Endocrine and Electrolyte Balances during Periovulatory Period in Cycling Mares
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Reproductive Monitoring of the Mares
2.3. Venous Blood Sampling
2.4. Measurements of Hormone Concentrations
2.5. Statistical Analyses
3. Results
4. Discussion
4.1. ACTH and CORT Effects on the Ovulatory Dynamics in Different Species and in Mare
4.2. Effect of Estrous Cycle on the ACTH and CORT Patterns in Different Species
4.3. Effect of Estrous Cycle on the HPA Axis and ALD in Different Species and in Mare
4.4. Electrolytes Balance and Endocrine Modulation in Different Species and in Mare
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baucus, K.L.; Squires, E.L.; Ralston, S.L.; McKinnon, A.O.; Nett, T.M. Effect of transportation on the estrous cycle and concentrations of hormones in mares. J. Anim. Sci. 1990, 68, 419–426. [Google Scholar] [CrossRef]
- Berghold, P.; Möstl, E.; Aurich, C. Effects of reproductive status and management on cortisol secretion and fertility of oestrous horse mares. Anim. Reprod. Sci. 2007, 102, 276–285. [Google Scholar] [CrossRef]
- Marcilla, M.; Muñoz, A.; Satué, K. Longitudinal changes in serum catecholamines, dopamine, serotonin, ACTH and cortisol in pregnant Spanish mares. Res. Vet. Sci. 2017, 115, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Erber, R.; Wulf, M.; Rose-Meierhfer, S.; Becker-Birck, M.; Möstl, E.; Aurich, J.; Hoffmann, G.; Aurich, C. Behavioral and physiological responses of young horses to different weaning protocols: A pilot study. Stress 2012, 15, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Jacob, S.I.; Geor, R.J.; Weber, P.S.D.; Harris, P.A.; McCue, M.E. Effect of dietary carbohydrates and time of year on ACTH and cortisol concentrations in adult and aged horses. Domest. Anim. Endocrinol. 2018, 63, 15–22. [Google Scholar] [CrossRef]
- Kelley, D.E.; Gibbons, J.R.; Smith, R.; Vernon, K.L.; Pratt-Phillip, S.E.; Mortensen, C.J. Exercise affects both ovarian follicular dynamics and hormone concentrations in mares. Theriogenology 2011, 76, 615–622. [Google Scholar] [CrossRef]
- Merl, S.; Scherzer, S.; Palme, R.; Möstl, E. Pain causes increased concentrations of glucocorticoid metabolites in horse feces. J. Equine Vet. Sci. 2000, 20, 586–590. [Google Scholar] [CrossRef]
- Alexander, S.L.; Irvine, C.H.G. The effect of social stress on adrenal axis activity in horses: The importance of monitoring cortico-steroid-binding globulin capacity. J. Endocrinol. 1998, 157, 425–432. [Google Scholar] [CrossRef]
- Ferris, R.A.; McCue, P.M. The effects of dexamethasone and prednisolone on pituitary and ovarian function in the mare. Equine Vet. J. 2010, 42, 438–443. [Google Scholar] [CrossRef]
- Asa, C.S.; Robinson, J.A.; Ginther, O.J. Changes in plasma cortisol concentrations during the ovulatory cycle of the mare. J. Endocrinol. 1983, 99, 329–334. [Google Scholar] [CrossRef]
- Ginther, O.J.; Utt, M.D.; Beg, M. Follicle deviation and diurnal variation in circulating hormone concentrations in mares. Anim. Reprod. Sci. 2007, 100, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Briant, C.; Hervé, V.; Guillame, D. Cortisol, stress and reproduction in the mare. In Proceedings of the 26ème Journée de la Recherche Equine Congrès, Les Haras Nationaux, Paris, France, 1 March 2000; pp. 101–110. [Google Scholar]
- Satué, K.; Montesinos, P.; Gardón, J.C. 65 association between aldosterone and cortisol levels during the ovulatory period in spanish purebred mares. Reprod. Fertil. Dev. 2014, 26, 146. [Google Scholar] [CrossRef]
- Satué, K.; Montesinos, P.; Muñoz, A. Activation of the renin–angiotensin–aldosterone system in mares around ovulation. Czech J. Anim. Sci. 2017, 62, 259–267. [Google Scholar] [CrossRef] [Green Version]
- Satué, K.; Gardon, J.C.; Montesinos, P. Relationship between oestradiol-17 beta and renin concentrations during preovulatory period in Spanish Purebred mares. Reprod. Domest. Anim. 2012, 47, 111. [Google Scholar]
- Satué, K.; Muñoz, A. Scientific evidences supporting the activation of the renin-angiotensin-aldosterone system during estral cycle and pregnancy in mares. In Selected Chapters from the Renin-Angiotensin System; Kibel, A., Ed.; IntechOpen: London, UK. [CrossRef] [Green Version]
- Sneeringer, R.; Penzias, A.S.; Barrett, B.; Usheva, A. High levels of mineralocorticoids in preovulatory follicular fluid could contribute to oocyte development. Fertil. Steril. 2011, 95, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Szmuilowicz, E.D.; Adler, G.K.; Williams, J.S.; Green, D.E.; Yao, T.M.; Hopkins, P.N.; Seely, E.W. Relationship between aldosterone and progesterone in the human menstrual cycle. J. Clin. Endocrinol. Metab. 2006, 91, 3981–3987. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, T.; Okamura, N.; Yagi, M.; Omatsu, H.; Yamamori, M.; Kuwahara, A.; Nishiguchi, K.; Horinouchi, M.; Okumura, K.; Sakaeda, T. Effects of ABCB1 3435C > T genotype on serum levels of cortisol and aldosterone in women with normal menstrual cycles. Genet. Mol. Res. 2009, 8, 397–403. [Google Scholar] [CrossRef]
- Hilliard, L.M.; Sampson, A.K.; Brown, R.D.; Denton, K.M. The “his and hers” of the renin-angiotensin system. Curr. Hypertens. Rep. 2013, 15, 71–79. [Google Scholar] [CrossRef]
- Kinslow, P.; Harris, P.; Gray, J.; Allen, W.R. Influence of the oestrus cycle on electrolyte excretion in the mare. Equine Vet. J. 1995, 18, 388–391. [Google Scholar]
- Funder, J.W. Aldosterone and mineralocorticoid receptors-physiology and pathophysiology. Int. J. Mol. Sci. 2017, 18, 1032. [Google Scholar] [CrossRef] [Green Version]
- Satué, K.; Domingo, R. Longitudinal study of the renin angiotensin aldosterone systemin purebred Spanish broodmares during pregnancy. Theriogenology 2011, 75, 1185–1194. [Google Scholar] [CrossRef]
- Muñoz, A.; Riber, C.; Trigo, P.; Castejón, F.M. Clinical applications of the renin-angiotensin aldosterone-vasopressin axis in the horse and future directions for research. J. Equine Vet. Sci. 2010, 30, 607–616. [Google Scholar] [CrossRef]
- Aurich, C.; Aurich, J. Effects of stress on reproductive functions in the horse. Pferdeheilkunde Equine Med. 2008, 24, 99–102. [Google Scholar] [CrossRef] [Green Version]
- Bucca, S.; Carli, A. Efficacy of human chorionic gonadotropin to induce ovulation in the mare, when associated with a single dose of dexamethasone administered at breeding time. Equine Vet. J. 2011, 43, 32–34. [Google Scholar] [CrossRef] [PubMed]
- Scarlet, D.; Ille, N.; Ertl, R.; Alves, B.; Gastal, G.; Paiva, S.; Gastal, M.; Gastal, E.; Aurich, C. Glucocorticoid metabolism in equine follicles and oocytes. Domest. Anim. Endocrinol. 2017, 59, 11–22. [Google Scholar] [CrossRef]
- Hillier, S.G. Gonadotropic control of ovarian follicular growth and development. Mol. Cell. Endocrinol. 2001, 179, 39–46. [Google Scholar] [CrossRef]
- Rhodes, M.E.; Balestreire, E.M.; Czambel, R.K.; Rubin, T. Estrous cycle influences on sexual diergism of HPA axis responses to cho-linergic stimulation in rats. Brain Res. Bull. 2002, 59, 217–225. [Google Scholar] [PubMed]
- Genazzani, A.R.; Lemarchand-Béraud, T.H.; Aubert, M.L.; Felber, J.P.; Muller, A.; Lavanchy, J.; Gomez, J. Pattern of plasma ACTH, hGH, and cortisol during menstrual cycle. J. Clin. Endocrinol. Metab. 1975, 41, 431–437. [Google Scholar] [CrossRef]
- Hamidovic, A.; Karapetyan, K.; Serdarevic, F.; Choi, S.H.; Eisenlohr-Moul, T.; Pinna, G. Higher circulating cortisol in the follicular vs. luteal phase of the menstrual cycle: A meta-analysis. Front. Endocrinol. 2020, 11, 311. [Google Scholar] [CrossRef]
- Sosa, C.; Forcada, F.; Meikle, A.; Abecia, J. Increase in ovine plasma cortisol at oestrus and its relation with the metabolic status during the sexual cycle in sheep. Biol. Rhythm Res. 2013, 44, 445–449. [Google Scholar] [CrossRef]
- Fanson, K.V.; Keeley, T.; Fanson, B.G. Cyclic changes in cortisol across the estrous cycle in parous and nulliparous Asian elephants. Endocr. Connect. 2014, 3, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Gallelli, M.F.; Monachesi, N.; Miceli, D.D.; Cabrera Blatter, M.F.; Gomez, N.V.; Meikle, A.; Castillo, V.A. Plasma ACTH, α-MSH and cortisol variations in the dog during the oestrous cycle in different photoperiods. Vet. Med. 2015, 60, 567–577. [Google Scholar] [CrossRef] [Green Version]
- Handa, R.J.; Weiser, M.J. Gonadal steroid hormones and the hypothalamo-pituitary-adrenal axis. Front. Neuroendocrinol. 2014, 35, 197–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panagiotakopoulos, L.; Neigh, G.N. Development of the HPA axis: Where and when do sex differences manifest? Front. Neuroendocrinol. 2014, 35, 285–302. [Google Scholar] [CrossRef] [PubMed]
- Ochedalski, T.; Subburaiu, S.; Wynn, P.C.; Aguilera, G. Interaction between oestrogen and oxytocin on hypothalamic-pituitary-adrenal axis activity. J. Neuroendocrinol. 2007, 19, 189–197. [Google Scholar] [CrossRef]
- Ogura, E.; Kageyama, K.; Kasckow, J.; Suda, T. Effects of estradiol on regulation of corticotropin-releasing factor gene and interleukin-6 production via estrogen receptor type beta in hypothalamic 4B cells. Peptides 2008, 29, 456–464. [Google Scholar] [CrossRef]
- McFarlane, D. Equine pituitary pars intermedia dysfunction. Vet. Clin. North Am. Equine Pract. 2011, 27, 93–113. [Google Scholar] [CrossRef]
- Qureshi, A.C.; Bahri, A.; Breen, L.A.; Barnes, S.C.; Powrie, J.K.; Thomas, S.M.; Carroll, P.V. The influence of the route of oestrogen administration on serum levels of cortisol-binding globulin and total cortisol. Clin. Endocrinol. 2007, 66, 632–635. [Google Scholar]
- Wood, C.E. Estrogen/hypothalamus-pituitary-adrenal axis interactions in the fetus: The interplay between placenta and fetal brain. J. Soc. Gynecol. Investig. 2005, 12, 67–76. [Google Scholar] [CrossRef]
- Hedberg, Y.; Dalin, A.M.; Forsberg, M.; Lundeheim, N.; Hoffmann, B.; Ludwig, C.; Kindahl, H. Effect of ACTH (tetracosactide) on steroid hormone levels in the mare. Part A: Effect in intact normal mares and mares with possible estrous related behavioral abnormalities. Anim. Reprod. Sci. 2007, 100, 73–91. [Google Scholar] [CrossRef]
- Hedberg, Y.; Dalin, A.M.; Forsberg, M.; Lundeheim, N.; Sandh, G.; Hoffmann, B.; Ludwig, C.; Kindahl, H. Effect of ACTH (tetracosactide) on steroid hormone levels in the mare. Part B: Effect in ovariectomized mares (including estrous behavior). Anim. Reprod. Sci. 2007, 100, 92–106. [Google Scholar] [CrossRef]
- Alm, Y.H.; Sukjumlong, S.; Kindahl, H.; Dalin, A.M. Steroid hormone receptors ERα and PR characterised by immunohistochemistry in the mare adrenal gland. Acta Vet. Scand. 2009, 51, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carey, M.P.; Deterd, C.H.; de Koning, J.; Helmerhorst, F.; de Kloet, E.R. The influence of ovarian steroids on hypothalamic-pituitary-adrenal regulation in the female rat. J. Endocrinol. 1995, 144, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Stachenfeld, N.S.; Taylor, H.S. Progesterone increases plasma volume independent of estradiol. J. Appl. Physiol. 2005, 98, 1991–1997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saner-Amigh, K.; Mayhew, B.A.; Mantero, F.; Schiavi, F.; White, P.C.; Rao, C.R.; Rainey, W.E. Elevated expression of luteinizing hormone receptor in aldosterone-producing adenomas. J. Clin. Endocrinol. Metab. 2006, 91, 1136–1142. [Google Scholar] [PubMed] [Green Version]
- Oelkers, W. Effects of estrogens and progestogens on the rennin-aldosterone system and blood pressure. Steroids 1996, 61, 166–171. [Google Scholar] [CrossRef]
- O’Donnell, E.; Floras, J.S.; Harvey, P.J. Estrogen status and the renin angiotensin aldosterone system. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 307, 498–500. [Google Scholar] [CrossRef] [PubMed]
- Hart, K.A.; Barton, M.H.; Vandeplas, M.L.; Hurley, D.J. Effects of low-dose hydrocortisone therapy on immune function in neonatal horses. Pediatr. Res. 2011, 70, 72–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sealey, J.E.; Laragh, J.H. Plasma renin activity enzyme-kinetic assay: Protection of angiotensin I from bacterial degradation. Clin. Chem. 2011, 57, 529–530. [Google Scholar] [CrossRef] [Green Version]
- Hurcombe, S.D. Hypothalamic-pituitary gland axis function and dysfunction in horses. Vet. Clin. North. Am. Equine Pract. 2011, 27, 1–17. [Google Scholar] [CrossRef]
- Ounis-Skali, N.; Mitchell, G.F.; Solomon, C.G.; Solomon, S.D.; Seely, E.W. Changes in central arterial pressure waveforms during the normal menstrual cycle. J. Investig. Med. 2006, 54, 321–326. [Google Scholar] [CrossRef]
- Wolfram, M.; Bellingrath, S.; Kudielka, B.M. The cortisol awakening response (CAR) across the female menstrual cycle. Psycho-neuroendocrinology 2011, 36, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.; Palmer, E.; Bézard, J.; Burke, J.; Duchamp, G.; Buckley, T. A comparison of the biochemical composition of equine follicular fluid and serum at four different stages of the follicular cycle. Equine Vet. J. 1997, 25, 12–16. [Google Scholar] [CrossRef]
- Krajnicáková, M.; Bekeová, E.; Maracek, I.; Hendrichovsky, V. Levels of sodium and potassium and their relation to ovarian hormones during estrus synchronization and pregnancy in ewes. Vet. Med. 1994, 39, 541–550. [Google Scholar]
- Janowsky, D.S.; Rausch, J.L.; Davis, J.M. Historical studies of premenstrual tension up to 30 years ago: Implications for future research. Curr. Psychiatry Rep. 2002, 4, 411–418. [Google Scholar] [PubMed]
- Hirshoren, N.; Tzoran, I.; Makrienko, I.; Edoute, Y.; Pawner, M.M.; Itskovitz-Eldor, J.; Jacob, G. Menstrual cycle effects on the neuro-humoral and autonomic nervous systems regulating the cardiovascular system. J. Clin. Endocrinol. Metab. 2002, 87, 1569–1575. [Google Scholar] [CrossRef] [PubMed]
- Lanje, M.A.; Bhutey, A.K.; Kulkami, S.R.; Dhawie, U.P.; Sande, A.S. Serum electrolytes during different phases of menstrual cycle. Int. J. Pharma Sci. Res. 2010, 1, 435–437. [Google Scholar]
- Keller-Wood, M. Effects of a simulated estrous cycle on sodium, volume, ACTH, and AVP in sheep. Domest. Anim. Endocrinol. 2000, 18, 31–40. [Google Scholar] [CrossRef]
- Langdon Fielding, C. Potassium homeostasis and derangements. In Equine Fluid Therapy; Langdon Fieldin, C., Gary Magdesian, K., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 27–44. [Google Scholar]
- Leroy, J.; Vanholder, T.; Delanghe, J.; Opsomer, G.; van Soom, A.; Bols, P.; Dewulf, J.; De Kruif, A. Metabolic changes in follicular fluid of the dominant follicle in high-yielding dairy cows early post partum. Theriogenology 2004, 62, 1131–1143. [Google Scholar] [CrossRef] [PubMed]
- Devi, I.; Singh, P.; Lathwal, S.S.; Kumaresan, A.; Dudi, K. Evaluation of salivary electrolytes during estrous cycle in Murrah buffaloes with reference to estrus detection. Vet. World 2016, 9, 1157–1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hugentobler, S.A.; Morris, D.G.; Sreenan, J.M.; Diskin, M.G. Ion concentrations in oviduct and uterine fluid and blood serum during the estrous cycle in the bovine. Theriogenology 2007, 68, 538–548. [Google Scholar] [CrossRef] [PubMed]
Pre-Ovulatory Days | Ovulation | Post-Ovulatory Days | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Days of Cycle | −5 | −4 | −3 | −2 | −1 | 0 | +1 | +2 | +3 | +4 | +5 |
Na+ (mmol/L) | 142.1 ± 0.33 | 141.1 ± 1.57 | 139.9 ± 2.47 | 141.3 ± 1.97 | 138.9 ± 0.99 | 142.2 ± 3.28 a,b | 141.8 ± 6.11 | 141.2 ± 3.27 | 143.2 ± 6.14 | 141.2 ± 4.79 | 140.5 ± 2.41 |
K+ (mmol/L) | 4.18 ± 0.54 | 3.75 ± 0.56 | 4.29 ± 0.21 | 4.03 ± 0.15 | 3.88 ± 0.26 | 4.16 ± 0.26 | 4.51 ± 0.57 c | 4.35 ± 0.46 | 4.08 ± 0.71 | 4.30 ± 0.73 | 3.91 ± 0.74 |
Cl− (mmol/L) | 105.6 ± 0.92 | 104.9 ± 0.55 | 104.9 ± 1.96 | 105.2 ± 1.35 | 104.5 ± 1.28 | 107.4 ± 1.44 a,b | 106.0 ± 4.22 | 106.2 ± 2.77 | 108.8 ± 5.80 | 106.3 ± 3.95 | 104.4 ± 2.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satué, K.; Fazio, E.; Muñoz, A.; Medica, P. Endocrine and Electrolyte Balances during Periovulatory Period in Cycling Mares. Animals 2021, 11, 520. https://doi.org/10.3390/ani11020520
Satué K, Fazio E, Muñoz A, Medica P. Endocrine and Electrolyte Balances during Periovulatory Period in Cycling Mares. Animals. 2021; 11(2):520. https://doi.org/10.3390/ani11020520
Chicago/Turabian StyleSatué, Katiuska, Esterina Fazio, Ana Muñoz, and Pietro Medica. 2021. "Endocrine and Electrolyte Balances during Periovulatory Period in Cycling Mares" Animals 11, no. 2: 520. https://doi.org/10.3390/ani11020520
APA StyleSatué, K., Fazio, E., Muñoz, A., & Medica, P. (2021). Endocrine and Electrolyte Balances during Periovulatory Period in Cycling Mares. Animals, 11(2), 520. https://doi.org/10.3390/ani11020520