Effects of Low-Fat Distillers Dried Grains with Solubles Supplementation on Growth Performance, Rumen Fermentation, Blood Metabolites, and Carcass Characteristics of Kiko Crossbred Wether Goats
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Animals and Diets
2.2. Sample Collection of Feed and Analysis
2.3. Rumen Fermentation
2.4. Growth Performance and Blood Metabolites
2.5. Carcass Quality
2.6. Statistical Analysis
3. Results
3.1. Nutrient Composition of the Experimental Diets
3.2. Dry Matter Intake, Growth Performance, and Efficiency
3.3. Rumen Fermentation and pH
3.4. Blood Metabolites
3.5. Carcass Characteristics
4. Discussion
4.1. Feed Composition
4.2. Dry Matter Intake, Growth Performance, and Efficiency
4.3. Rumen Fermentation and Blood Metabolites
4.4. Carcass Characteristics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Renewable Fuels Association. Annual Ethanol Production. 2021. Available online: https://ethanolrfa.org/markets-and-statistics/annual-ethanol-production (accessed on 4 October 2022).
- United States Department of Agriculture (USDA); National Agricultural Statistics Service (NASS). Grain Crushings and Co-Products Production; USDA-NASS: Washington, DC, USA, 2022; ISSN 2470-9913.
- Cooper, G.; McCaherty, J.; Huschitt, E.; Schwarck, R.; Wilson, C. 2021 Ethanol Industry Outlook. Renew. Fuels Assoc. 2021, 1–40. [Google Scholar]
- Shurson, G. Dry-Grind Production of Ethanol, Distillers Corn Oil, and Corn Co-Products. In DDGS Handbook 2019, 4th ed.; U.S. Grains Council: Washington, DC, USA, 2019; p. 12. [Google Scholar]
- Shurson, J.; Noll, S. Feed and Alternative Uses for DDGS. J. Gender Agric. Food Secur. 2016, 1, 1–22. [Google Scholar]
- Schingoethe, D.J. Utilization of DDGS by cattle. In Proceedings of the 27th Western Nutrition Conference, Winnipeg, MB, Canada, 19–20 September 2006; pp. 61–74. [Google Scholar]
- Buenavista, E.; Siliveru, K.; Zheng, Y. Utilization of Distiller’s Dried Grains with Solubles: A Review. J. Agric. Food Res. 2021, 5, 100195. [Google Scholar] [CrossRef]
- Lumpkins, B.S.; Batal, A.B.; Dale, N.M. Evaluation of Distillers Dried Grains with Solubles as a Feed Ingredient for Broilers. Poult. Sci. 2004, 83, 1891–1896. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Hack, M.E.; Mahrose, K.M.; Attia, F.A.M.; Swelum, A.A.; Taha, A.E.; Shewita, R.S.; Hussein, E.S.O.S.; Alowaimer, A.N. Laying Performance, Physical, and Internal Egg Quality Criteria of Hens Fed Distillers Dried Grains with Solubles and Exogenous Enzyme Mixture. Animals 2019, 9, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damasceno, J.L.; Rocha, C.S.; Eyng, C.; Broch, J.; Savaris, V.D.L.; Wachholz, L.; Tesser, G.L.S.; Avila, A.S.; Pacheco, W.J.; Nunes, R.V. Corn Distillers’ Dried Grains with Solubles to Feed Broiler Chickens from 22 to 42 D of Age. J. Appl. Poult. Res. 2020, 29, 573–583. [Google Scholar] [CrossRef]
- Sándor, Z.J.; Révész, N.; Lefler, K.K.; Čolović, R.; Banjac, V.; Kumar, S. Potential of Corn Distiller’s Dried Grains with Solubles (DDGS) in the Diet of European Catfish (Silurus Glanis). Aquac. Rep. 2021, 20, 100653. [Google Scholar] [CrossRef]
- Caldas, J.V.; Hilton, K.; Mullenix, G.; Xuemei, D.; England, J.A.; Coon, C.N. Corn Distillers Dried Grains with Solubles: Nutrient Analysis, Metabolizable Energy, and Amino Acid Digestibility in Broilers. J. Appl. Poult. Res. 2020, 29, 1068–1083. [Google Scholar] [CrossRef]
- Gurung, N.K.; Solaiman, S.G.; Rankins, D.L.; McElhenney, W.H. Effects of Distillers Dried Grains with Solubles on Feed Intake, Growth Performance, Gain Efficiency and Carcass Quality of Growing Kiko x Spanish Male Goats. J. Anim. Vet. Adv. 2009, 8, 2087–2093. [Google Scholar]
- Gurung, N.K.; Solaiman, S.G.; Rankins, D.L.; Kendricks, A.L.; Abdelrahim, G.M.; McElhenney, W.H. The Effects of Distillers Dried Grains with Solubles on Apparent Nutrient Digestibility and Passage Kinetics of BoerSpanish Castrated Male Goats. J. Appl. Anim. Res. 2012, 40, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Sorensen, R.J.; Stewart, S.S.; Jones, C.K.; Crane, A.R.; Lattimer, J.M. Efficacy of corn dried distillers grains with solubles as a replacement for soybean meal in Boer-cross goat finishing diets. Small Rumin. Res. 2021, 106411. [Google Scholar] [CrossRef]
- Mjoun, K.; Kalscheur, K.F.; Hippen, A.R.; Schingoethe, D.J.; Little, D.E. Lactation Performance and Amino Acid Utilization of Cows Fed Increasing Amounts of Reduced-Fat Dried Distillers Grains with Solubles. J. Dairy Sci. 2010, 93, 288–303. [Google Scholar] [CrossRef] [Green Version]
- Jacela, J.Y.; de Rouchey, J.M.; Dritz, S.S.; Tokach, M.D.; Goodband, R.D.; Nelssen, J.L.; Sulabo, R.C.; Thaler, R.C.; Brandts, L.; Little, D.E.; et al. Amino Acid Digestibility and Energy Content of Deoiled (Solvent-Extracted) Corn Distillers Dried Grains with Solubles for Swine and Effects on Growth Performance and Carcass Characteristics. J. Anim. Sci. 2011, 89, 1817–1829. [Google Scholar] [CrossRef] [PubMed]
- AOAC (2007) Official Methods of Analysis. 18th Edition, Association of Official Analytical Chemists, Gaithersburg-References-Scientific Research Publishing. Available online: https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=1753366 (accessed on 17 October 2022).
- Goering, H.K.; Van, P.J. Forage Fiber Analyses. U.S. Dep. Agric. 1975, 379, 387–598. [Google Scholar]
- Erwin, E.S.; Marco, G.J.; Emery, E.M. Volatile Fatty Acid Analyses of Blood and Rumen Fluid by Gas Chromatography. J. Dairy Sci. 1961, 44, 1768–1771. [Google Scholar] [CrossRef]
- Hall, M.B.; Nennich, T.D.; Doane, P.H.; Brink, G.E. Total Volatile Fatty Acid Concentrations Are Unreliable Estimators of Treatment Effects on Ruminal Fermentation in Vivo. J. Dairy Sci. 2015, 98, 3988–3999. [Google Scholar] [CrossRef] [Green Version]
- USDA Institutional Meat Purchased Specifications for Fresh Goat. U.S. Dep. Agric. 2001, 11, 31–32.
- SAS/STAT ® 9.1 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2004; pp. 1731–1906.
- Serum Biochemical Analysis Reference Ranges-Special Subjects-Merck Veterinary Manual. Available online: https://www.merckvetmanual.com/special-subjects/reference-guides/serum-biochemical-analysis-reference-ranges?autoredirectid=19885 (accessed on 4 October 2022).
- Chemistry (Cobas)|Cornell University College of Veterinary Medicine. Available online: https://www.vet.cornell.edu/animal-health-diagnostic-center/laboratories/clinical-pathology/reference-intervals/chemistry (accessed on 10 September 2022).
- National Research Council. Nutrient Requirements of Dairy Cattle: Seventh Revised Edition, 2001; The National Academies Press: Washington, DC, USA, 2001. [Google Scholar] [CrossRef] [Green Version]
- Cottle, D. (Ed.) Nutrient Composition of Feeds. In International Sheep and Wool Handbook; Nottingham University Press: Nottingham, UK, 2010; Volume 1, pp. 711–716. [Google Scholar]
- Preston, R.L. 2016 Feed Composition Table. Beef Mag. 2016, 16–34. [Google Scholar]
- Spiehs, M.J.; Whitney, M.H.; Shurson, G.C. Nutrient database for distillers dried grains with solubles produced from new ethanol plants in Minnesota and south Dakota. J. Anim. Sci. 2002, 80, 2639–2645. [Google Scholar]
- Shurson, G. Nutrient Composition and Variability of Reduced-Oil Corn DDGS Sources. In DDGS Handbook 2019, 4th ed.; U.S. Grains Council: Washington, DC, USA, 2019; pp. 29–41. [Google Scholar]
- Curry, S.M.; Navarro, D.M.D.L.; Almeida, F.N.; Almeida, J.A.S.; Stein, H.H. Amino Acid Digestibility in Low-Fat Distillers Dried Grains with Solubles Fed to Growing Pigs. J. Anim. Sci. Biotechnol. 2014, 5, 27. [Google Scholar] [CrossRef] [Green Version]
- National Research Council. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; The National Academies Press: Washington, DC, USA, 2007. [Google Scholar] [CrossRef]
- Palmquist, D.L. Regulating Lipid Metabolism to Increase Productive Efficiency. J. Nutr. 1994, 124, 1371S. [Google Scholar] [CrossRef]
- Jud Heinrichs; Geoff Zanton Opportunities and Challenges of Feeding Distillers Grains. Available online: https://extension.psu.edu/opportunities-and-challenges-of-feeding-distillers-grains (accessed on 30 August 2022).
- Drewnoski, M.E.; Pogge, D.J.; Hansen, S.L. High-Sulfur in Beef Cattle Diets: A Review. J. Anim. Sci. 2014, 92, 3763–3780. [Google Scholar] [CrossRef] [Green Version]
- Effects of Feeding Reduced-Fat Modified Distillers Grains with Solubles on Dietary Energy Values, Finishing Cattle Performance and Beef Quality Characteristics—AURI. Available online: https://auri.org/research-reports/effects-of-feeding-reduced-fat-modified-distillers-grains-with-solubles-on-dietary-energy-values-finishing-cattle-performance-and-beef-quality-characteristics/ (accessed on 24 November 2022).
- Ramirez-Ramirez, H.A.; Castillo Lopez, E.; Jenkins, C.J.R.; Aluthge, N.D.; Anderson, C.; Fernando, S.C.; Harvatine, K.J.; Kononoff, P.J. Reduced-Fat Dried Distillers Grains with Solubles Reduces the Risk for Milk Fat Depression and Supports Milk Production and Ruminal Fermentation in Dairy Cows. J. Dairy Sci. 2016, 99, 1912–1928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahmer, P.L.; Mcdonald, F.B.; Chun, C.K.Y.; Zumbaugh, C.A.; Jones, C.K.; Crane, A.R.; Kott, T.; Lattimer, J.M.; Chao, M.D. Evaluating the Impact of Feeding Dried Distillers Grains with Solubles on Boer Goat Growth Performance, Meat Color Stability, and Antioxidant Capacity. Transl. Anim. Sci. 2022, 6, 1–9. [Google Scholar] [CrossRef]
- Benchaar, C.; Hassanat, F.; Gervais, R.; Chouinard, P.Y.; Julien, C.; Petit, H.V.; Massé, D.I. Effects of Increasing Amounts of Corn Dried Distillers Grains with Solubles in Dairy Cow Diets on Methane Production, Ruminal Fermentation, Digestion, N Balance, and Milk Production. J. Dairy Sci. 2013, 96, 2413–2427. [Google Scholar] [CrossRef] [PubMed]
- Rumen Acidosis-Dairy Cattle. Available online: http://livestocktrail.illinois.edu/dairynet/paperDisplay.cfm?ContentID=215 (accessed on 10 September 2022).
- Hammond, A.C. The Use of Blood Urea Nitrogen Concentration as an Indicator of Protein Status in Cattle. Bov. Pract. 1983, 18, 114–118. [Google Scholar]
- Piccioli-Cappelli, F.; Loor, J.J.; Seal, C.J.; Minuti, A.; Trevisi, E. Effect of Dietary Starch Level and High Rumen-Undegradable Protein on Endocrine-Metabolic Status, Milk Yield, and Milk Composition in Dairy Cows during Early and Late Lactation. J. Dairy Sci. 2014, 97, 7788–7803. [Google Scholar] [CrossRef] [Green Version]
- Assan, N. Some Factors Influencing Dressing Percentage in Goat Meat Production. Sci. J. Rev. 2015, 4, 156–164. [Google Scholar] [CrossRef]
Ingredient, % of Diet | Percentage of Low-Fat DDGS in the Diet, % | |||
---|---|---|---|---|
0 | 10 | 20 | 30 | |
Bermudagrass Hay | 50 | 50 | 50 | 50 |
Cracked Corn | 34 | 28.5 | 23 | 16.5 |
Soybean Meal 48% | 12.5 | 8 | 3.5 | 0 |
Low-Fat DDGS | 0 | 10 | 20 | 30 |
Liquid Molasses | 2.5 | 2.5 | 2.5 | 2.5 |
Goat Premix † | 1 | 1 | 1 | 1 |
Total | 100 | 100 | 100 | 100 |
Nutrient Analysis † | Percentage of LF-DDGS in Grain Mixes, % | BGH | LF-DDGS | |||
---|---|---|---|---|---|---|
0 | 20 | 40 | 60 | |||
Moisture, % | 13.68 | 12.87 | 13.07 | 13.53 | 14.25 | 12.55 |
Dry Matter (DM), % | 86.32 | 87.13 | 86.93 | 86.47 | 85.75 | 87.45 |
Crude Protein, % | 20.14 | 21.17 | 19.75 | 24.68 | 9.28 | 29.95 |
Available Protein, % | 19.88 | 20.77 | 19.36 | 24.08 | - | - |
Adjusted Crude Protein, % | 20.14 | 21.17 | 19.75 | 24.68 | - | - |
ADF Protein, % | 0.26 | 0.4 | 0.39 | 0.6 | - | - |
NDF Protein, % | 0.49 | 0.72 | 0.74 | 1.1 | - | - |
Lignin, % | 0.21 | 0.21 | 0.21 | 0.21 | - | - |
Acid Detergent Fiber, % | 2.93 | 3.76 | 4.17 | 7.29 | 26.80 | 9.71 |
Neutral Detergent Fiber, % | 8.57 | 12.48 | 14.25 | 21.88 | 42.06 | 25.28 |
Non-Fiber Carbohydrate (NFC), % | 62.42 | 56.77 | 55.11 | 43.01 | - | 33.80 |
Crude Fat, % | 3.77 | 4.4 | 4.63 | 4.78 | - | 5.75 |
TDN, % | 87.09 | 86.49 | 85.22 | 83.71 | 66.37 | 84.59 |
NEl, Mcal/kg | 2.01 | 2.00 | 1.97 | 1.93 | 0.68 | 1.90 |
NEm, Mcal/kg | 2.15 | 2.13 | 2.10 | 2.05 | 0.69 | 2.07 |
NEg, Mcal/kg | 1.48 | 1.46 | 1.43 | 1.39 | 0.42 | 1.41 |
Ash, % | 4.32 | 4.74 | 5.88 | 5.87 | - | 5.24 |
Lignin Insoluble Ash, % | 0.21 | 0.21 | 0.21 | 0.21 | - | - |
Calcium (Ca), % | 0.25 | 0.31 | 0.27 | 0.32 | 0.46 | 0.05 |
Phosphorus (P), % | 0.53 | 0.59 | 0.69 | 0.84 | 0.19 | 0.95 |
Magnesium (Mg), % | 0.23 | 0.19 | 0.21 | 0.27 | 0.18 | 0.26 |
Potassium(K), % | 1.26 | 1.28 | 1.28 | 1.31 | 1.56 | 0.92 |
Sulfur (S), % | 0.27 | 0.41 | 0.57 | 0.74 | - | 0.083 |
Sodium (Na), % | 0.314 | 0.376 | 0.477 | 0.45 | 0.07 | - |
Copper (Cu), ppm | 26 | 32 | 34 | 31 | 3 | 8 |
Manganese (Mn), ppm | 52 | 57 | 62 | 54 | 67 | - |
Zinc (Zn), ppm | 106 | 161 | 165 | 156 | 19 | 51 |
Iron (Fe), ppm | 143 | 190 | 182 | 172 | 28 | - |
Nitrate (NO3) | Negative | Negative | Negative | Negative | - | - |
Parameters | Percentage of LF-DDGS in Diets, % | p-Value † | |||||
---|---|---|---|---|---|---|---|
0% | 10% | 20% | 30% | SEM | Linear | Quadratic | |
DMI, g/day | 997 | 1075 | 1177 | 1052 | 19.60 | 0.21 | 0.05 |
Initial BW, kg | 28.46 | 27.24 | 29.97 | 27.61 | 1.01 | 0.99 | 0.82 |
Final BW, kg | 39.21 | 39.58 | 43.45 | 37.02 | 0.94 | 0.79 | 0.16 |
Total live weight gain, kg | 10.74 | 12.35 | 13.48 | 9.40 | 0.60 | 0.66 | 0.07 |
Average daily gain, g/day | 111.77 | 128.44 | 140.30 | 97.89 | 6.26 | 0.66 | 0.49 |
Gain:Feed Ratio | 0.10 | 0.11 | 0.11 | 0.08 | 0.004 | 0.30 | 0.71 |
Serum Chemistry | Percentage of LF-DDGS in Diets, % | p-Values † | |||||
---|---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | SEM | Linear | Quadratic | |
Cholesterol, mg/dL | 51.75 | 58.00 | 63.92 | 67.17 | 1.49 | 0.004 ** | 0.69 |
Creatine Kinase, U/L | 221.58 | 275.60 | 287 | 294 | 8.35 | 0.02 * | 0.27 |
Alanine Aminotransferase, U/L | 4.67 | 7.50 | 4.41 | 4.67 | 0.35 | 0.42 | 0.15 |
Amylase, U/L | 78.08 | 43.20 | 29.92 | 39.75 | 8.14 | 0.16 | 0.28 |
Alkaline Phosphatase, U/L | 409.50 | 993.80 | 1127.50 | 1018.33 | 213.53 | 0.40 | 0.52 |
Total Protein, g/dL | 10.02 | 6.48 | 7.05 | 6.62 | 0.80 | 0.28 | 0.44 |
Glucose, mg/dL | 65.75 | 67.20 | 65.00 | 55.76 | 1.27 | 0.03 * | 0.10 |
Phosphorus, mg/dL | 12.67 | 9.42 | 9.13 | 10.35 | 1.01 | 0.51 | 0.38 |
Bilirubin, Total, mg/dL | 0.13 | 0.13 | 0.19 | 0.17 | 0.01 | 0.15 | 0.05 |
Blood Urea Nitrogen, mg/dL | 14.75 | 14.60 | 16.75 | 17.17 | 0.46 | 0.07 | 0.80 |
Creatinine, mg/dL | 0.64 | 0.61 | 0.58 | 0.63 | 0.01 | 0.57 | 0.24 |
Carbon Dioxide, mmol/L | 22.53 | 22.29 | 22.78 | 20.26 | 0.31 | 0.08 | 0.16 |
Sodium, mmol/L | 142.71 | 142.82 | 143.05 | 143.70 | 0.17 | 0.10 | 0.53 |
Potassium, mmol/L | 4.75 | 4.87 | 4.99 | 4.99 | 0.04 | 0.07 | 0.56 |
Chloride, mmol/L | 101.65 | 109.31 | 108.88 | 113.25 | 1.79 | 0.09 | 0.71 |
Calcium, mg/dL | 9.65 | 9.48 | 9.78 | 9.07 | 0.08 | 0.10 | 0.17 |
Albumin, g/dL | 2.24 | 2.50 | 2.60 | 2.41 | 0.03 | NS | NS |
Triglycerides, mg/dL | 22.42 | 22.70 | 24.33 | 26.50 | 0.93 | 0.18 | 0.68 |
Gamma Glutamyl Transferase, U/L | 37.58 | 36.00 | 28.42 | 32.67 | 0.94 | 0.04 * | 0.21 |
Aspartate Aminotransferase, U/L | 51.00 | 87.60 | 64.83 | 99.08 | 3.01 | 0.001 ** | 0.88 |
Bilirubin, Direct | 0.13 | 0.14 | 0.14 | 0.15 | 0.01 | 0.36 | 0.86 |
Carcass Trait | Percentage of LF-DDGS in Diets, % | p-Value † | |||||
---|---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | SEM | Linear | Quadratic | |
Final wt., kg | 39.21 | 39.58 | 43.45 | 37.02 | 0.94 | 0.79 | 0.16 |
Fasting wt., kg | 35.98 | 35.45 | 40.45 | 35.08 | 1.05 | 0.88 | 0.22 |
Hot Carcass wt., kg | 21.97 | 20.98 | 23.94 | 20.98 | 0.39 | 0.93 | 0.25 |
Carcass Chilled wt., kg | 14.92 | 14.35 | 16.64 | 14.10 | 0.40 | 0.90 | 0.26 |
Carcass Shrink Percentage | 32.42 | 31.13 | 30.86 | 33.25 | 0.76 | 0.79 | 0.34 |
Dressing Percentage | 38.55 | 40.70 | 40.60 | 39.86 | 0.63 | 0.58 | 0.36 |
Longissimus Muscle Area, cm2 | 13.76 | 13.87 | 15.32 | 12.47 | 0.36 | 0.43 | 0.93 |
Fat Depth at the 12th Rib, mm | 2.17 | 1.92 | 1.93 | 1.77 | 0.06 | 0.39 | 0.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ale, K.B.; Scott, J.; Okere, C.; Abrahamsen, F.W.; Gurung, R.; Gurung, N.K. Effects of Low-Fat Distillers Dried Grains with Solubles Supplementation on Growth Performance, Rumen Fermentation, Blood Metabolites, and Carcass Characteristics of Kiko Crossbred Wether Goats. Animals 2022, 12, 3318. https://doi.org/10.3390/ani12233318
Ale KB, Scott J, Okere C, Abrahamsen FW, Gurung R, Gurung NK. Effects of Low-Fat Distillers Dried Grains with Solubles Supplementation on Growth Performance, Rumen Fermentation, Blood Metabolites, and Carcass Characteristics of Kiko Crossbred Wether Goats. Animals. 2022; 12(23):3318. https://doi.org/10.3390/ani12233318
Chicago/Turabian StyleAle, Khim B., Jarvis Scott, Chukewueme Okere, Frank W. Abrahamsen, Reshma Gurung, and Nar K. Gurung. 2022. "Effects of Low-Fat Distillers Dried Grains with Solubles Supplementation on Growth Performance, Rumen Fermentation, Blood Metabolites, and Carcass Characteristics of Kiko Crossbred Wether Goats" Animals 12, no. 23: 3318. https://doi.org/10.3390/ani12233318
APA StyleAle, K. B., Scott, J., Okere, C., Abrahamsen, F. W., Gurung, R., & Gurung, N. K. (2022). Effects of Low-Fat Distillers Dried Grains with Solubles Supplementation on Growth Performance, Rumen Fermentation, Blood Metabolites, and Carcass Characteristics of Kiko Crossbred Wether Goats. Animals, 12(23), 3318. https://doi.org/10.3390/ani12233318