Effects of the Addition of Crude Fibre Concentrate on Performance, Welfare and Selected Caecal Bacteria of Broilers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Crude Fibre Concentrate
2.2. Animals
- TWG = body weight (g) at the end − body weight (g) at the start;
- ADG (g/chick/d) = TWG/days of growth period;
- FCR (kg feed/kg gain) = cumulative feed intake (kg)/total weight gain (kg);
- Viability (%) = 100 − Mortality (%)
2.3. Welfare Assessment
2.4. Microbiological Analysis
2.5. Measurement of Faeces and Litter pH
2.6. Statistical Analysis
3. Results
3.1. Production Performance and Welfare Indicators of Broiler Chickens
3.2. Results of the Microbiological Analyses
Results of Microbiological Analyses of Chicken Cecum Contents
3.3. Results of the pH Measurements
Results Obtained from Measuring Faeces and Litter pH
4. Discussion
4.1. Production Performance of Broiler Chickens
4.2. Welfare Indicators of Broiler Chickens
4.3. Microbiological Analyses and pH Measurements
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tejeda, O.J.; Kim, W.K. Role of Dietary Fiber in Poultry Nutrition. Animals 2021, 11, 461. [Google Scholar] [CrossRef] [PubMed]
- Henneberg, W. Stohmann Über Das Erhaltungsfutter Volljährigen Rindviehs. J. Für Landwirtsch. 1859, 3, 485–551. [Google Scholar]
- McDonald, J.C.; Whitesides, G.M. Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices. Acc. Chem. Res. 2002, 35, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Dobos, Á.; Bársony, P.; Posta, J.; Babinszky, L. Effect of Feeds with Different Crude Fiber Content on the Performance of Meat Goose. Acta Agrar. Debreceniensis 2019, 2, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Southgate, D.A.T. Dietary Fiber. Definition of Dietary Fibre. In Handbook of Dietary Fiber in Human Nutrition; Spiller, G.A., Ed.; CRC Press: Boca Raton, FL, USA, 1986; Volume 16. [Google Scholar]
- Ricke, S.; VAN DER Aar, P.; Fahey, G.; Berger, L. Influence of Dietary Fibers on Performance and Fermentation Characteristics of Gut Contents from Growing Chicks. Poult. Sci. 1982, 61, 1335–1343. [Google Scholar] [CrossRef]
- Yu, B.; Tsai, C.-C.; Hsu, J.-C.; Chiou, P.-S. Effect of Different Sources of Dietary Fibre on Growth Performance, Intestinal Morphology and Caecal Carbohydrases of Domestic Geese. Br. Poult. Sci. 1998, 39, 560–567. [Google Scholar] [CrossRef]
- Cao, B.H.; Zhang, X.P.; Guo, Y.M.; Karasawa, Y.; Kumao, T. Effects of Dietary Cellulose Levels on Growth, Nitrogen Utilization, Retention Time of Diets in Digestive Tract and Caecal Microflora of Chickens. Asian Australas. J. Anim. Sci. 2003, 16, 863–866. [Google Scholar] [CrossRef]
- Shakouri, M.D.; Kermanshahi, H.; Mohsenzadeh, M. Effect of Different non Starch Polysaccharides in Semi Purified Diets on Performance and Intestinal Microflora of Young Broiler Chickens. Int. J. Poult. Sci. 2006, 5, 557–561. [Google Scholar] [CrossRef]
- Baurhoo, B.; Ruiz-Feria, C.; Zhao, X. Purified Lignin: Nutritional and Health Impacts on Farm Animals—A Review. Anim. Feed. Sci. Technol. 2008, 144, 175–184. [Google Scholar] [CrossRef]
- Baurhoo, B.; Phillip, L.; Ruiz-Feria, C.A. Effects of Purified Lignin and Mannan Oligosaccharides on Intestinal Integrity and Microbial Populations in the Ceca and Litter of Broiler Chickens. Poult. Sci. 2007, 86, 1070–1078. [Google Scholar] [CrossRef]
- Faber, T.; Dilger, R.N.; Hopkins, A.; Price, N.; Fahey, G. Effects of Oligosaccharides in a Soybean Meal-Based Diet on Fermentative and Immune Responses in Broiler Chicks Challenged with Eimeria acervulina. Poult. Sci. 2012, 91, 3132–3140. [Google Scholar] [CrossRef] [PubMed]
- Bogusławska-Tryk, M.; Szymeczko, R.; Piotrowska, A.; Burlikowska, K.; Śliżewska, K. Ileal and Cecal Microbial Population and Short-Chain Fatty Acid Profile in Broiler Chickens Fed Diets Supplemented with Lignocellulose. Pak. Vet. J. 2015, 35, 212–216. [Google Scholar]
- Hussein, S.M.; Frankel, T.L. Effect of Varying Proportions of Lignin and Cellulose Supplements on Immune Function and Lymphoid Organs of Layer Poultry (Gallus gallus). J. Poult. Sci. 2019, 56, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.H.; Karasawa, Y.; Guo, Y.M. Effects of Green Tea Polyphenols and Fructo-oligosaccharides in Semi-purified Diets on Broilers` Performance and Caecal Microflora and Their Metabolites. Asian Australas. J. Anim. Sci. 2005, 18, 85–89. [Google Scholar] [CrossRef]
- Saki, A.A.; Hemati Matin, H.R.; Tabatabai, M.M.; Zamani, P.; Naseri Harsini, R. Microflora Population, Intestinal Condition and Performance of Broilers in Response to Various Rates of Pectin and Cellulose in the Diet. Eur. Poult. Sci. 2010, 74, 183–188. [Google Scholar]
- Alizadeh, M.; Shojadoost, B.; Boodhoo, N.; Astill, J.; Taha-Abdelaziz, K.; Hodgins, D.C.; Kulkarni, R.R.; Sharif, S. Necrotic enteritis in chickens: A Review of Pathogenesis, Immune Responses and Prevention, Focusing on Probiotics and Vaccination. Anim. Health Res. Rev. 2021, 22, 147–162. [Google Scholar] [CrossRef]
- Kulkarni, R.R.; Gaghan, C.; Gorrell, K.; Sharif, S.; Taha-Abdelaziz, K. Probiotics as Alternatives to Antibiotics for the Prevention and Control of Necrotic Enteritis in Chickens. Pathogens 2022, 11, 692. [Google Scholar] [CrossRef]
- Abed, A.H.; Radwan, S.A.; Orabi, A.; Abdelaziz, K.T. The Combined Effects of Probiotic CLOSTAT® and Aviboost® Supplement on Growth Performance, Intestinal Morphology, and Immune Response of Broiler Chickens. Ger. J. Veter, Res. 2023, 3, 7–18. [Google Scholar] [CrossRef]
- Maslowski, K.M.; Mackay, C.R. Diet, Gut Microbiota and Immune Responses. Nat. Immunol. 2010, 12, 5–9. [Google Scholar] [CrossRef]
- Shehata, A.A.; Attia, Y.; Khafaga, A.F.; Farooq, M.Z.; El-Seedi, H.R.; Eisenreich, W.; Tellez-Isaias, G. Restoring Healthy Gut Microbiome in Poultry Using Alternative Feed Additives with Particular Attention to Phytogenic Substances: Challenges and Prospects. Ger. J. Veter. Res. 2022, 2, 32–42. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, W. Aflatoxin B1 Impairs Mitochondrial Functions, Activates ROS Generation, Induces Apoptosis and Involves Nrf2 Signal Pathway in Primary Broiler Hepatocytes. Anim. Sci. J. 2016, 87, 1490–1500. [Google Scholar] [CrossRef] [PubMed]
- Sekirov, I.; Russell, S.L.; Antunes, L.C.M.; Finlay, B.B. Gut Microbiota in Health and Disease. Physiol. Rev. 2010, 90, 859–904. [Google Scholar] [CrossRef] [PubMed]
- Tellez-Isaias, G.; Eisenreich, W.; Petrone-Garcia, V.M.; Hernandez-Velasco, X.; Castellanos-Huerta, C.-H.; Jr, G.T.; Latorre, J.D.; Bottje, W.G.; Senas-Cuesta, R.; Coles, M.E.; et al. Effects of chronic stress and intestinal inflammation on commercial poultry health and performance: A review. Ger. J. Veter. Res. 2023, 3, 38–57. [Google Scholar] [CrossRef]
- Pietsch, M. The Impact of Crude Fibre Concentrate on Footpad Dermatitis in Broilers. Int. Poult. Prod. 2013, 21, 11–13. [Google Scholar]
- Brink, M.; Janssens, G.P.; Delezie, E. How do Moisture Content, Friability, and Crust Development of Litter Influence Ammonia Concentrations in Broiler Production? Livest. Sci. 2022, 265, 105109. [Google Scholar] [CrossRef]
- Shepherd, E.; Fairchild, B. Footpad Dermatitis in Poultry. Poult. Sci. 2010, 89, 2043–2051. [Google Scholar] [CrossRef] [PubMed]
- Collett, S.R. Nutrition and Wet Litter Problems in Poultry. Anim. Feed. Sci. Technol. 2012, 173, 65–75. [Google Scholar] [CrossRef]
- de Jong, I.C.; Gunnink, H.; van Harn, J. Wet Litter not Only Induces Footpad Dermatitis but Also Reduces Overall Welfare, Technical Performance, and Carcass Yield in Broiler Chickens. J. Appl. Poult. Res. 2014, 23, 51–58. [Google Scholar] [CrossRef]
- Sistani, K.; Brink, G.; McGowen, S.; Rowe, D.; Oldham, J. Characterization of Broiler Cake and Broiler Litter, the by-Products of two Management Practices. Bioresour. Technol. 2003, 90, 27–32. [Google Scholar] [CrossRef]
- Lister, S.A. Effects of Litter Moisture on Performance, Health and Welfare. World Poultry Science Association (WPSA). In Proceedings of the 17th European Symposium on Poultry Nutrition, Edinburgh, UK, 23–27 August 2009; pp. 33–39. [Google Scholar]
- Miles, D.M.; Brooks, J.P.; Sistani, K. Spatial Contrasts of Seasonal and Intraflock Broiler Litter Trace Gas Emissions, Physical and Chemical Properties. J. Environ. Qual. 2011, 40, 176–187. [Google Scholar] [CrossRef]
- Farran, M.T.; Akilian, H.A.; Hamoud, A.M.; Barbour, G.W.; Saoud, I.P. Lignocellulose Improves Protein and Amino Acid Digestibility in Roosters and Egg Hatchability in Broiler Breeders. J. Poult. Sci. 2017, 54, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Bosse, A.; Beynen, A.; Schenkel, H.; Pietsch, M.; Mateos, G.G.; Gidenne, T. Fiber in Animal Nutrition. A Practical Guide for Monogastrics, 1st ed.; AGRIMEDIA ERLING Verlag GmbH & Co. KG: Clenze, Niedersachsen, Germany, 2016; p. 38. [Google Scholar]
- Ross Management Guide; Aviagen Ross Management Guide; 2018. Available online: http://www.rosspoultrybreeders.co.za/downloads/breeder/2018RossPSHandbook.pdf (accessed on 30 May 2022).
- Marcu, A.; Dumitrescu, G.; Vacaru-Opriş, I.; Ciochină, L.P.; Marcu, A.; Nicula, M.; Peţ, I.; Dronca, D.; Kelciov, B.; Mariş, C. The Influence of Genetics on Economic Efficiency of Broiler Chickens Growth Dorel Dronca the Influence of Genetics on Economic Efficiency of Broiler Chickens Growth. Anim. Sci. Biotechnol. 2013, 46, 339–346. [Google Scholar]
- Welfare Quality Assessment Protocol for Poultry; 2009. Available online: https://edepot.wur.nl/233471 (accessed on 27 June 2022).
- Kestin, S.; Knowles, T.; Tinch, A.; Gregory, N. Prevalence of Leg Weakness in Broiler Chickens and Its Relationship with Genotype. Veter. Rec. 1992, 131, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Abdollahi, M.R.; Zaefarian, F.; Hunt, H.; Anwar, M.N.; Thomas, D.G.; Ravindran, V. Wheat Particle Size, Insoluble Fibre Sources and Whole Wheat Feeding Influence Gizzard Musculature and Nutrient Utilisation to Different Extents in Broiler Chickens. J. Anim. Physiol. Anim. Nutr. 2019, 103, 146–161. [Google Scholar] [CrossRef] [PubMed]
- Sarikhan, M.; Shahryar, H.A.; Gholizadeh, B.; Hosseinzadeh, M.H.; Beheshti, B.; Mahmoodnejad, A. Effects of Insoluble Fiber on Growth Performance, Carcass Traits and Ileum Morphological Parameters on Broiler Chick Males. Int. J. Agric. Biol. 2010, 12, 531–536. [Google Scholar]
- Rahmatnejad, E.; Saki, A.A. Effect of Dietary Fibres on Small Intestine Histomorphology and Lipid Metabolism in Young Broiler Chickens. J. Anim. Physiol. Anim. Nutr. 2015, 100, 665–672. [Google Scholar] [CrossRef]
- Röhe, I.; Zentek, J. Lignocellulose as an Insoluble Fiber Source in Poultry Nutrition: A review. J. Anim. Sci. Biotechnol. 2021, 12, 82. [Google Scholar] [CrossRef]
- Röhe, I.; Metzger, F.; Vahjen, W.; Brockmann, G.; Zentek, J. Effect of Feeding Different Levels of Lignocellulose on Performance, Nutrient Digestibility, Excreta Dry Matter, and Intestinal Microbiota in Slow Growing Broilers. Poult. Sci. 2020, 99, 5018–5026. [Google Scholar] [CrossRef]
- Makivic, L.; Glisic, M.; Boskovic, M.; Djordjevic, J.; Markovic, R.; Baltic, M.; Sefer, D. Performances, Ileal and Cecal Microbial Populations and Histological Characteristics in Broilers Fed Diets Supplemented with Lignocellulose. Kafkas Univ. Veter. Fak. Derg. 2018, 25, 83–91. [Google Scholar] [CrossRef]
- Sozcu, A. Growth performance, pH Value of Gizzard, Hepatic Enzyme Activity, Immunologic Indicators, Intestinal Histomorphology, and Cecal Microflora of Broilers Fed Diets Supplemented with Processed Lignocellulose. Poult. Sci. 2019, 98, 6880–6887. [Google Scholar] [CrossRef]
- Kheravii, S.K.; Swick, R.A.; Choct, M.; Wu, S.-B. Coarse Particle Inclusion and Lignocellulose-Rich Fiber Addition in Feed Benefit Performance and Health of Broiler Chickens. Poult. Sci. 2017, 96, 3272–3281. [Google Scholar] [CrossRef] [PubMed]
- Zeitz, J.; Neufeld, K.; Potthast, C.; Kroismayr, A.; Most, E.; Eder, K. Effects of dietary supplementation of the lignocelluloses FibreCell and OptiCell on performance, expression of inflammation-related genes and the gut microbiome of broilers. Poult. Sci. 2019, 98, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Bhamare, K.S.; Dildeep, V.; Senthil, M.S.; Chavan, S.J. Nutritive Evaluation of Cashew Apple Waste in Broilers. Int. J. Nat. Sci. 2016, 7, 629–632. [Google Scholar]
- Van, I. Growth and Broilers Industrialization, 1st ed.; Ceres: Bucharest, Romania, 2003; pp. 235–236. [Google Scholar]
- Aviagen Ross 308/Ross 308 FF Broiler Performance Objectives. 2019. Available online: http://sorooshe-roshd.com/wp-content/uploads/pdf/Ross308-308FF-BroilerPO2019-EN.pdf (accessed on 18 August 2023).
- Ray, S.M.; Banik, A.; Bhagat, G. Effects of Proprietary Hepatoprotective Additives (CadlivTM liq.) Supplementation on the Growth Performance and Hepatic Histological Architecture of Commercial Broiler Chickens. Int. J. Poult. Sci. 2020, 19, 338–345. [Google Scholar] [CrossRef]
- Janjić, J.; Savić, K.; Marković, R.; Šefer, D.; Nedić, D.; Đurić, S.; Vejnović, B.; Mirilović, M. Influence of Phytobiotics in Feed on the Cost-Effectiveness of Broiler Production During Fattening. Meat Technol. 2022, 63, 51–58. [Google Scholar] [CrossRef]
- Lukic, M.; Petricevic, V.; Skrbic, Z.; Delic, N.; Tolimir, N.; Doskovic, V.; Rakonjac, S. Genotype and Breeder Flock Age Impact On Broiler Performance in Suboptimal Conditions. Biotehnol. Stoc. 2020, 36, 447–462. [Google Scholar] [CrossRef]
- Jacob, F.; Baracho; Nääs, I.; Lima, N.; Salgado, D.; Souza, R. Risk of Incidence of Hock Burn and Pododermatitis in Broilers Reared under Commercial Conditions. Rev. Bras. Cienc. Avic. 2016, 18, 357–362. [Google Scholar] [CrossRef]
- Bassler, A.W.; Arnould, C.; Butterworth, A.; Colin, L.; de Jong, I.C.; Ferrante, V.; Ferrari, P.; Haslam, S.; Wemelsfelder, F.; Blokhuis, H.J. Potential Risk Factors Associated with Contact Dermatitis, Lameness, Negative Emotional State, and Fear of Humans in Broiler Chicken Flocks. Poult. Sci. 2013, 92, 2811–2826. [Google Scholar] [CrossRef]
- Martland, M. Ulcerative Dermatitis Dm Broiler Chickens: The Effects of Wet Litter. Avian Pathol. 1985, 14, 353–364. [Google Scholar] [CrossRef]
- Kaukonen, E.; Norring, M.; Valros, A. Effect of Litter Quality on Foot Pad Dermatitis, Hock Burns and Breast Blisters in Broiler Breeders during the Production Period. Avian Pathol. 2016, 45, 667–673. [Google Scholar] [CrossRef]
- Wu, K.; Hocking, P.M. Turkeys are Equally Susceptible to Foot Pad Dermatitis from 1 to 10 Weeks of Age and Foot Pad Scores were Minimized when Litter Moisture was Less than 30%. Poult. Sci. 2011, 90, 1170–1178. [Google Scholar] [CrossRef] [PubMed]
- Liebl, M.; Gierus, M.; Potthast, C.; Schedle, K. Influence of Insoluble Dietary Fibre on Expression of Pro-Inflammatory Marker Genes in Caecum, Ileal Morphology, Performance, and Foot Pad Dermatitis in Broiler. Animals 2022, 12, 2069. [Google Scholar] [CrossRef] [PubMed]
- Barnes, E.M. The Intestinal Microflora of Poultry and Game Birds During Life and After Storage. J. Appl. Bacteriol. 1979, 46, 407–419. [Google Scholar] [CrossRef] [PubMed]
- Walugembe, M.; Hsieh, J.C.F.; Koszewski, N.J.; Lamont, S.J.; Persia, M.E.; Rothschild, M.F. Effects of Dietary Fiber on Cecal Short-Chain Fatty Acid and Cecal Microbiota of Broiler and Laying-Hen Chicks. Poult. Sci. 2015, 94, 2351–2359. [Google Scholar] [CrossRef] [PubMed]
- Stanley, D.; Denman, S.E.; Hughes, R.J.; Geier, M.S.; Crowley, T.M.; Chen, H.; Haring, V.R.; Moore, R.J. Intestinal Microbiota Associated with Differential Feed Conversion Efficiency in Chickens. Appl. Microbiol. Biotechnol. 2012, 96, 1361–1369. [Google Scholar] [CrossRef] [PubMed]
- Langenfeld, M. Anatomia Kury, 1st ed.; Wydawnictwo Naukowe PWN: Kraków, Poland, 1992; p. 110. [Google Scholar]
- Tabernero, M.; de Cedrón, M.G. Microbial Metabolites Derived from Colonic Fermentation of Non-Digestible Compounds. Curr. Opin. Food Sci. 2017, 13, 91–96. [Google Scholar] [CrossRef]
- O’Shea, E.F.; Cotter, P.D.; Stanton, C.; Ross, R.P.; Hill, C. Production of Bioactive Substances by Intestinal Bacteria as a Basis for Explaining Probiotic Mechanisms: Bacteriocins and Conjugated Linoleic Acid. Int. J. Food Microbiol. 2012, 152, 189–205. [Google Scholar] [CrossRef]
- Lan, Y.; Williams, B.A.; Tamminga, S.; Boer, H.; Akkermans, A.; Erdi, G.; Verstegen, M.W.A. In Vitro Fermentation Kinetics of Some Non-Digestible Carbohydrates by the Caecal Microbial Community of Broilers. Anim. Feed. Sci. Technol. 2005, 123–124, 687–702. [Google Scholar] [CrossRef]
- Apajalahti, J.H.A.; Särkilahti, L.K.; Mäki, B.R.E.; Heikkinen, J.P.; Nurminen, P.H.; Holben, W.E. Effective Recovery of Bacterial DNA and Percent-Guanine-Plus-Cytosine-Based Analysis of Community Structure in the Gastrointestinal Tract of Broiler Chickens. Appl. Environ. Microbiol. 1998, 64, 4084–4088. [Google Scholar] [CrossRef]
- Apajalahti, J.H.A.; Kettunen, A.; Bedford, M.R.; Holben, W.E. Percent G+C Profiling Accurately Reveals Diet-Related Differences in the Gastrointestinal Microbial Community of Broiler Chickens. Appl. Environ. Microbiol. 2001, 67, 5656–5667. [Google Scholar] [CrossRef]
- Hume, M.; Kubena, L.; Edrington, T.; Donskey, C.; Moore, R.; Ricke, S.; Nisbet, D. Poultry Digestive Microflora Biodiversity as Indicated by Denaturing Gradient Gel Electrophoresis. Poult. Sci. 2003, 82, 1100–1107. [Google Scholar] [CrossRef] [PubMed]
- Sergeant, M.J.; Constantinidou, C.; Cogan, T.A.; Bedford, M.R.; Penn, C.W.; Pallen, M.J. Extensive Microbial and Functional Diversity within the Chicken Cecal Microbiome. PLoS ONE 2014, 9, e91941. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Moreno, E.; Romero, C.; Berrocoso, J.D.; Frikha, M.; Mateos, G.G. Effects of the Inclusion of Oat Hulls or Sugar Beet Pulp in the Diet on Gizzard Characteristics, Apparent Ileal Digestibility of Nutrients, and Microbial Count in the Ceca in 36- Day-Old Broilers Reared on Floor. Abstr. Poult. Sci. 2011, 90, 135. [Google Scholar]
- Cherrington, C.A.; Hinton, M.; Chopra, I. Effect of Short-Chain Organic Acids on Macromolecular Synthesis in Escherichia coli. J. Appl. Bacteriol. 1990, 68, 69–74. [Google Scholar] [CrossRef]
- van der Wielen, P.W.J.J.; Biesterveld, S.; Notermans, S.; Hofstra, H.; Urlings, B.A.P.; van Knapen, F. Role of Volatile Fatty Acids in Development of the Cecal Microflora in Broiler Chickens during Growth. Appl. Environ. Microbiol. 2000, 66, 2536–2540. [Google Scholar] [CrossRef]
Type of Feed | The Proportion of Crude Fibre Concentrate Used (%) | ||
---|---|---|---|
C | A1 | A2 | |
Starter | 0 | 0.4 | 0.6 |
Grower I | 0 | 0.8 | 1.0 |
Grower II | 0 | 0.8 | 1.2 |
Finisher | 0 | 0.2 | 0.4 |
Ingredient | The Type of Feed | |||
---|---|---|---|---|
Starter | Grower I | Grower II | Finisher | |
(g/kg) | ||||
Wheat 13% TP | 441.4 | 479.0 | 505.2 | 523.7 |
Soybean meal | 314.5 | 264.8 | 233.8 | 214.0 |
Maise 8% TP | 200.0 | 200.0 | 200.0 | 200.0 |
Soybean oil | 13.43 | 29.52 | 36.57 | 40.66 |
Limestone | 9.32 | 7.65 | 7.03 | 5.68 |
Monocalcium phosphate | 5.05 | 3.48 | 2.48 | 1.40 |
Premiks * | 5.00 | 5.00 | 5.00 | 5.00 |
Lysine 78.5% | 3.46 | 3.25 | 3.12 | 3.05 |
Methionine 99% | 2.98 | 2.39 | 2.04 | 1.81 |
NaCl | 2.26 | 2.28 | 2.29 | 2.29 |
Sodium carbonate | 1.50 | 1.50 | 1.50 | 1.50 |
L-threonine 98.5% | 1.08 | 1.14 | 1.02 | 0.94 |
Group | Crude fibre concentrate g/kg of feed (on top) | |||
C | 0.0 | 0.0 | 0.0 | 0.0 |
A1 | 4.0 | 8.0 | 10.0 | 2.0 |
A2 | 6.0 | 10.0 | 12.0 | 4.0 |
Component | Group | The Type of Feed | |||
---|---|---|---|---|---|
Starter | Grower I | Grower II | Finisher | ||
Crude protein (%) | C | 20.61 | 18.78 | 17.08 | 18.51 |
A1 | 21.19 | 18.18 | 17.00 | 18.48 | |
A2 | 20.76 | 18.65 | 16.18 | 18.30 | |
Crude fat (%) | C | 3.06 | 3.06 | 2.84 | 2.87 |
A1 | 3.42 | 3.02 | 2.85 | 2.97 | |
A2 | 3.56 | 3.08 | 2.70 | 2.90 | |
Crude fibre (%) | C | 3.14 | 3.20 | 2.84 | 3.08 |
A1 | 3.36 | 3.11 | 3.35 | 3.18 | |
A2 | 3.27 | 3.22 | 3.25 | 3.37 | |
Ash (%) | C | 8.50 | 5.94 | 5.11 | 6.96 |
A1 | 5.35 | 4.55 | 5.50 | 4.38 | |
A2 | 5.08 | 4.67 | 7.86 | 4.43 |
Indices | Group | SEM | p Value | ||
---|---|---|---|---|---|
C | A1 | A2 | |||
Body weight, g | 2917 A | 3140 B | 3083 B | 10.475 | ≤0.001 |
FCR, kg × kg−1 | 1.65 | 1.68 | 1.72 | 0.107 | 0.355 |
Mortality, % | 4.85 | 3.34 | 3.64 | 0.324 | 0.126 |
EPEF, scores | 400.5 | 430.2 | 411.3 | - | - |
EBI, scores | 395.1 | 424.8 | 406.0 | - | - |
Statistic | Score | Group | ||||||
---|---|---|---|---|---|---|---|---|
C | A1 | A2 | ||||||
% | n | % | n | % | n | |||
Footpad dermatitis | 0 | 42.1 | 120 | 45.7 | 133 | 58.6 | 170 | |
1 | 54.7 | 156 | 45.4 | 132 | 39.3 | 114 | ||
2 | 3.2 | 9 | 8.9 | 26 | 2.1 | 6 | ||
Kruskal–Wallis test | p ≤ 0.001 | A | A | B | ||||
Gait Score | 0 | 51.2 | 146 | 83.8 | 244 | 84.8 | 246 | |
1 | 31.6 | 90 | 14.1 | 41 | 13.5 | 39 | ||
2 | 10.9 | 31 | 1.4 | 4 | 1.4 | 4 | ||
3 | 4.2 | 12 | 0.7 | 2 | 0.3 | 1 | ||
4 | 2.1 | 6 | 0.0 | 0 | 0.0 | 0 | ||
5 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | ||
Kruskal–Wallis test | p ≤ 0.001 | A | B | B | ||||
Hock Burns | 0 | 57.9 | 165 | 64.6 | 188 | 70.0 | 203 | |
1 | 35.1 | 100 | 33.3 | 97 | 29.7 | 86 | ||
2 | 5.6 | 16 | 2.1 | 6 | 0.3 | 1 | ||
3 | 1.4 | 4 | 0.0 | 0 | 0.0 | 0 | ||
Kruskal–Wallis test | p ≤ 0.001 | A | B | B | ||||
Plumage cleanliness | 0 | 53.3 | 152 | 90.0 | 262 | 90.0 | 261 | |
1 | 44.6 | 127 | 10.0 | 29 | 10.0 | 29 | ||
2 | 2.1 | 6 | 0.0 | 0 | 0.0 | 0 | ||
Kruskal–Wallis test | p ≤ 0.001 | A | B | B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urban, J.; Jaworski, S.; Lange, A.; Bień, D.; Matuszewski, A.; Michalczuk, M. Effects of the Addition of Crude Fibre Concentrate on Performance, Welfare and Selected Caecal Bacteria of Broilers. Animals 2023, 13, 3883. https://doi.org/10.3390/ani13243883
Urban J, Jaworski S, Lange A, Bień D, Matuszewski A, Michalczuk M. Effects of the Addition of Crude Fibre Concentrate on Performance, Welfare and Selected Caecal Bacteria of Broilers. Animals. 2023; 13(24):3883. https://doi.org/10.3390/ani13243883
Chicago/Turabian StyleUrban, Jakub, Sławomir Jaworski, Agata Lange, Damian Bień, Arkadiusz Matuszewski, and Monika Michalczuk. 2023. "Effects of the Addition of Crude Fibre Concentrate on Performance, Welfare and Selected Caecal Bacteria of Broilers" Animals 13, no. 24: 3883. https://doi.org/10.3390/ani13243883
APA StyleUrban, J., Jaworski, S., Lange, A., Bień, D., Matuszewski, A., & Michalczuk, M. (2023). Effects of the Addition of Crude Fibre Concentrate on Performance, Welfare and Selected Caecal Bacteria of Broilers. Animals, 13(24), 3883. https://doi.org/10.3390/ani13243883