Evaluation of the Effects of Two Different Feeding Frequencies on the Digestive Biochemistry of Two Mullet Species (Chelon labrosus and Liza aurata)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Fish and Facilities
2.2. Experimental Design
2.3. Biochemical Assays
2.4. In Vitro Digestion Assays
2.5. Statistical Analysis
3. Results
3.1. Somatic Indexes
3.2. Biochemical Assays
3.3. In Vitro Digestion Assays
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Naylor, R.L.; Hardy, R.W.; Buschmann, A.H.; Bush, S.R.; Cao, L.; Klinger, D.H.; Little, D.C.; Lubchenco, J.; Shumway, S.E.; Troell, M. A 20-year retrospective review of global aquaculture. Nature 2021, 7851, 551–563. [Google Scholar] [CrossRef] [PubMed]
- FAO. The State of World Fisheries and Aquaculture 2022. In Towards Blue Transformation; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Tacon, A.G.; Metian, M.; Turchini, G.M.; De Silva, S.S. Responsible aquaculture and trophic level implications to global fish supply. Rev. Fish. Sci. Aquac. 2009, 18, 94–105. [Google Scholar] [CrossRef] [Green Version]
- FAO. Fishery and aquaculture Statistics 2017/FAO annuaire. Statistiques des pêches et de l′aquaculture 2017/FAO anuario. Estadísticas de pesca y acuicultura: 2017. In FAO Yearbook; FAO: Rome, Italy, 2019. [Google Scholar]
- Lebreton, B.; Richard, P.; Parlier, E.P.; Guillou, G.; Blanchard, G.F. Trophic ecology of mullets during their spring migration in a European saltmarsh: A stable isotope study. Estuarine, Coast. Shelf Sci. 2011, 91, 502–510. [Google Scholar] [CrossRef] [Green Version]
- Crosetti, D.; Blaber, S.J. Morphology and Morphometry Based Taxonomy of Mugilidae. In Biology, Ecology and Culture of Grey Mullets (Mugilidae); CRC Press: Boca Raton, FL, USA, 2015; pp. 1–21. [Google Scholar]
- Altunok, M.; Özden, O. Effect of dietary protein on the growth of mullet, Chelon labrosus, reared in sea cages. Fish. Aquat. Life. 2017, 25, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Ben Khemis, I.; Hamza, N.; Sadok, S. Nutritional quality of the fresh and processed grey mullet (Mugilidae) products: A short review including data concerning fish from freshwater. Aquat. Living Resour. 2019, 32, 2. [Google Scholar] [CrossRef]
- Salvarina, I.; Koutrakis, E.; Leonardos, I. Comparative study of feeding behaviour of five Mugilidae species juveniles from two estuarine systems in the North Aegean Sea. J. Mar. Biol. Assoc. UK 2016, 98, 283–297. [Google Scholar] [CrossRef] [Green Version]
- Crosetti, D.; Blaber, S.J. Biogeography and Distribution of Mugilidae in the Mediterranean and the Black Sea, and North-East Atlantic. In Biology, Ecology and Culture of Grey Mullets (Mugilidae); CRC Press: Boca Raton, FL, USA, 2015; pp. 116–127. [Google Scholar]
- Quirós-Pozo, R.; Ventura-Castellano, A.; Ramírez-Bolaños, S.; Roo-Filgueira, J.; Robaina, L. Evaluation of Aloe vera by-product against cereals in feeds for golden mullet (Liza aurata). Aquac. Rep. 2021, 20, 100659. [Google Scholar] [CrossRef]
- Ojaveer, H.; Morris, P.C.; Davies, S.J.; Russell, P. The response of thick-lipped grey mullet, Chelon labrosus (Risso), to diets of varied protein-to-energy ratio. Aquac. Res. 1996, 27, 603–612. [Google Scholar] [CrossRef]
- Wassef, E.A.; El Masry, M.H.; Mikhail, F.R. Growth enhancement and muscle structure of striped mullet, Mugil cephalus L.; fingerlings by feeding algal meal-based diets. Aquac. Res. 2001, 32, 315–322. [Google Scholar] [CrossRef]
- Gisbert, E.; Mozanzadeh, M.T.; Kotzamanis, Y.; Estévez, A. Weaning wild flathead grey mullet (Mugil cephalus) fry with diets with different levels of fish meal substitution. Aquaculture 2016, 462, 92–100. [Google Scholar] [CrossRef]
- Busti, S.; Bonaldo, A.; Dondi, F.; Cavallini, D.; Yúfera, M.; Gilannejad, N.; Moyano, F.J.; Gatta, P.P.; Parma, L. Effects of different feeding frequencies on growth, feed utilisation, digestive enzyme activities and plasma biochemistry of gilthead sea bream (Sparus aurata) fed with different fishmeal and fish oil dietary levels. Aquaculture 2020, 529, 735616. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Kjeldahl, J.A. Neue Methode zur Bestimmung des Stickstoffs in Organischen Korpern. Z. Anal. Chem. 1883, 22, 366–382. [Google Scholar] [CrossRef] [Green Version]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Kunitz, M. Crystalline soybean trypsin inhibitor II. General properties. J. Gen. physiol. 1947, 30, 291–310. [Google Scholar] [CrossRef]
- Walter, H.E. Methods of Enzymatic Analysis; Verlag Chemie: Weinheim, Germany, 1984. [Google Scholar]
- Miller, G.L. Modified DNS method for reducing sugars. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Morales, G.A.; Moyano, F.J. Application of an in vitro gastrointestinal model to evaluate nitrogen and phosphorus bioaccessibility and bioavailability in fish feed ingredients. Aquaculture 2010, 306, 244–251. [Google Scholar] [CrossRef]
- Church, F.C.; Swaisgood, H.E.; Porter, D.H.; Catignani, G.L. Spectrophotometric Assay Using o-Phthaldialdehyde for Determination of Proteolysis in Milk and Isolated Milk Proteins. J. Dairy Sci. 1983, 66, 1219–1227. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Crosetti, D.; Blaber, S.J. Food and Feeding of Mugilidae. In Biology, Ecology and Culture of Grey Mullets (Mugilidae); CRC Press: Boca Raton, FL, USA, 2015; pp. 165–195. [Google Scholar]
- Talbot, C.; Corneillie, S.; Korsøen, Ø. Pattern of feed intake in four species of fish under commercial farming conditions: Implications for feeding management. Aquac. Res. 1999, 30, 509–518. [Google Scholar] [CrossRef]
- Beveridge, M.C.M.; Thilsted, S.H.; Phillips, M.J.; Metian, M.; Troell, M.; Hall, S.J. Meeting the food and nutrition needs of the poor: The role of fish and the opportunities and challenges emerging from the rise of aquaculture. J. Fish Biol. 2013, 83, 1067–1084. [Google Scholar] [CrossRef] [Green Version]
- Thilsted, S.H.; Thorne-Lyman, A.; Webb, P.; Bogard, J.R.; Subasinghe, R.; Phillips, M.J.; Allison, E.H. Sustaining healthy diets: The role of capture fisheries and aquaculture for improving nutrition in the post-2015 era. Food Policy 2016, 61, 126–131. [Google Scholar] [CrossRef] [Green Version]
- Schloesser, R.W.; Fabrizio, M.C. Condition Indices as Surrogates of Energy Density and Lipid Content in Juveniles of Three Fish Species. Trans. Am. Fish. Soc. 2017, 146, 1058–1069. [Google Scholar] [CrossRef] [Green Version]
- Moyano, F.J.; Diaz, M.; Alarcon, F.J.; Sarasquete, M.C. Characterization of digestive enzyme activity during larval development of gilthead seabream (Sparus aurata). Fish. Physiol. Biochem. 1996, 15, 121–130. [Google Scholar] [CrossRef]
- Infante, J.Z.; Cahu, C. Dietary modulation of some digestive enzymes and metabolic processes in developing marine fish: Applications to diet formulation. Aquaculture 2007, 268, 98–105. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.-Y.; Zhang, D.-D.; Li, X.-F.; Zhang, C.-N.; Qian, Y.; Liu, W.-B. Optimum feeding frequency of juvenile blunt snout bream Megalobrama amblycephala. Aquaculture 2015, 437, 60–66. [Google Scholar] [CrossRef]
- Cordova-Murueta, J.H.; García-Carreño, F.; de los A Navarrete-del, M. Digestive enzymes present in crustacean feces as a tool for biochemical, physiological, and ecological studies. J. Exp. Mar. Biol. Ecol. 2003, 297, 43–56. [Google Scholar] [CrossRef]
- Karasov, W.H.; Douglas, A.E. Comparative Digestive Physiology. Compr. Physiol. 2013, 3, 741–783. [Google Scholar] [CrossRef] [Green Version]
- German, D.P.; Horn, M.H.; Gawlicka, A. Digestive Enzyme Activities in Herbivorous and Carnivorous Prickleback Fishes (Teleostei: Stichaeidae): Ontogenetic, Dietary, and Phylogenetic Effects. Physiol. Biochem. Zool. 2004, 77, 789–804. [Google Scholar] [CrossRef] [Green Version]
- Gisbert, E.; Cardona, L.; Castelló, F. Competition between mullet fry. J. Fish. Biol. 1995, 47, 414–420. [Google Scholar] [CrossRef]
- Cardona, L. Non-competitive coexistence between Mediterranean grey mullet: Evidence from seasonal changes in food availability, niche breadth and trophic overlap. J. Fish Biol. 2001, 59, 729–744. [Google Scholar] [CrossRef]
- Calixto da Silva, E.; Sterzelecki, F.C.; Musialak, L.A.; Sugai, J.K.; Castro, J.D.J.P.; Pedrotti, F.S.; Magnotti, C.; Cipriano, F.D.S.; Cerqueira, V.R. Effect of feeding frequency on growth performance, blood metabolites, proximate composition and digestive enzymes of Lebranche mullet (Mugil liza) Juveniles. Aquac. Res. 2019, 51, 1162–1169. [Google Scholar] [CrossRef]
- Solovyev, M.; Gisbert, E. Feeding regimes affected the circadian rhythms of pancreatic digestive enzymes and somatic growth in flathead grey mullet (Mugil cephalus) fry. Comp. Biochem. Physiol. B Mol. Amp. Integr. Physiol. 2021, 264, 111116. [Google Scholar] [CrossRef] [PubMed]
- Abbas, G.; Waryani, B.; Ghaffar, A.; Rahim, A.; Hafeez-ur-Rehman, M.; Aslam, M. Effect of ration size and feeding frequency on growth, feed utilization, body composition and some haematological characteristics of juvenile snapper, Lutjanus johnii (Baloch, 1792). Pak. J. Zool. 2015, 47, 719–730. [Google Scholar]
- Catarino, M.M.; Gomes, M.R.; Ferreira, S.M.; Gonçalves, S.C. Optimization of feeding quantity and frequency to rear the cyprinid fish Garra rufa (Heckel, 1843). Aquac. Res. 2019, 50, 876–881. [Google Scholar] [CrossRef]
Ingredients (%) | |
---|---|
Fish meal (Peruvian origin) a | 20.0 |
Blood meal b | 3.0 |
Ulva meal c | 10.0 |
Rapeseed meal (0.0) d | 8.0 |
Corn meal e | 6.0 |
Wheat gluten e | 6.0 |
SPC (soy protein concentrate) f | 20.0 |
Wheat meal e | 6.0 |
Fish oil a | 8.5 |
Soy lecithin g | 1.0 |
Vitamin mix h | 2.0 |
Mineral mix i | 2.0 |
Ca(H2PO4) 2 j | 1.0 |
CMC k Analytical composition (% dry weight) | 0.5 |
Protein | 40.9 ± 0.4 |
Lipids | 14.1 ± 0.6 |
Ash | 11.4 ± 0.1 |
Moisture | 8.1 ± 0.6 |
Species | Total U × 103/Fish | Meals/Day | Food Intake Per Meal (mg) | Protease E:S Ratio (U/mg Food) | Amylase E:S Ratio (U/mg Food) |
---|---|---|---|---|---|
L. aurata | 7.22 ± 3.65 | 1 | 350 | 21.82 ± 13.85 | 0.01 ± 0.00 |
3 | 120 | 50.18 ± 21.15 | 0.03 ± 0.00 | ||
C. labrosus | 15.72 ± 5.51 | 1 | 350 | 40.79 ± 2.27 | 0.02 ± 0.00 |
3 | 120 | 142.08 ± 54.26 | 0.06 ± 0.00 |
L. aurata | C. labrosus | p Values | |||||
---|---|---|---|---|---|---|---|
One Meal | Three Meals | One Meal | Three Meals | S | F | S × F | |
%Eviscerated weight | 87.38 ± 0.17 | 90.24 ± 1.58 | 86.55 ± 2.55 | 86.51 ± 0.64 | 0.02 | 0.10 | 0.10 |
HSI | 0.83 ± 0.11 | 0.82 ± 0.03 | 1.04 ± 0.07 | 0.97 ± 0.04 | 0.00 | 0.30 | 0.41 |
% Digestive weight | 7.02 ± 0.64 | 5.99 ± 0.37 | 11.16 ± 0.38 | 9.96 ± 1.11 | 0.00 | 0.04 | 0.82 |
L. aurata | C. labrosus | p Values | |||||
---|---|---|---|---|---|---|---|
One Meal | Three Meals | One Meal | Three Meals | S | F | S × F | |
Muscle | |||||||
Lipid | 16.49 ± 0.69 | 18.97 ± 3.19 | 13.18 ± 1.58 | 13.15 ± 1.06 | 0.00 | 0.29 | 0.21 |
Protein | 80.83 ± 1.89 | 83.26 ± 4.82 | 84.46 ± 0.40 | 87.52 ± 2.40 | 0.08 | 0.08 | - |
Ash | 6.89 ± 0.05 | 6.13 ± 0.53 | 6.00 ± 0.72 | 6.18 ± 0.62 | 0.08 | 0.26 | - |
Liver | |||||||
Lipid | 40.22 ± 4.56 | 31.53 ± 5.53 | 44.14 ± 3.37 | 38.94 ± 5.33 | 0.61 | 0.03 | 0.52 |
Feeding Frequency (F) | Sampling Moment (SM) | p Values | |||||
---|---|---|---|---|---|---|---|
One Meal | Three Meals | 15 h | 40 h | F | SM | F × SM | |
C. labrosus | |||||||
Protease | 411.35 ± 129.03 | 487.13 ± 185.88 | 500.68 ± 176.49 | 397.80 ± 130.95 | 0.25 | 0.13 | 0.01 |
Amylase | 0.18 ± 0.03 | 0.21 ± 0.03 | 0.20 ± 0.03 | 0.20 ± 0.04 | 0.16 | 0.99 | 0.65 |
L. aurata | |||||||
Protease | 218.22 ± 133.47 | 172.05 ± 72.52 | 270.25 ± 101.8 | 120.02 ± 21.01 | 0.26 | 0.01 | 0.13 |
Amylase | 0.09 ± 0.03 | 0.10 ± 0.01 | 0.11 ± 0.03 | 0.09 ± 0.02 | 0.69 | 0.15 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quirós-Pozo, R.; Moyano, F.J.; Bainour, K.; Ramírez-Bolaños, S.; Ventura-Castellano, A.; Roo, J.; Robaina, L. Evaluation of the Effects of Two Different Feeding Frequencies on the Digestive Biochemistry of Two Mullet Species (Chelon labrosus and Liza aurata). Animals 2023, 13, 287. https://doi.org/10.3390/ani13020287
Quirós-Pozo R, Moyano FJ, Bainour K, Ramírez-Bolaños S, Ventura-Castellano A, Roo J, Robaina L. Evaluation of the Effects of Two Different Feeding Frequencies on the Digestive Biochemistry of Two Mullet Species (Chelon labrosus and Liza aurata). Animals. 2023; 13(2):287. https://doi.org/10.3390/ani13020287
Chicago/Turabian StyleQuirós-Pozo, Raquel, Francisco Javier Moyano, Khalida Bainour, Sara Ramírez-Bolaños, Anais Ventura-Castellano, Javier Roo, and Lidia Robaina. 2023. "Evaluation of the Effects of Two Different Feeding Frequencies on the Digestive Biochemistry of Two Mullet Species (Chelon labrosus and Liza aurata)" Animals 13, no. 2: 287. https://doi.org/10.3390/ani13020287
APA StyleQuirós-Pozo, R., Moyano, F. J., Bainour, K., Ramírez-Bolaños, S., Ventura-Castellano, A., Roo, J., & Robaina, L. (2023). Evaluation of the Effects of Two Different Feeding Frequencies on the Digestive Biochemistry of Two Mullet Species (Chelon labrosus and Liza aurata). Animals, 13(2), 287. https://doi.org/10.3390/ani13020287