blood metabolites and immune cells in Holstein and Jersey dairy cows by heat stress. Animals 2021, 11, 974. [Google Scholar] [CrossRef]
- Bagath, M.; Krishnan, G.; Devaraj, C.; Rashamol, V.P.; Pragna, P.; Lees, A.M.; Sejian, V. The impact of heat stress on the immune system in dairy cattle: A review. Res. Vet. Sci. 2019, 126, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Nasceu, H.; Cyrine, D.; Khaoula, A.; EL, Z.I.; Refka, K.; Hanane, D.; Rahma, B.; Lamjed, M.; Moez, A. Modelling THI effects on milk production and lactation curve parameters of Holstein dairy cows. J. Therm. Biol. 2021, 99, 102917. [Google Scholar] [CrossRef]
- Nasr, M.A.F.; El-Tarabany, M.S. Impact of three THI levels on somatic cell count, milk yield and composition of multiparous Holstein cows in a subtropical region. J. Therm. Biol. 2017, 64, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Yániz, J.L.; López-Gatius, F.; Almería, S.; Carretero, T.; García-Ispierto, I.; Serrano, B.; Smith, R.F.; Dobson, H.; Santolaria, P. Dynamics of heat shock protein 70 concentrations in peripheral blood lymphocyte lysates during pregnancy in lactating Holstein-Friesian cows. Theriogenology 2009, 72, 1041–1046. [Google Scholar] [CrossRef]
- Livernois, A.M.; Mallard, B.A.; Cartwright, S.L.; Cánovas, A. Heat stress and immune response phenotype affect DNA methylation in blood mononuclear cells from Holstein dairy cows. Sci. Rep. 2021, 11, 11371. [Google Scholar] [CrossRef]
- Ju, J. Cellular responses of oocytes and embryos under thermal stress: Hints to molecular signaling. Anim. Reprod. 2005, 2, 79–90. [Google Scholar]
- Stamperna, K.; Giannoulis, T.; Dovolou, E.; Kalemkeridou, M.; Nanas, I.; Dadouli, K.; Moutou, K.; Mamuris, Z.; Amiridis, G.S. Heat shock protein 70 improves in vitro embryo yield and quality from heat stressed bovine oocytes. Animals 2021, 11, 1794. [Google Scholar] [CrossRef]
- Hou, Y.; Zhang, L.; Dong, R.Y.; Liang, M.Y.; Lu, Y.; Sun, X.Q.; Zhao, X. Comparing responses of dairy cows to short-term and long-term heat stress in climate-controlled chambers. J. Dairy Sci. 2021, 104, 2346–2356. [Google Scholar] [CrossRef]
- Marumo, J.L.; Lusseau, D.; Speakman, J.R.; Mackie, M.; Hambly, C. Influence of environmental factors and parity on milk yield dynamics in barn-housed dairy cattle. J. Dairy Sci. 2021, 105, 1225–1241. [Google Scholar] [CrossRef]
- Summer, A.; Lora, I.; Formaggioni, P.; Gottardo, F. Impact of heat stress on milk and meat production. Anim. Front. 2019, 9, 39–46. [Google Scholar] [CrossRef]
- Wolfenson, D.; Roth, Z. Impact of heat stress on cow reproduction and fertility. Anim. Front. 2019, 9, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Mylostуva, D.; Prudnikov, V.; Kolisnyk, O.; Lykhach, A.; Begma, N.; Kalinichenko, O.; Khmeleva, O.; Sanzhara, R.; Izhboldina, O.; Mylostyvyi, R. Biochemical changes during heat stress in productive animals with an emphasis on the antioxidant defense system. J. Anim. Behav. Biometeorol. 2022, 10, 22009. [Google Scholar] [CrossRef]
- Weller, J.I.; Ezra, E.; Gershoni, M. Broad phenotypic impact of the effects of transgenerational heat stress in dairy cattle: A study of four consecutive generations. Genet. Sel. Evol. 2021, 53, 69. [Google Scholar] [CrossRef] [PubMed]
- Sordillo, L.M.; Aitken, S.L. Impact of oxidative stress on the health and immune function of dairy cattle. Vet. Immunol. Immunopathol. 2009, 128, 104–109. [Google Scholar] [CrossRef]
- Chen, X.; Dong, J.N.; Rong, J.Y.; Xiao, J.; Zhao, W.; Aschalew, N.D.; Zhang, X.F.; Wang, T.; Qin, G.X.; Sun, Z.; et al. Impact of heat stress on milk yield, antioxidative levels, and serum metabolites in primiparous and multiparous Holstein cows. Trop. Anim. Health Prod. 2022, 54, 159. [Google Scholar] [CrossRef]
- Blanco-Penedo, I.; Ouweltjes, W.; Ofner-Schröck, E.; Brügemann, K.; Emanuelson, U. Symposium review: Animal welfare in free-walk systems in Europe. J. Dairy Sci. 2020, 103, 5773–5782. [Google Scholar] [CrossRef]
- Ji, B.; Banhazi, T.; Perano, K.; Ghahramani, A.; Bowtell, L.; Wang, C.; Li, B. A review of measuring, assessing and mitigating heat stress in dairy cattle. Biosyst. Eng. 2020, 199, 4–26. [Google Scholar] [CrossRef]
- Radavelli, W.M.; Danieli, B.; Zotti, M.L.A.N.; Gomes, F.J.; Endres, M.I.; Schogor, A.L. Compost barns in Brazilian Subtropical region (Part 1): Facility, barn management and herd characteristics Compost. Res. Soc. Dev. 2020, 2020, 5–24. [Google Scholar] [CrossRef]
- Santunione, G.; Libbra, A.; Muscio, A. Cool roofs with high solar reflectance for the welfare of dairy farming animals. J. Phys. Conf. Ser. 2017, 796, 012028. [Google Scholar] [CrossRef]
- Mondaca, M.R. Ventilation Systems for Adult Dairy Cattle. Vet. Clin. N. Am.-Food Anim. Pract. 2019, 35, 139–156. [Google Scholar] [CrossRef]
- Besler, M.; Cepiński, W.; Kęskiewicz, P. Direct-contact air, gravel, ground heat exchanger in air treatment systems for cowshed air conditioning. Energies 2022, 15, 234. [Google Scholar] [CrossRef]
- Lovarelli, D.; Riva, E.; Mattachini, G.; Guarino, M.; Provolo, G. Assessing the effect of barns structures and environmental conditionsin dairy cattle farms monitored in Northern Italy. J. Agric. Eng. 2021, 52, 1229. [Google Scholar] [CrossRef]
- Tomasello, N.; Valenti, F.; Cascone, G.; Porto, S. Improving natural ventilation in renovated free-stall barns for dairy cows:Optimized building solutions by using a validated computational fluiddynamics model. J. Agric. Eng 2021, 52, 1. [Google Scholar] [CrossRef]
- Pakari, A.; Ghani, S. Comparison of different mechanical ventilation systems for dairy cow barns: CFD simulations and field measurements. Comput. Electron. Agric. 2021, 186, 106207. [Google Scholar] [CrossRef]
- Herzog, A.; Winckler, C.; Hörtenhuber, S.; Zollitsch, W. Environmental impacts of implementing basket fans for heat abatement in dairy farms. Animal 2021, 15, 100274. [Google Scholar] [CrossRef]
- Andrade, R.R.; Tinôco, I.D.F.F.; Damasceno, F.A.; Ferraz, G.A.E.S.; Freitas, L.C.; da, S.R.; Ferreira, C.; de, F.S.; Barbari, M.; Baptista, F.; et al. Spatial distribution of bed variables, animal welfare indicators, and milk production in a closed compost-bedded pack barn with a negative tunnel ventilation system. J. Therm. Biol. 2022, 105, 103111. [Google Scholar] [CrossRef] [PubMed]
- Yameogo, B.; Andrade, R.R.; Teles Júnior, C.G.S.; Laud, G.S.; Becciolini, V.; Leso, L.; Rossi, G.; Barbari, M. Analysis of environmental conditions and management in a compost-bedded pack barn with tunnel ventilation. Agron. Res. 2021, 19, 1195–1204. [Google Scholar] [CrossRef]
- Pinto, S.; Hoffmann, G.; Ammon, C.; Amon, T. Critical THI thresholds based on the physiological parameters of lactating dairy cows. J. Therm. Biol. 2020, 88, 102523. [Google Scholar] [CrossRef]
- Heinicke, J.; Ibscher, S.; Belik, V.; Amon, T. Cow individual activity response to the accumulation of heat load duration. J. Therm. Biol. 2019, 82, 23–32. [Google Scholar] [CrossRef]
- Skibiel, A.L.; Koh, J.; Zhu, N.; Zhu, F.; Yoo, M.J.; Laporta, J. Carry-over effects of dry period heat stress on the mammary gland proteome and phosphoproteome in the subsequent lactation of dairy cows. Sci. Rep. 2022, 12, 6637. [Google Scholar] [CrossRef]
- Laporta, J.; Ferreira, F.C.; Ouellet, V.; Dado-Senn, B.; Almeida, A.K.; De Vries, A.; Dahl, G.E. Late-gestation heat stress impairs daughter and granddaughter lifetime performance. J. Dairy Sci. 2020, 103, 7555–7568. [Google Scholar] [CrossRef] [PubMed]
- St-Pierre, N.R.; Cobanov, B.; Schnitkey, G. Economic losses from heat stress by US livestock industries. J. Dairy Sci. 2003, 86, E52–E77. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, F.C.; Gennari, R.S.; Dahl, G.E.; De Vries, A. Economic feasibility of cooling dry cows across the United States. J. Dairy Sci. 2016, 99, 9931–9941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tullo, E.; Mattachini, G.; Riva, E.; Finzi, A.; Provolo, G.; Guarino, M. Effects of Climatic Conditions on the Lying Behavior of a Group of Primiparous Dairy Cows. Animals 2019, 9, 869. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.H.; Kim, T.I.L.; Park, S.M.; Ki, K.S.; Kim, Y. Evaluation of heat stress responses in Holstein and Jersey cows by analyzing physiological characteristics and milk production in Korea. J. Anim. Sci. Technol. 2021, 63, 872–883. [Google Scholar] [CrossRef]
- Ghizzi, L.G.; Del Valle, T.A.; Takiya, C.S.; da Silva, G.G.; Zilio, E.M.C.; Grigoletto, N.T.S.; Martello, L.S.; Rennó, F.P. Effects of functional oils on ruminal fermentation, rectal temperature, and performance of dairy cows under high temperature humidity index environment. Anim. Feed Sci. Technol. 2018, 246, 158–166. [Google Scholar] [CrossRef]
- Fernández, I.G.; Ulloa-Arvizu, R.; Fernández, J. Milk yield did not decrease in large herds of high-producing Holstein cows in semi-arid climate of Mexico. Trop. Anim. Health Prod. 2019, 51, 149–154. [Google Scholar] [CrossRef]
- Liu, W.B.; Peh, H.C.; Wang, C.K.; Mangwe, M.C.; Chen, C.F.; Chiang, H.I. Effect of seasonal changes on fertility parameters of Holstein dairy cows in subtropical climate of Taiwan. Asian-Australas. J. Anim. Sci. 2018, 31, 820–826. [Google Scholar] [CrossRef] [Green Version]
- Min, L.; Cheng, J.; Shi, B.l.; Yang, H.J.; Zheng, N.; Wang, J. qi Effects of heat stress on serum insulin, adipokines, AMP-activated protein kinase, and heat shock signal molecules in dairy cows. J. Zhejiang Univ. Sci. B 2015, 16, 541–548. [Google Scholar] [CrossRef] [Green Version]
- Gaughan, J.B.; Bonner, S.L.; Loxton, I.; Mader, T.L. Effects of chronic heat stress on plasma concentration of secreted heat shock protein 70 in growing feedlot cattle. J. Anim. Sci. 2013, 91, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Abati, R.; Sampaio, A.R.; Maciel, R.M.A.; Colombo, F.C.; Libardoni, G.; Battisti, L.; Lozano, E.R.; Ghisi, N.D.C.; Costa-Maia, F.M.; Potrich, M. Bees and pesticides: The research impact and scientometrics relations. Environ. Sci. Pollut. Res. 2021, 28, 32282–32298. [Google Scholar] [CrossRef] [PubMed]
- Garfield, E. The history and meaning of the journal impact factor. J. Am. Med. Assoc. 2006, 295, 90–93. [Google Scholar] [CrossRef] [PubMed]
Journal | Frequency | Burst | Half-Life | Year | Impact Factor 2021 |
---|---|---|---|---|---|
Journal of Dairy Science | 539 | 5.04 | 17.5 | 2000 | 4.225 |
Journal of Animal Science | 426 | 3.18 | 17.5 | 2000 | 3.338 |
Livestock Production Science | 249 | NA | 17.5 | 2000 | 1.929 |
International Journal of Biometeorology | 241 | NA | 18.5 | 2000 | 3.738 |
Theriogenology Animal Reproduction | 235 | NA | 16.5 | 2001 | 2.923 |
Animal | 203 | NA | 6.5 | 2012 | 3.730 |
Animal Reproduction | 138 | 7.06 | 16.5 | 2001 | 2.220 |
Plos One | 125 | NA | 4.5 | 2015 | 3.240 |
Domestic Animal Endocrinology | 110 | NA | 14,5 | 2004 | 2.290 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frigeri, K.D.M.; Kachinski, K.D.; Ghisi, N.d.C.; Deniz, M.; Damasceno, F.A.; Barbari, M.; Herbut, P.; Vieira, F.M.C. Effects of Heat Stress in Dairy Cows Raised in the Confined System: A Scientometric Review. Animals 2023, 13, 350. https://doi.org/10.3390/ani13030350
Frigeri KDM, Kachinski KD, Ghisi NdC, Deniz M, Damasceno FA, Barbari M, Herbut P, Vieira FMC. Effects of Heat Stress in Dairy Cows Raised in the Confined System: A Scientometric Review. Animals. 2023; 13(3):350. https://doi.org/10.3390/ani13030350
Chicago/Turabian StyleFrigeri, Karen Dal’ Magro, Kariane Donatti Kachinski, Nédia de Castilhos Ghisi, Matheus Deniz, Flávio Alves Damasceno, Matteo Barbari, Piotr Herbut, and Frederico Márcio Corrêa Vieira. 2023. "Effects of Heat Stress in Dairy Cows Raised in the Confined System: A Scientometric Review" Animals 13, no. 3: 350. https://doi.org/10.3390/ani13030350
APA StyleFrigeri, K. D. M., Kachinski, K. D., Ghisi, N. d. C., Deniz, M., Damasceno, F. A., Barbari, M., Herbut, P., & Vieira, F. M. C. (2023). Effects of Heat Stress in Dairy Cows Raised in the Confined System: A Scientometric Review. Animals, 13(3), 350. https://doi.org/10.3390/ani13030350