Effect of an Alliaceae Encapsulated Extract on Growth Performance, Gut Health, and Intestinal Microbiota in Broiler Chickens Challenged with Eimeria spp.
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Standard
2.2. Housing, Animals and Experimental Design
2.3. Alliaceae Encapsulated Extract Supplementation
2.4. Diets and Experimental Groups
2.5. Productive Performance
2.6. Eimeria Challenge
2.7. Eimeria Oocysts Count
2.8. Intestinal Lesion Score (LS)
2.9. Anticoccidial Index (ACI)
- rBWG: BWG rate of the challenged unmedicated control or drug treated group/BWG rate of unchallenged unmedicated control group × 100.
- BWG rate: (Final BW − initial BW)/initial BW × 100.
- SR: Number of final birds alive/ number of total initial birds × 100.
- TMLS: Sum of the LS caused by all the Eimeria spp.
- OPG value: OPG in unchallenged unmedicated control or challenged drug-treated group/OPG in infected/unmedicated control group × 100 [32].
2.10. Intestinal Microbiota Samples
2.11. DNA Extraction, 16s rRNA Gene Amplification, and Library Preparation for Sequencing
2.12. Bioinformatic Analysis
2.13. Statistical Analyses
3. Results
3.1. Productive Performance
3.2. Oocysts Shedding
3.3. Intestinal Lesion Score
3.4. Anticoccidial Index (ACI)
3.5. Analysis of Bacterial Composition, 16s rRNA
3.6. Alpha- and Beta-Diversity
3.7. Relative Intestinal Microbiota Abundance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Britez, J.D.; Rodriguez, A.E.; Di Ciaccio, L.; Marugán-Hernandez, V.; Tomazic, M.L. What do we know about surface proteins of chicken parasites Eimeria? Life 2023, 13, 1295. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, L.; Li, L.; Tian, D.; Li, W.; Xu, L.; Yan, R.; Li, X.; Song, X. Protective immunity induced by Eimeria common antigen 14–3-3 against Eimeria tenella, Eimeria acervulina and Eimeria maxima. BMC Vet. Res. 2018, 14, 337. [Google Scholar] [CrossRef] [PubMed]
- Noack, S.; Chapman, H.D.; Selzer, P.M. Anticoccidial drugs of the livestock industry. Parasitol. Res. 2019, 118, 2009–2026. [Google Scholar] [CrossRef] [PubMed]
- Zaheer, T.; Abbas, R.Z.; Imran, M.; Abbas, A.; Butt, A.; Aslam, S.; Ahmad, J. Vaccines against chicken coccidiosis with particular reference to previous decade: Progress, challenges, and opportunities. Parasitol. Res. 2022, 121, 2749–2763. [Google Scholar] [CrossRef] [PubMed]
- Mesa-Pineda, C.; Navarro-Ruíz, J.L.; López-Osorio, S.; Chaparro-Gutiérrez, J.J.; Gómez-Osorio, L.M. Chicken coccidiosis: From the parasite lifecycle to control of the disease. Front. Vet. Sci. 2021, 8, 787653. [Google Scholar] [CrossRef] [PubMed]
- Martins, R.R.; Silva, L.J.G.; Pereira, A.M.P.T.; Esteves, A.; Duarte, S.C.; Pena, A. Coccidiostats and poultry: A comprehensive review and current legislation. Foods 2022, 11, 2738. [Google Scholar] [CrossRef] [PubMed]
- Wunderlich, F.; Al-Quraishy, S.; Steinbrenner, H.; Sies, H.; Dkhil, M.A. Towards identifying novel anti-Eimeria agents: Trace elements, vitamins, and plant-based natural products. Parasitol. Res. 2014, 113, 3547–3556. [Google Scholar] [CrossRef]
- Stefanello, C.; Rosa, D.P.; Dalmoro, Y.K.; Segatto, A.L.; Vieira, M.S.; Moraes, M.L.; Santin, E. Protected blend of organic acids and essential oils improves growth performance, nutrient digestibility, and intestinal health of broiler chickens undergoing an intestinal challenge. Front. Vet. Sci. 2019, 6, 491. [Google Scholar] [CrossRef]
- Ur Rahman, S.; Khan, S.; Chand, N.; Sadique, U.; Khan, R.U. In vivo effects of Allium cepa L. on the selected gut microflora and intestinal histomorphology in broiler. Acta Histochem. 2017, 119, 446–450. [Google Scholar] [CrossRef]
- Malematja, E.; Manyelo, T.G.; Ng’ambi, J.W.; Nemauluma, M.F.D.; Kolobe, S.D. Effects of onion extracts (Allium cepa) inclusion in diets on growth performance, carcass characteristics, and bone morphometric of broiler chickens. Anim. Biosci. 2023, 36, 1075–1082. [Google Scholar] [CrossRef]
- Kairalla, M.A.; Alshelmani, M.I.; Aburas, A.A. Effect of diet supplemented with graded levels of garlic (Allium sativum L.) powder on growth performance, carcass characteristics, blood hematology, and biochemistry of broilers. Open Vet. J. 2022, 12, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Sharma, N.K.; Kheravii, S.K.; Keerqin, C.; Ionescu, C.; Blanchard, A.; Wu, S.B. Potential of a mixture of eugenol and garlic tincture to improve performance and intestinal health in broilers under necrotic enteritis challenge. Anim. Nutr. 2022, 8, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Abdelli, N.; Perez, J.F.; Vilarrasa, E.; Cabeza Luna, I.; Melo-Duran, D.; D’Angelo, M.; Sola-Oriol, D. Targeted-release organic acids and essential oils improve performance and digestive function in broilers under a necrotic enteritis challenge. Animals 2020, 10, 259. [Google Scholar] [CrossRef] [PubMed]
- Kothari, D.; Lee, W.D.; Niu, K.M.; Kim, S.K. The genus Allium as poultry feed additive: A review. Animals 2019, 9, 1032. [Google Scholar] [CrossRef] [PubMed]
- Putnik, P.; Gabric, D.; Roohinejad, S.; Barba, F.J.; Granato, D.; Mallikarjunan, K.; Lorenzo, J.M.; Bursac Kovacevic, D. An overview of organosulfur compounds from Allium spp.: From processing and preservation to evaluation of their bioavailability, antimicrobial, and anti-inflammatory properties. Food Chem. 2019, 276, 680–691. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, M.S.; Nandagopal, M.G.; Amin Nordin, S.; Thilakavathy, K.; Joseph, N. Prevailing knowledge on the bioavailability and biological activities of sulphur compounds from Alliums: A potential drug candidate. Molecules 2020, 25, 4111. [Google Scholar] [CrossRef] [PubMed]
- Sorlozano-Puerto, A.; Albertuz-Crespo, M.; Lopez-Machado, I.; Ariza-Romero, J.J.; Banos-Arjona, A.; Exposito-Ruiz, M.; Gutierrez-Fernandez, J. In Vitro antibacterial activity of propyl-propane-thiosulfinate and Propyl-propane-thiosulfonate derived from Allium spp. against gram-negative and gram-positive multidrug-resistant bacteria isolated from human samples. Biomed Res. Int. 2018, 2018, 7861207. [Google Scholar] [CrossRef]
- Abad, P.; Arroyo-Manzanares, N.; Rivas-Montoya, E.; Ochando-Pulido, J.M.; Guillamon, E.; García-Campaña, A.M.; Martinez-Ferez, A.; Plaizier, J. Effects of different vehiculization strategies for the allium derivative propyl propane thiosulfonate during dynamic simulation of the pig gastrointestinal tract. Can. J. Anim. Sci. 2019, 99, 244–253. [Google Scholar] [CrossRef]
- Aguinaga-Casanas, M.A.; Mut-Salud, N.; Falcon-Pineiro, A.; Alcaraz-Martinez, A.; Guillamon, E.; Banos, A. In vitro antiparasitic activity of propyl-propane-thiosulfinate (PTS) and propyl-propane-thiosulfonate (PTSO) from Allium cepa against Eimeria acervulina sporozoites. Microorganisms 2022, 10, 2040. [Google Scholar] [CrossRef]
- Kim, D.K.; Lillehoj, H.S.; Lee, S.H.; Lillehoj, E.P.; Bravo, D. Improved resistance to Eimeria acervulina infection in chickens due to dietary supplementation with garlic metabolites. Br. J. Nutr. 2013, 109, 76–88. [Google Scholar] [CrossRef]
- Pourali, M.; Kermanshahi, H.; Golian, A.; Razmi, G.; Soukhtanloo, M. Antioxidant and anticoccidial effects of garlic powder and sulfur amino acids on Eimeria-infected and uninfected broiler chickens. Iran. J. Vet. Res. 2014, 15, 227–232. [Google Scholar]
- Peinado, M.J.; Ruiz, R.; Echávarri, A.; Aranda-Olmedo, I.; Rubio, L.A. Garlic derivative PTS-O modulates intestinal microbiota composition and improves digestibility in growing broiler chickens. Anim. Feed. Sci. Technol. 2013, 181, 87–92. [Google Scholar] [CrossRef]
- Khan, R.; Nikousefat, Z.; Tufarelli, V.; Naz, S.; Javdani, M.; Laudadio, V. Garlic (Allium sativum) supplementation in poultry diets, effects on production and physiology. World’s Poult. Sci. J. 2012, 68, 417–424. [Google Scholar] [CrossRef]
- Rabelo-Ruiz, M.; Ariza-Romero, J.J.; Zurita-Gonzalez, M.J.; Martin-Platero, A.M.; Banos, A.; Maqueda, M.; Valdivia, E.; Martinez-Bueno, M.; Peralta-Sanchez, J.M. Allium-based phytobiotic enhances egg production in laying hens through microbial composition changes in ileum and cecum. Animals 2021, 11, 448. [Google Scholar] [CrossRef] [PubMed]
- Abad, P.; Arroyo-Manzanares, N.; Ariza, J.J.; Baños, A.; García-Campaña, A.M. Effect of Allium extract supplementation on egg quality, productivity, and intestinal microbiota of laying hens. Animals 2021, 11, 41. [Google Scholar] [CrossRef] [PubMed]
- Holdsworth, P.A.; Conway, D.P.; McKenzie, M.E.; Dayton, A.D.; Chapman, H.D.; Mathis, G.F.; Skinner, J.T.; Mundt, H.C.; Williams, R.B.; World Association for the Advancement of Veterinary, P. World Association for the Advancement of Veterinary Parasitology (WAAVP) guidelines for evaluating the efficacy of anticoccidial drugs in chickens and turkeys. Vet. Parasitol. 2004, 121, 189–212. [Google Scholar] [CrossRef] [PubMed]
- Long, P.L.; Millard, B.J.; Joyner, L.P.; Norton, C.C. A guide to laboratory techniques used in the study and diagnosis of avian coccidiosis. Folia Vet. Lat. 1976, 6, 201–217. [Google Scholar]
- Kraieski, A.L.; Hayashi, R.M.; Sanches, A.; Almeida, G.C.; Santin, E. Effect of aflatoxin experimental ingestion and Eimeria vaccine challenges on intestinal histopathology and immune cellular dynamic of broilers: Applying an Intestinal Health Index. Poult. Sci. 2017, 96, 1078–1087. [Google Scholar] [CrossRef]
- Moraes, P.O.; Cardinal, K.M.; Gouvêa, F.L.; Schroeder, B.; Ceron, M.S.; Lunedo, R.; Frazzon, A.P.G.; Frazzon, J.; Ribeiro, A.M.L. Comparison between a commercial blend of functional oils and monensin on the performance and microbiota of coccidiosis-challenged broilers. Poult. Sci. 2019, 98, 5456–5464. [Google Scholar] [CrossRef]
- Johnson, J.; Reid, W.M. Anticoccidial drugs: Lesion scoring techniques in battery and floor-pen experiments with chickens. Exp. Parasitol. 1970, 28, 30–36. [Google Scholar] [CrossRef]
- Merk Sharp; Dohome Laboratory. Anticoccidial Index; Merk Company: Kenilworth, NJ, USA, 1976. [Google Scholar]
- Wang, L.; Guo, W.; Haq, S.U.; Guo, Z.; Cui, D.; Yang, F.; Cheng, F.; Wei, X.; Lv, J. Anticoccidial activity of Qinghao powder against Eimeria tenella in broiler chickens. Front. Vet. Sci. 2021, 8, 709046. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Kim, W. Interactions of Microbiota and Mucosal Immunity in the Ceca of Broiler Chickens Infected with Eimeria tenella. Vaccines 2022, 10, 1941. [Google Scholar] [CrossRef] [PubMed]
- Bae, Y.; Koo, B.-S.; Lee, S.; Mo, J.; Oh, K.; Mo, I. Bacterial diversity and its relationship to growth performance of broilers. Korean J. Vet. Res. 2017, 57, 159–167. [Google Scholar] [CrossRef]
- Yang, C.; Kennes, Y.; Lepp, D.; Yin, X.; Wang, Q.; Yu, H.; Yang, C.; Gong, J.; Diarra, M. Effects of encapsulated cinnamaldehyde and citral on the performance and cecal microbiota of broilers vaccinated or not vaccinated against coccidiosis. Poult. Sci. 2020, 99, 936–948. [Google Scholar] [CrossRef] [PubMed]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2012, 41, e1. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Author Correction: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 1091. [Google Scholar] [CrossRef]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. AEM 2007, 73, 5261–5267. [Google Scholar] [CrossRef]
- Glockner, F.O.; Yilmaz, P.; Quast, C.; Gerken, J.; Beccati, A.; Ciuprina, A.; Bruns, G.; Yarza, P.; Peplies, J.; Westram, R.; et al. 25 years of serving the community with ribosomal RNA gene reference databases and tools. J. Biotechnol. 2017, 261, 169–176. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Ritzi, M.M.; Abdelrahman, W.; Mohnl, M.; Dalloul, R.A. Effects of probiotics and application methods on performance and response of broiler chickens to an Eimeria challenge. Poult. Sci. 2014, 93, 2772–2778. [Google Scholar] [CrossRef] [PubMed]
- Osho, S.O.; Xiao, W.W.; Adeola, O. Response of broiler chickens to dietary soybean bioactive peptide and coccidia challenge. Poult. Sci. 2019, 98, 5669–5678. [Google Scholar] [CrossRef] [PubMed]
- Peinado, M.J.; Ruiz, R.; Echavarri, A.; Rubio, L.A. Garlic derivative propyl propane thiosulfonate is effective against broiler enteropathogens in vivo. Poult. Sci. 2012, 91, 2148–2157. [Google Scholar] [CrossRef] [PubMed]
- Aarti, C.; Khusro, A. Role of garlic (Allium sativum) as feed supplements in poultry industries: An overview. WNOFNS 2020, 29, 151–161. [Google Scholar]
- Blake, D.P.; Knox, J.; Dehaeck, B.; Huntington, B.; Rathinam, T.; Ravipati, V.; Ayoade, S.; Gilbert, W.; Adebambo, A.O.; Jatau, I.D.; et al. Re-calculating the cost of coccidiosis in chickens. Vet. Res. 2020, 51, 115. [Google Scholar] [CrossRef] [PubMed]
- Villar-Patiño, G.; Camacho-Rea, M.d.C.; Olvera-García, M.E.; Soria-Soria, A.; Baltazar-Vázquez, J.C.; Gómez-Verduzco, G.; Solano, L.; Téllez, G.; Ramírez-Pérez, A.H. The effect of encapsulated Propyl propane thiosulfonate (PTSO) on apparent ileal digestibility and productive performance in broiler chickens. Animals 2023, 13, 1123. [Google Scholar] [CrossRef] [PubMed]
- Chasser, K.M.; Duff, A.F.; Wilson, K.M.; Briggs, W.N.; Latorre, J.D.; Barta, J.R.; Bielke, L.R. Research Note: Evaluating fecal shedding of oocysts in relation to body weight gain and lesion scores during Eimeria infection. Poult. Sci. 2020, 99, 886–892. [Google Scholar] [CrossRef]
- You, M.-J. Detection of four important Eimeria species by multiplex PCR in a single assay. Parasitol. Int. 2014, 63, 527–532. [Google Scholar] [CrossRef]
- Kim, W.H.; Chaudhari, A.A.; Lillehoj, H.S. Involvement of T cell immunity in avian coccidiosis. Front. Immunol. 2019, 10, 2732. [Google Scholar] [CrossRef]
- Elkhtam, A.; Shata, A.; El-Hewaity, M.H. Efficacy of turmeric (Curcuma longa) and garlic (Allium sativum) on Eimeria species in broilers. IJBAS 2014, 3, 349. [Google Scholar] [CrossRef]
- Ali, M.; Chand, N.; Khan, R. Anticoccidial effect of garlic (Allium sativum) and ginger (Zingiber officinale) against experimentally induced coccidiosis in broiler chickens. J. Appl. Anim. Res. 2019, 1, 79–84. [Google Scholar] [CrossRef]
- Sidiropoulou, E.; Skoufos, I.; Marugan-Hernandez, V.; Giannenas, I.; Bonos, E.; Aguiar-Martins, K.; Lazari, D.; Blake, D.P.; Tzora, A. In vitro anticoccidial study of oregano and garlic essential oils and effects on growth performance, fecal oocyst output, and intestinal microbiota in vivo. Front. Vet. Sci. 2020, 7, 420. [Google Scholar] [CrossRef] [PubMed]
- Reid, W.M.; Johnson, J. Pathogenicity of Eimeria acervulina in light and heavy coccidial infections. Avian Dis. 1970, 14, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Ringenier, M.; Caekebeke, N.; De Meyer, F.; Van Limbergen, T.; Eeckhaut, V.; Ducatelle, R.; Van Immerseel, F.; Dewulf, J. A field study on correlations between macroscopic gut health scoring, histological measurements and performance parameters in broilers. Avian Pathol. 2021, 50, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Conway, D.P.; McKenzie, M.E.; Dayton, A.D. Relationship of coccidial lesion scores and weight gain in infections of Eimeria acervulina, E. maxima and E. tenella in broilers. Avian Pathol. 1990, 19, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Vezza, T.; Garrido-Mesa, J.; Diez-Echave, P.; Hidalgo-García, L.; Ruiz-Malagón, A.J.; García, F.; Sánchez, M.; Toral, M.; Romero, M.; Duarte, J.; et al. Allium-derived compound Propyl propane thiosulfonate (PTSO) attenuates metabolic alterations in mice fed a high-fat diet through its anti-inflammatory and prebiotic properties. Nutrients 2021, 13, 2595. [Google Scholar] [CrossRef] [PubMed]
- Beam, A.; Clinger, E.; Hao, L. Effect of diet and dietary components on the composition of the gut microbiota. Nutrients 2021, 13, 2795. [Google Scholar] [CrossRef]
- Aruwa, C.E.; Pillay, C.; Nyaga, M.M.; Sabiu, S. Poultry gut health-microbiome functions, environmental impacts, microbiome engineering and advancements in characterization technologies. J. Anim. Sci. Biotechnol. 2021, 12, 119. [Google Scholar] [CrossRef]
- Mohammadi, R.; Hosseini-Safa, A.; Ehsani Ardakani, M.J.; Rostami-Nejad, M. The relationship between intestinal parasites and some immune-mediated intestinal conditions. Gastroenterol. Hepatol. Bed Bench 2015, 8, 123–131. [Google Scholar]
- Kumar, S.; Sharadamma, K.C.; Radhakrish, P.M. Effects of a garlic active based growth promoter on growth performance and specific pathogenic intestinal microbial counts of broiler chicks. Int. J. Poult. Sci. 2010, 9, 244–246. [Google Scholar] [CrossRef]
- Pelicano, E.R.; Souza, P.A.; Souza, H.B.A.; Figueiredo, D.F.; Boiago, M.M.; Carvalho, S.R.; Bordon, V.F. Intestinal mucosa development in broiler chickens fed natural growth promoters. Braz. J. Poult. Sci. 2005, 7, 221–229. [Google Scholar] [CrossRef]
- Kim, G.B.; Seo, Y.M.; Kim, C.H.; Paik, I.K. Effect of dietary prebiotic supplementation on the performance, intestinal microflora, and immune response of broilers. Poult. Sci. 2011, 90, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Frick, J.S.; Autenrieth, I.B. The gut microflora and its variety of roles in health and disease. Curr. Top. Microbiol. Immunol. 2013, 358, 273–289. [Google Scholar] [CrossRef] [PubMed]
- Campos, P.M.; Miska, K.B.; Jenkins, M.C.; Yan, X.; Proszkowiec-Weglarz, M. Effects of Eimeria acervulina infection on the luminal and mucosal microbiota of the duodenum and jejunum in broiler chickens. Front. Microbiol. 2023, 14, 1147579. [Google Scholar] [CrossRef] [PubMed]
- Jebessa, E.; Guo, L.; Chen, X.; Bello, S.F.; Cai, B.; Girma, M.; Hanotte, O.; Nie, Q. Influence of Eimeria maxima coccidia infection on gut microbiome diversity and composition of the jejunum and cecum of indigenous chicken. Front. Immunol. 2022, 13, 994224. [Google Scholar] [CrossRef] [PubMed]
- Flint, H.J.; McPherson, C.A.; Martin, J. Expression of two xylanase genes from the rumen cellulolytic bacterium Ruminococcus flavefaciens 17 cloned in pUC13. Microbiology 1991, 137, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Pettipher, G.L.; Latham, M.J. Characteristics of enzymes produced by Ruminococcus flavefaciens which degrade plant cell walls. Microbiology 1979, 110, 21–27. [Google Scholar] [CrossRef]
- Saburi, W.; Yamamoto, T.; Taguchi, H.; Hamada, S.; Matsui, H. Practical preparation of epilactose produced with cellobiose 2-epimerase from Ruminococcus albus NE1. Biosci. Biotechnol. Biochem. 2010, 74, 1736–1737. [Google Scholar] [CrossRef]
- Bui, T.P.N.; Ritari, J.; Boeren, S.; de Waard, P.; Plugge, C.M.; de Vos, W.M. Production of butyrate from lysine and the Amadori product fructoselysine by a human gut commensal. Nat. Commun. 2015, 6, 10062. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, S.; Wu, S.; Madsen, M.H.; Shi, S. Supplementing the early diet of broilers with soy protein concentrate can improve intestinal development and enhance short-chain fatty acid-producing microbes and short-chain fatty acids, especially butyric acid. J. Anim. Sci. Biotechnol. 2022, 13, 97. [Google Scholar] [CrossRef]
Ingredient | Starter (0–21 d) | Finisher (22–49 d) |
---|---|---|
Corn | 513.9 | 552.5 |
Soybean meal | 406.0 | 360.0 |
Soybean oil | 40.5 | 51.0 |
Limestone | 14.7 | 13.6 |
Calcium orthophosphate | 9.1 | 7.0 |
Sodium carbonate | 4.9 | 4.7 |
Methionine DL | 3.6 | 3.2 |
Xanthophylls. | 2.4 | |
Salt | 2.0 | 1.6 |
L-Lysine HCL | 2.2 | 1.5 |
Threonine | 1.1 | 0.8 |
Vitamin-and mineral trace Premix 1 | 0.9 | 0.8 |
Betaine anhydrous | 0.6 | 0.4 |
L-valine | 0.2 | |
Biocholine | 0.2 | 0.17 |
Tryptophan | 0.16 | |
Phytase 5000 | 0.1 | 0.12 |
Calculated nutrient levels (%) | ||
Humidity | 11.61 | 11.66 |
EM (kcal/kg) | 3156 | 3245 |
Crude protein CP | 23.90 | 21.60 |
Ether extract | 6.21 | 7.34 |
Ashes | 5.83 | 5.27 |
Crude fiber | 2.34 | 2.47 |
Total phosphorous | 0.59 | 0.53 |
Total calcium | 1.00 | 0.90 |
Sodium | 0.23 | 0.21 |
Lysine | 1.50 | 1.29 |
Xanthophylls | 0.0008 | 0.0080 |
Contrasts 4 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Non-Challenged (NC) | Challenged (C) | A | B | C | |||||||||||
NC0 | NC250 | NC500 | NC750 | C0 | C250 | C500 | C750 | SEM | p val. | NC-Ion | C-Ion | p val. | p val. | p val. | |
BW 0 d | 42.3 | 41.9 | 41.7 | 41.9 | 42.1 | 42.3 | 42.2 | 42.0 | 0.21 | 0.30 | 42.0 | 42.2 | 0.71 | 0.69 | 0.53 |
Starter phase (1–21 d) | |||||||||||||||
ADG (g) | 48.2 | 47.0 | 47.4 | 47.5 | 41.3 | 41.7 | 43.5 | 39.9 | 1.09 | 0.33 | 46.5 | 43.7 | 0.41 | 0.07 | 0.06 |
ADFI (g) | 58.4 | 58.1 | 58.1 | 58.2 | 58.7 | 59.9 | 58.7 | 57.2 | 0.81 | 0.36 | 58.1 | 57.3 | 0.90 | 0.15 | 0.47 |
FCR | 1.21 | 1.24 | 1.22 | 1.21 | 1.41 | 1.43 | 1.34 | 1.41 | 0.03 | 0.47 | 1.23 | 1.30 | 0.75 | 0.01 | 0.07 |
Finisher phase (22–49 d) | |||||||||||||||
ADG (g) | 79.5 | 81.5 | 84.0 | 82.4 | 78.2 | 80.6 | 82.2 | 82.7 | 1.99 | 0.96 | 84.1 | 82.6 | 0.29 | 0.42 | 0.58 |
ADFI (g) | 156.6 | 159.1 | 158.6 | 149.6 | 157.0 | 156.2 | 151.9 | 151.7 | 3.95 | 0.70 | 150.9 | 153.1 | 0.20 | 0.87 | 0.67 |
FCR | 2.16 | 2.06 | 2.12 | 2.01 | 2.23 | 2.08 | 1.97 | 1.93 | 0.08 | 0.47 | 1.99 | 2.00 | 0.21 | 0.58 | 0.92 |
Cumulative study (1–49 d) | |||||||||||||||
ADG (g) | 66.1 | 66.7 | 68.3 | 67.4 | 62.4 | 63.9 | 65.6 | 64.4 | 1.10 | 0.97 | 68.0 | 66.0 | 0.46 | 0.11 | 0.17 |
ADFI (g) | 114.5 | 115.8 | 115.5 | 110.5 | 114.8 | 115.0 | 112.0 | 111.2 | 2.32 | 0.80 | 111.1 | 112.1 | 0.20 | 0.70 | 0.76 |
FCR | 1.77 | 1.75 | 1.75 | 1.70 | 1.91 | 1.84 | 1.74 | 1.76 | 0.03 | 0.22 | 1.69 | 1.74 | 0.17 | 0.19 | 0.29 |
Challenge Factor | ||||
---|---|---|---|---|
NC | C | SEM | p Value | |
Body weight (0 d) | 42.00 | 42.10 | 0.11 | 0.23 |
Starter phase | ||||
ADG (g) | 47.50 a | 41.60 b | 0.54 | <0.001 |
ADFI (g) | 58.20 | 58.60 | 0.40 | 0.44 |
FCR | 1.22 a | 1.40 b | 0.01 | <0.001 |
Finisher phase | ||||
ADG (g) | 81.80 | 80.90 | 0.99 | 0.53 |
ADFI (g) | 156.00 | 154.20 | 1.97 | 0.52 |
FCR | 2.09 | 2.05 | 0.04 | 0.51 |
Cumulative study | ||||
ADG (g) | 67.10 a | 64.10 b | 0.55 | <0.001 |
ADFI (g) | 114.10 | 113.20 | 1.17 | 0.61 |
FCR | 1.74 a | 1.81 b | 0.02 | 0.01 |
AE-e Factor | Linear Trend 2 | |||||||
---|---|---|---|---|---|---|---|---|
AE0 | AE250 | AE500 | AE750 | SEM | p Value | p Value | R2 | |
BW 0 d | 42.20 | 42.10 | 42.00 | 42.00 | 0.15 | 0.65 | ||
Starter phase | ||||||||
ADG (g) | 44.80 | 44.40 | 45.54 | 43.70 | 0.77 | 0.41 | 0.61 | 0.002 |
ADFI (g) | 58.60 | 59.00 | 58.40 | 57.70 | 0.57 | 0.45 | 0.38 | 0.008 |
FCR | 1.31 | 1.34 | 1.28 | 1.31 | 0.02 | 0.23 | 0.82 | 0.005 |
Finisher phase | ||||||||
ADG (g) | 78.90 | 81.00 | 83.10 | 82.60 | 1.40 | 0.15 | 0.05 | 0.04 |
ADFI (g) | 156.70 | 157.70 | 155.30 | 150.70 | 2.78 | 0.31 | 0.16 | 0.02 |
FCR | 2.20 a | 2.07 ab | 2.05 ab | 1.97 b | 0.05 | 0.03 | 0.006 | 0.08 |
Cumulative study | ||||||||
ADG (g) | 64.20 | 65.30 | 67.00 | 65.90 | 0.78 | 0.10 | 0.14 | 0.02 |
ADFI (g) | 114.70 | 115.40 | 113.80 | 110.80 | 1.64 | 0.23 | 0.13 | 0.02 |
FCR | 1.84 a | 1.79 ab | 1.75 ab | 1.73 b | 0.03 | 0.01 | 0.004 | 0.08 |
Challenge Treatments | ||||||||
---|---|---|---|---|---|---|---|---|
OPG | Age (d) | C0 | C250 | C500 | C750 | C-Ion | H 4 (Ji2) | p Value |
Total OPG | 21 | 95,575 a (35,712–186,537) | 109,725 a (28,150–125,350) | 48,900 ab (35,887–66,337) | 35,350 ab (24,462–107,225) | 17,975 b (4862–56,237) | 14.22 | <0.01 |
28 | 3525 (112–6787) | 1575 387–17,612) | 700 (0–12,262) | 1150 (0–3000) | 9225 (812–17,275) | 3.76 | 0.44 | |
35 | 0 (0–0) | 0 (0–187) | 0 (0–37) | 0 (0–0) | 0 (0–225) | 5.50 | 0.24 | |
Eacervulina | 21 | 78,700 a (30,537–142,175) | 62,850 ab (12,925–86,512) | 32,900 ab (24,300–46,575) | 31,700 ab (18,550–83,950) | 10,150 b (1562–49,687) | 12.16 | 0.02 |
28 | 2625 (50–5350) | 1025 (50–15,350) | 375 (0–9000) | 400 (0–1200) | 7950 (200–16,400) | 5.20 | 0.26 | |
35 | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–100) | 10.36 | 0.35 | |
E. maxima | 21 | 3750 (387–16,550) | 850 (25–11,312) | 3925 (62–14,450) | 1550 (162–6037) | 3500 (1437–7462) | 2.77 | 0.60 |
28 | 0 (0–137) | 25 (0–187) | 0 (0–175) | 0 (0–250) | 100 (0–725) | 3.11 | 0.53 | |
35 | 0 (0–0) | 0 (0–187) | 0 (0–0) | 0 (0–0) | 0 (0–37) | 2.79 | 0.60 | |
E. tenella | 21 | 21,150 a (3550–35,862) | 15,450 ab (0–54,025) | 3875 ab (287–17,425) | 2575 ab (637–10,700) | 950 b (62–5675) | 10.33 | 0.04 |
28 | 700 (25–1462) | 325 (212–1225) | 225 (0–8712) | 100 (0–2400) | 425 (25–1950) | 0.51 | 0.97 | |
35 | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 2.80 | 0.59 |
Challenge Treatments | ||||||||
---|---|---|---|---|---|---|---|---|
LS | Age (d) | C0 | C250 | C500 | C750 | C-Ion | H 5 (Ji2) | p Value |
Duodenum | 21 | 1.5 c (1–2) | 0.5 ab (0–1) | 1 b (0–1) | 1 bc (1–1) | 0 a (0–0) | 49.7 | <0.0001 |
28 | 0 (0–1) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–0.7) | 9.2 | 0.06 | |
Jejunum | 21 | 0 b (0–1) | 0 a (0–0) | 0 ab (0–0.7) | 0 b (0–1) | 0 a (0–0) | 10.7 | 0.03 |
28 | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 9.7 | 0.09 | |
Cecum | 21 | 1 c (1–2) | 1 bc (0–3) | 1 abc (0–1) | 1 bc (0–2) | 0 a (0–0) | 31.4 | <0.0001 |
28 | 0.5 (0–2) | 0.5 (0–2) | 1 (0–1) | 0 (0–0.7) | 1.5 (0–2) | 9.2 | 0.06 | |
TMLS 4 | 21 | 3 c (2–4.7) | 2 b (1–3) | 2 b (1–3) | 2 bc (1.2–3.7) | 0 a (0–0.7) | 54.0 | <0.0001 |
28 | 1 ab (1–2.7) | 1 ab (0–2) | 1 ab (0–2) | 0 a (0–1.7) | 2 b (1–2) | 12.0 | 0.02 |
Treatments | Linear Trend | Quadratic Trend | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Means 5 | NC0 | C0 | C250 | C500 | C750 | C-Ion | SEM | p Value | p Value | R2 | p Value | R2 |
rBWG % | 100 | 85.8 | 86.1 | 90.0 | 82.7 | 91.4 | ||||||
SR % | 95.0 | 91.4 | 92.1 | 91.0 | 93.8 | 94.8 | ||||||
TMLS × 10 | 0 | 34.2 | 21.7 | 19.2 | 25.8 | 2.5 | ||||||
OPG value % | 0 | 100 | 79.1 | 54.3 | 59.3 | 28.0 | ||||||
ACI | 195 a | 43.1 c | 77.5 c | 107.6 bc | 91.3 bc | 155.7 ab | 21.99 | <0.0001 | 0.03 | 0.09 | 0.04 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villar-Patiño, G.; Camacho-Rea, M.d.C.; Olvera-García, M.E.; Baltazar-Vázquez, J.C.; Gómez-Verduzco, G.; Téllez, G.; Labastida, A.; Ramírez-Pérez, A.H. Effect of an Alliaceae Encapsulated Extract on Growth Performance, Gut Health, and Intestinal Microbiota in Broiler Chickens Challenged with Eimeria spp. Animals 2023, 13, 3884. https://doi.org/10.3390/ani13243884
Villar-Patiño G, Camacho-Rea MdC, Olvera-García ME, Baltazar-Vázquez JC, Gómez-Verduzco G, Téllez G, Labastida A, Ramírez-Pérez AH. Effect of an Alliaceae Encapsulated Extract on Growth Performance, Gut Health, and Intestinal Microbiota in Broiler Chickens Challenged with Eimeria spp. Animals. 2023; 13(24):3884. https://doi.org/10.3390/ani13243884
Chicago/Turabian StyleVillar-Patiño, Gonzalo, María del Carmen Camacho-Rea, Myrna Elena Olvera-García, Julio César Baltazar-Vázquez, Gabriela Gómez-Verduzco, Guillermo Téllez, Aurora Labastida, and Aurora Hilda Ramírez-Pérez. 2023. "Effect of an Alliaceae Encapsulated Extract on Growth Performance, Gut Health, and Intestinal Microbiota in Broiler Chickens Challenged with Eimeria spp." Animals 13, no. 24: 3884. https://doi.org/10.3390/ani13243884