Temporal and Geographical Variation of Intestinal Ulcers in Grey Seals (Halichoerus grypus) and Environmental Contaminants in Baltic Biota during Four Decades
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Specimens
2.2. Intestines
2.3. Contaminant Analyses
2.4. Statistics
3. Results
3.1. Morphology of the Intestinal Lesions
3.2. Frequency of Ulcer in Relation to Age
3.3. Temporal and Spatial Trends of Parasites and Ulcers
3.4. Temporal Trends of Contaminants
3.5. Observations of Atlantic Grey Seal Intestines
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harding, K.C.; Tero, J.H. Development in the Baltic Grey Seal (Halichoerus grypus) and Ringed Seal (Phoca hispida) Populations during the 20th Century. Ambio 1999, 28, 619–627. [Google Scholar]
- Bäcklin, B.-M.; Moraeus, C.; Strömberg, A.; Karlsson, O.; Härkönen, T. Sälpopulationer Och Sälhälsa Havet. 2016. Available online: https://www.sverigesvattenmiljo.se/artiklar/salpopulationer-och-salhalsa (accessed on 11 October 2021).
- Jensen, S. Report of a new chemical hazard. New Sci. 1966, 32, 612. [Google Scholar]
- Jensen, S.; Johnels, A.G.; Olsson, M.; Otterlind, G. DDT and PCB in Marine Animals from Swedish Waters. Nature 1969, 224, 247–250. [Google Scholar] [CrossRef]
- Olsson, M.; Johnels, A.G.; Vaz, R. DDT and PCB levels in seals from Swedish waters. The occurrence of aborted seal pups. In Proceedings of the Symposium of the Seal in the Baltic Lidingö, Stockholm, Sweden, 4–6 June 1975; National Swedish Environmental Protection Board: Solna, Sweden; pp. 43–65, PM 591. [Google Scholar]
- Helle, E.; Olsson, M.; Jensen, S. PCB Levels Correlated with Pathological Changes in Seal Uteri. Ambio 1976, 5, 261–262. [Google Scholar]
- Hook, O.; Johnels, A.G. The breeding and distribution of the grey seal (Halichoerus grypus Fab) in the Baltic Sea, with observations on other seals in the area. Proc. R. Soc. Lond. B 1972, 182, 37–58. [Google Scholar]
- Bergman, A.; Olsson, M. Pathology of Baltic Grey Seal and Ringed Seal females with special reference to adrenocortical hypoerplasia: Is environmental pollution the cause of a widely distributed disease syndrome? Finn. Game Res. 1985, 44, 47–62. [Google Scholar]
- Bergman, A.; Olsson, M. (Eds.) Pathology of Baltic grey seal and ringed seal males. Report regarding animals sampled 1977-1985. Influence of human activities on the Baltic ecosystem. In Proceedings of the Soviet-Swedish Symposium “Effects of Toxic Substances on Dynamics of Seal Populations”, Moscow, Russia, 14–18 April 1989. [Google Scholar]
- Bergman, A.; Olsson, M.; Reiland, S. Skull-Bone Lesions in the Baltic Grey Seal (Halichoerus grypus). Ambio A J. Hum. Environ. 1992, 12, 517–519. [Google Scholar]
- Bergman, A. Health condition of the Baltic grey seal (Halichoerus grypus) during two decades. APMIS 1999, 107, 270–282. [Google Scholar] [CrossRef]
- Bergman, A.; Bergstrand, A.; Bignert, A. Renal Lesions in Baltic Grey Seals (Halichoerus grypus) and Ringed Seals (Phoca hispida botnica). AMBIO J. Hum. Environ. 2001, 30, 397–409. [Google Scholar] [CrossRef]
- Bergman, A.; Bignert, A.; Olsson, M. Pathology in Baltic grey seals (Halichoerus grypus) in relation to environmental exposure to endocrine disruptors. In Toxicology of Marine Mammals; Taylor and Francis: New York, NY, USA, 2003; pp. 507–533. [Google Scholar]
- Bredhult, C.; Bäcklin, B.-M.; Bignert, A.; Olovsson, M. Study of the relation between the incidence of uterine leiomyomas and the concentrations of PCB and DDT in Baltic gray seals. Reprod. Toxicol. 2008, 25, 247–255. [Google Scholar] [CrossRef]
- Bergman, A. Pathological Changes in Seals in Swedish Waters: The Relation to Environmental Pollution. Faculty of Veterinary Medicine and Animal Science. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2007. [Google Scholar]
- Baker, J.R. The pathology of the grey seal (Haliochoerus grypus). II. Juveniles and adults. Br. Vet. J. 1980, 136, 443–447. [Google Scholar] [CrossRef]
- Olsson, M.; Reutergårdh, L. DDT and PCB Pollution Trends in the Swedish Aquatic Environment. Ambio 1986, 15, 103–109. [Google Scholar]
- Bignert, A.; Olsson, M.; Persson, W.; Jensen, S.; Zakrisson, S.; Litzén, K.; Eriksson, U.; Häggberg, L.; Alsberg, T. Temporal trends of organochlorines in Northern Europe, 1967–1995. Relation to global fractionation, leakage from sediments and international measures. Environ. Pollut. 1998, 99, 177–198. [Google Scholar] [CrossRef]
- Roos, A.M.; Bäcklin, B.-M.V.; Helander, B.O.; Rigét, F.F.; Eriksson, U.C. Improved reproductive success in otters (Lutra lutra), grey seals (Halichoerus grypus) and sea eagles (Haliaeetus albicilla) from Sweden in relation to concentrations of organochlorine contaminants. Environ. Pollut. 2012, 170, 268–275. [Google Scholar] [CrossRef]
- Sørensen, A.L.; Faxneld, S. Temporal trends and spatial variations. In The Swedish National Monitoring Programme for Contaminants in Marine Biota (until 2019 Year’s Data); Swedish Museum of Natural History: Stockholm, Sweden, 2020. [Google Scholar]
- Nyberg, E.; Faxneld, S.; Danielsson, S.; Eriksson, U.; Miller, A.; Bignert, A. Temporal and spatial trends of PCBs, DDTs, HCHs, and HCB in Swedish marine biota 1969–2012. Ambio 2015, 44, 484–497. [Google Scholar] [CrossRef] [Green Version]
- Sellström, U.; Bignert, A.; Kierkegaard, A.; Häggberg, L.; de Wit, C.A.; Olsson, M.; Jansson, B. Temporal Trend Studies on Tetra- and Pentabrominated Diphenyl Ethers and Hexabromocyclododecane in Guillemot Egg from the Baltic Sea. Environ. Sci. Technol. 2003, 37, 5496–5501. [Google Scholar] [CrossRef]
- Holmström, K.E.; Järnberg, A.U.; Bignert, A. Temporal Trends of PFOS and PFOA in Guillemot Eggs from the Baltic Sea, 1968−2003. Environ. Sci. Technol. 2005, 39, 80–84. [Google Scholar] [CrossRef]
- Kratzer, J.; Ahrens, L.; Roos, A.; Bäcklin, B.-M.; Ebinghaus, R. Temporal trends of polyfluoroalkyl compounds (PFCs) in liver tissue of grey seals (Halichoerus grypus) from the Baltic Sea, 1974–2008. Chemosphere 2011, 84, 1592–1600. [Google Scholar] [CrossRef]
- Hewer, H.R. The determination of age, sexual maturity, longevity and a life-table in the grey seal (Halichoerus grypus). Proc. Zool. Soc. Lond. 1964, 142, 593–623. [Google Scholar] [CrossRef]
- Johnston, D.; Watt, I. A rapid method for sectioning undecalcified carnivore teeth for aging. In Proceedings of the 1st Worldwide Furbearer Conference, Frostburg, MD, USA, 3–11 August 1984; pp. 407–422. [Google Scholar]
- Bäcklin, B.-M.; Moraeus, C.; Roos, A.; Eklöf, E.; Lind, Y. Health and age and sex distributions of Baltic grey seals (Halichoerus grypus) collected from bycatch and hunt in the Gulf of Bothnia. ICES J. Mar. Sci. 2010, 68, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Team, R. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Nicholson, M.D.; Fryer, R.; Larsen, J.R. Temporal Trend Monitoring: Robust Method for Analyzing Contaminant Trend Monitoring Data; International Council for the Exploration of the Sea: Copenhagen, Denmark, 1998. [Google Scholar]
- Lakemeyer, J.; Lehnert, K.; Woelfing, B.; Pawliczka, I.; Silts, M.; Dähne, M.; Von Vietinghoff, V.; Wohlsein, P.; Siebert, U. Pathological findings in North Sea and Baltic grey seal and harbour seal intestines associated with acanthocephalan infections. Dis. Aquat. Org. 2020, 138, 97–110. [Google Scholar] [CrossRef] [PubMed]
- Leidenberger, S.; Bäcklin, B.-M. Artbestämning Och Förekomst av Parasiter hos Gråsälar (Halichoerus grypus) Med Tarmsår i Sverige; Swedish Museum of Natural History: Stockholm, Sweden, 2008. [Google Scholar]
- O’Neill, G.; Whelan, J. The occurrence of Corynosoma strumosum in the grey seal, Halichoerus grypus, caught off the Atlantic coast of Ireland. J. Helminthol. 2007, 76, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Valtonen, E.T. Relationships between Corynosoma semerme and C. strumosum (Acantocephala) and Their Paratentic Fish Hosts in the Bothnian Bay, Baltic Sea. Acta Univ. Ouluensis Ser. A Sci. Rerum Nat. 1983, 22, 1–48. [Google Scholar]
- Lundström, K.; Hjerne, O.; Alexandersson, K.; Karlsson, O. Estimation of grey seal (Halichoerus grypus) diet composition in the Baltic Sea. NAMMCO Sci. Publ. 2007, 6, 177–196. [Google Scholar] [CrossRef] [Green Version]
- Rodjuk, G.; Eliseev, A. Parasitological Assessment of the Commercial Fishes from the Russian EEZ of the South Baltic Sea; CM 2006/G:09; International Council for the Exploration of the Sea: Copenhagen, Denmark, 2006. [Google Scholar]
- Abraham, C.; Cho, J. Inflammatory bowel disease. N. Engl. J. Med. 2009, 361, 2066–2078. [Google Scholar] [CrossRef]
- Buonocore, S.; Ahern, P.P.; Uhlig, H.H.; Ivanov, I.I.; Littman, D.R.; Maloy, K.J.; Powrie, F. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nat. Cell Biol. 2010, 464, 1371–1375. [Google Scholar] [CrossRef] [Green Version]
- Pearson, C.; Thornton, E.; McKenzie, B.; Schaupp, A.-L.; Huskens, N.; Griseri, T.; West, N.; Tung, S.; Seddon, B.P.; Uhlig, H.H.; et al. ILC3 GM-CSF production and mobilisation orchestrate acute intestinal inflammation. eLife 2016, 5, e10066. [Google Scholar] [CrossRef]
- Ito, M.; Sato, T.; Shirai, W.; Kikuchi, S. Parasites and Related Pathological Lesions in the Gastrointestinal Tract of a Seal (Phoka vitulina Linnaeus). J. Vet. Med. Sci. 1998, 60, 1025–1028. [Google Scholar] [CrossRef] [Green Version]
- Silva, R.Z.; Pereira, J.; Cousin, J.C.B. Histological patterns of the intestinal attachment of Corynosoma australe (Acanthocephala: Polymorphidae) in Arctocephalus australis (Mammalia: Pinnipedia). J. Parasit. Dis. 2013, 38, 410–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindström, C.G. “Collagenous colitis” with watery diarrhoea—A new entity? Pathol. Eur. 1976, 11, 7–89. [Google Scholar]
- Boland, K.; Nguyen, G.C. Microscopic Colitis: A Review of Collagenous and Lymphocytic Colitis. Gastroenterol. Hepatol. 2017, 13, 671–677. [Google Scholar]
- Nickol, B.B.; Helle, E.; Valtonen, E.T. Corynosoma magdaleni in Grey Seals from the Gulf of Bothnia, with emended descriptions of Corynosoma strumosum and Corynosoma magdaleni. J. Parasitol. 2002, 88, 1222–1229. [Google Scholar] [CrossRef]
- Strauss, V.; Claussen, D.; Jäger, M.; Ising, S.; Schnieder, T.; Stoye, M. The Helminth Fauna of the Common Seal (Phoca vitulina vitulina, Linné, 1758) from the Wadden Sea in Lower Saxony Part 1: Trematodes, cestodes and acantocephala. J. Vet. Med. Ser. B 1991, 38, 641–648. [Google Scholar] [CrossRef]
- Sinisalo, T.; Kunnasranta, M.; Valtonen, E.T. Intestinal helminths of a landlocked ringed seal (Phoca hispida saimensis) population in eastern Finland. Parasitol. Res. 2003, 91, 40–45. [Google Scholar] [CrossRef]
- Jovanovic, K.; Siebeck, M.; Gropp, R. The route to pathologies in chronic inflammatory diseases characterized by T helper type 2 immune cells. Clin. Exp. Immunol. 2014, 178, 201–211. [Google Scholar] [CrossRef]
- Lundgren, M. Coxsackie Virus B3 Infection and Host Defence Responses Changes the Methabolism of PBDE; Faculty of Medicine, Uppsala University: Uppsala, Sweden, 2009. [Google Scholar]
- Rappazzo, K.M.; Coffman, E.; Hines, E.P. Exposure to Perfluorinated Alkyl Substances and Health Outcomes in Children: A Systematic Review of the Epidemiologic Literature. Int. J. Environ. Res. Public Health 2017, 14, 691. [Google Scholar] [CrossRef]
- Hanson, M.L.; Brundage, K.M.; Schafer, R.; Tou, J.C.; Barnett, J.B. Prenatal cadmium exposure dysregulates sonic hedgehog and Wnt/β-catenin signaling in the thymus resulting in altered thymocyte development. Toxicol. Appl. Pharmacol. 2010, 242, 136–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatterjee, S.; Kundu, S.; Sengupta, S.; Bhattacharyya, A. Divergence to apoptosis from ROS induced cell cycle arrest: Effect of cadmium. Mutat. Res. Mol. Mech. Mutagen. 2009, 663, 22–31. [Google Scholar] [CrossRef]
- Fortier, M.; Omara, F.; Bernier, J.; Brousseau, P.; Fournier, M. Effects of Physiological Concentrations of Heavy Metals Both Individually and in Mixtures on the Viability and Function of Peripheral Blood Human LeukocytesIn Vitro. J. Toxicol. Environ. Health Part. A 2008, 71, 1327–1337. [Google Scholar] [CrossRef]
- De Swart, R.L.; Ross, P.S.; Lies, J.V.; Helga, H.T.; Heisterkamp, S.; Van Loveren, H.; Vos, J.G.; Reijnders, P.J.H.; Osterhaus, A.D.M.E. Impairment of Immune Function in Harbor Seals (Phoca vitulina) Feeding on Fish from Polluted Waters. Ambio 1994, 23, 155–159. [Google Scholar]
- De Swart, R.L.; Ross, P.S.; Timmerman, H.H.; Vos, H.W.; Reijnders, P.J.H.; Vos, J.G.; Osterhaus, A.D.M.E. Impaired cellular immune response in harbour seals (Phoca vitulina) feeding on environmentally contaminated herring. Clin. Exp. Immunol. 1995, 101, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Darnerud, P.O. Toxic effects of brominated flame retardants in man and in wildlife. Environ. Int. 2003, 29, 841–853. [Google Scholar] [CrossRef]
- Frouin, H.; Lebeuf, M.; Hammill, M.; Masson, S.; Fournier, M. Effects of individual polybrominated diphenyl ether (PBDE) congeners on harbour seal immune cells in vitro. Mar. Pollut. Bull. 2010, 60, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Budtz-Jørgensen, E.; Grandjean, P. Application of benchmark analysis for mixed contaminant exposures: Mutual adjustment of perfluoroalkylate substances associated with immunotoxicity. PLoS ONE 2018, 13, e0205388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeWitt, J.C.; Peden-Adams, M.M.; Keller, J.M.; Germolec, D.R. Immunotoxicity of Perfluorinated Compounds: Recent Developments. Toxicol. Pathol. 2011, 40, 300–311. [Google Scholar] [CrossRef]
- Petersen, M.S.; Halling, J.; Jørgensen, N.; Nielsen, F.; Grandjean, P.; Jensen, T.K.; Weihe, P. Reproductive Function in a Population of Young Faroese Men with Elevated Exposure to Polychlorinated Biphenyls (PCBs) and Perfluorinated Alkylate Substances (PFAS). Int. J. Environ. Res. Public Health 2018, 15, 1880. [Google Scholar] [CrossRef] [Green Version]
- Jensen, A.A.; Leffers, H. Emerging endocrine disrupters: Perfluoroalkylated substances. Int. J. Androl. 2008, 31, 161–169. [Google Scholar] [CrossRef]
- Fair, P.A.; Romano, T.; Schaefer, A.M.; Reif, J.S.; Bossart, G.D.; Houde, M.; Muir, D.; Adams, J.; Rice, C.; Hulsey, T.C.; et al. Associations between perfluoroalkyl compounds and immune and clinical chemistry parameters in highly exposed bottlenose dolphins (Tursiops truncatus). Environ. Toxicol. Chem. 2013, 32, 736–746. [Google Scholar] [CrossRef]
- Straumann, A.; Simon, H.-U. The physiological and pathophysiological roles of eosinophils in the gastrointestinal tract. Allergy 2004, 59, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Suo, C.; Fan, Z.; Zhou, L.; Qiu, J. Perfluorooctane sulfonate affects intestinal immunity against bacterial infection. Sci. Rep. 2017, 7, 5166. [Google Scholar] [CrossRef] [PubMed]
- Desforges, J.-P.W.; Sonne, C.; Levin, M.; Siebert, U.; De Guise, S.; Dietz, R. Immunotoxic effects of environmental pollutants in marine mammals. Environ. Int. 2016, 86, 126–139. [Google Scholar] [CrossRef]
- Perkins, J.T.; Petriello, M.C.; Newsome, B.J.; Hennig, B. Polychlorinated biphenyls and links to cardiovascular disease. Environ. Sci. Pollut. Res. 2015, 23, 2160–2172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D.; Perkins, J.T.; Hennig, B. EGCG prevents PCB-126-induced endothelial cell inflammation via epigenetic modifications of NF-κB target genes in human endothelial cells. J. Nutr. Biochem. 2016, 28, 164–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, Y.J.; Seelbach, M.J.; Pu, H.; Eum, S.Y.; Chen, L.; Zhang, B.; Hennig, B.; Toborek, M. Polychlorinated Biphenyls Disrupt Intestinal Integrity via NADPH Oxidase-Induced Alterations of Tight Junction Protein Expression. Environ. Health Perspect. 2010, 118, 976–981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, Y.; Liu, X.; Tan, X.-Z.; Jiang, C.-X.; Chen, S.-W.; Liang, G.-N.; He, X.-M.; Wu, J.; Chen, T.; Xu, Y. ROS-induced NLRP3 inflammasome priming and activation mediate PCB 118- induced pyroptosis in endothelial cells. Ecotoxicol. Environ. Saf. 2020, 189, 109937. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Britt-Marie, B.; Sara, P.; Suzanne, F.; Frank, R.F.; Anna, R.M. Temporal and Geographical Variation of Intestinal Ulcers in Grey Seals (Halichoerus grypus) and Environmental Contaminants in Baltic Biota during Four Decades. Animals 2021, 11, 2968. https://doi.org/10.3390/ani11102968
Britt-Marie B, Sara P, Suzanne F, Frank RF, Anna RM. Temporal and Geographical Variation of Intestinal Ulcers in Grey Seals (Halichoerus grypus) and Environmental Contaminants in Baltic Biota during Four Decades. Animals. 2021; 11(10):2968. https://doi.org/10.3390/ani11102968
Chicago/Turabian StyleBritt-Marie, Bäcklin, Persson Sara, Faxneld Suzanne, Rigét F. Frank, and Roos M. Anna. 2021. "Temporal and Geographical Variation of Intestinal Ulcers in Grey Seals (Halichoerus grypus) and Environmental Contaminants in Baltic Biota during Four Decades" Animals 11, no. 10: 2968. https://doi.org/10.3390/ani11102968
APA StyleBritt-Marie, B., Sara, P., Suzanne, F., Frank, R. F., & Anna, R. M. (2021). Temporal and Geographical Variation of Intestinal Ulcers in Grey Seals (Halichoerus grypus) and Environmental Contaminants in Baltic Biota during Four Decades. Animals, 11(10), 2968. https://doi.org/10.3390/ani11102968