Nutritional and Anti-Nutritional Factors in Vicia sativa L. Seeds and the Variability of Phenotypic and Morphological Characteristics of Some Vetch Accessions Cultivated in European Countries
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Study Site
2.2. Analysis of Phenotypic and Morphological Traits of Vetch Accessions
2.3. Chemical Analyses of Vetch Seeds
2.4. Statistical Analysis
3. Results
3.1. Phenotypic and Morphological Traits of Vicia sativa L. Accessions
3.2. Proximate Nutrient Composition and Detergent Fibre Content in Vetch Seeds
3.3. Mineral Composition in Vetch Seeds
3.4. Anti-Nutritional Factors in Vetch Seeds
3.5. Essential Amino Acid Content in Vetch Seeds
3.6. Fatty Acid Composition in Vetch Seed Fat
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Campbell, C.G. Grass pea. Lathyrus sativus L. Promoting the Conservation and Use of Underutilized and Neglected Crops. 18; Institute of Plant Genetics and Crop Plant Research; Gatersleben/International Plant Genetic Resources Institute: Rome, Italy, 1997. [Google Scholar]
- Jeroch, H.; Lipiec, A.; Abel, H.; Zentek, J.; Grela, E.R.; Bellof, G. Körnerleguminosen als Futter- und Nahrungsmittel; DLG: Frankfurt am Main, Germany, 2016. [Google Scholar]
- Grela, E.R.; Rybiński, W.; Klebaniuk, R.; Matras, J. Morphological characteristics of some accessions in grass pea (Lathyrus sativus L.) grown in Europe and nutritional traits their seeds. Genet. Resour. Crop Evol. 2010, 57, 693–701. [Google Scholar] [CrossRef]
- Grela, E.R.; Kiczorowska, B.; Samolińska, W.; Matras, J.; Kiczorowski, P.; Rybiński, W.; Hanczakowska, E. Chemical composition of leguminous seeds: Part I—content of basic nutrients; amino acids; phytochemical compounds; and antioxidant activity. Eur. Food Res. Technol. 2017, 243, 1385–1395. [Google Scholar] [CrossRef]
- Grela, E.R.; Samolińska, W.; Kiczorowska, B.; Klebaniuk, R.; Kiczorowski, P. Content of Minerals and Fatty Acids and Their Correlation with Phytochemical Compounds and Antioxidant Activity of Leguminous Seeds. Biol. Trace Elem. Res. 2017, 180, 338–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andueza, D.; Münoz, F.; Cardesa, C.; Delgado, I. Valor del nitritivo del forraje de doferentes cultivares de veza (Vicia sativa L.) en distans condiciones de medio de Aragon. In III Reunion Iberica de Pastos y Forraxes; Reunión Científica de la SEEP: Bragança, Portugal, 2000; pp. 485–491. [Google Scholar]
- Ballesta, A.; Lioveras, J.; Santiveri, P.; Torrent, D.; Vendrell, A. Varieties of vetch (Vicia sativa L.) for forage and grain production in Mediterranean areas. In Réhabilitation des Pâturages et des Parcours en Milieux Méditerranéen; Ferchichi, A., Ferchichi, A., Eds.; CIHEAM: Zaragoza, Spain, 2004; pp. 103–106. [Google Scholar]
- FAOSTAT. 2018. Available online: www.faostat.org (accessed on 9 December 2020).
- Common Catalogue of Varieties of Agricultural Plant Species, 37th ed.; OJ C 13; 11 January 2019; pp. 1–812. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3AC2019%2F013%2F01&qid=1551887947834#PP1Contents (accessed on 2 October 2020).
- Collins, C.N.; Dunshea, F.R.; Henman, D.J.; King, R.H. Evaluation of common vetch (Vicia sativa cv. Morava) for growing pigs. Aust. J. Exp. Agric. 2005, 45, 699–703. [Google Scholar] [CrossRef]
- Enneking, D. The toxicity of Vicia Species and Their Utilisation as Grain Legumes. Ph.D. Thesis, Centre for Legumes in Mediterranean Agriculture (CLIMA), University of Adelaide, Adelaide, Australia, 1995. [Google Scholar]
- Ressler, C.; Tatake, J.G.; Kaize, E.; Putnam, D.H. Neurotoxins in a vetch food: Stability to cooking and removal of gamma-glutamyl-beta-cyanoalanine and beta-cyanoalanine and acute toxicity from common vetch (Vicia sativa L.) legumes. J. Agric. Food Chem. 1997, 45, 189–194. [Google Scholar] [CrossRef]
- Paiva, K.C.; de Carvalho, M.R.B.; Pizauro, J.M., Jr. Effectiveness inactivation of trypsin inhibitor fron brazilian cultivarof beans (Phaseolus vulgaris L.). Aliment. Nutr. 2011, 22, 331–337. [Google Scholar]
- Hanelt, P.; Tschiersch, B. Blausäureglykosid-Untersuchungen am Gaterslebener Wickensortiment. Kulturpflanze. Genet. Resour. Crop Evol. 1967, 15, 85–96. [Google Scholar]
- Way, J.L. Cyanide intoxication and its mechanism of antagonism. Annu. Rev. Pharmacol. Toxicol. 1984, 24, 451–481. [Google Scholar] [CrossRef]
- Grela, E.R.; Rybiński, W.; Matras, J.; Sobolewska, S. Variability of phenotypic and morphological characteristics of some Lathyrus sativus L. and Lathyrus cicera L. accessions and nutritional traits of their seeds. Genet. Resour. Crop Evol. 2012, 59, 1687–1703. [Google Scholar] [CrossRef] [Green Version]
- Shehadeh, A.; Amri, A.; Maxted, N. Ecogeographic survey and gap analysis of Lathyrus L. species. Genet. Resour. Crop Evol. 2013, 60, 2101–2113. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International. 4, 18th ed.; Horowitz, W., Latimer, G.W., Jr., Eds.; AOAC International: Gaithersburg, MD, USA, 2011. [Google Scholar]
- Goering, H.K.; Van Soest, P.J. Forage Fiber Analysis (Approaches, Reagents, Procedures, and Some Applications); Agriculture Handbook No. 379; US Department of Agriculture: Washington, DC, USA, 1970.
- Oser, B.L. Methods for the integrating essential amino acid content in the nutritional evaluation of protein. J. Am. Diet Assoc. 1951, 27, 399–404. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC, 13th ed.; Helrich, K., Ed.; Method 969.33, Fatty Acids in Oils and Fats. Preparation of Methyl Esters. Boron Trifluoride Method/AOAC-IUPAC Method; AOAC International: Rockville, MD, USA, 1990. [Google Scholar]
- PN-EN ISO 6869, Feed. Determination of Calcium, Copper, Iron, Magnesium, Manganese, Potassium, Sodium and Zinc; The Method of Atomic Absorption Spectrometry; Polish Committee for Standardization: Warsaw, Poland, 2002. [Google Scholar]
- Waniska, R.D.; Hugo, L.F.M.; Rooney, L.W. Practical methods to determine the presence of tannins in sorghum. J. Appl. Poult. Res. 1992, 1, 122–128. [Google Scholar] [CrossRef]
- PN-EN ISO 14902, Feed. Determination of Trypsin Inhibitor Activity of Soya Products; Polish Committee for Standardization: Warsaw, Poland, 2005. [Google Scholar]
- Makkar, H.P.S.; Siddhuraju, P.; Becker, K. Plant secondary metabolites. Cyanogenic Glucosides/Cyanogens. Methods Mol. Biol. 2007, 393, 61–65. [Google Scholar]
- Jasińska, Z.; Kotecki, A. Legume crops—Vetch. In Plant Cultivation; Jasińska, Z., Kotecki, A., Eds.; Academy of Agriculture: Wroclaw, Poland, 1999; pp. 82–96. [Google Scholar]
- Dolata, A.; Andrzejewska, J.; Wiatr, K. Reaction of determinate and indeterminate common vetch (Vicia sativa L. ssp. sativa) cultivars to different climatic and soil conditions. Acta Sci. Pol. Agric. 2006, 5, 25–35. [Google Scholar]
- Chowdhury, M.S.; Rathjen, J.M.; Tate, M.E.; McDonald, G. Genetic of colour traits in common vetch (Vicia sativa L.). Euphytica 2004, 136, 249–255. [Google Scholar] [CrossRef]
- Milczak, M. A study on inter varietal hybrids of common vetch (Vicia sativa L.). II. Inheritance of some morphological features. Plant Breed Seed Sci. 1971, 15, 113–132. [Google Scholar]
- Sharma, A.; Kalia, M. Physico-chemical characteristics and composition of Vicia sativa. Himachal J. Agric. Res. 2003, 29, 70–73. [Google Scholar]
- Silezin, G.; Szwed-Urbaś, K. Variability and heritability of quantitative features in the hybrid population of common vetch Alba x Kamiko. Ann. UMCS Sect. E Agric. 2004, 59, 2061–2070. [Google Scholar]
- Aletor, V.A.; Goodchild, A.V.; Moneim, A.M.A.E. Nutritional and antinutritional characteristics of selected Vicia genotypes. Anim. Feed Sci. Technol. 1994, 47, 125–139. [Google Scholar] [CrossRef]
- Uzun, A.; Gücer, S.; Acikgoz, E. Common vetch (Vicia sativa L.) germplasm: Correlations of crude protein and mineral content to seed traits. Plant Foods Hum. Nutr. 2011, 66, 254–260. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Poultry, 9th ed.; The National Academy Press: Washington, DC, USA, 1994. [Google Scholar]
- NRC. Nutrient Requirements of Swine, 11th ed.; The National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Russo, G.L. Dietary n-6 and n-3 polyunsaturated fatty acids: From biochemistry to clinical implications in cardiovascular prevention. Biochem. Pharmacol. 2009, 77, 937–946. [Google Scholar] [CrossRef] [PubMed]
- Akpinar, N.; Akpinar, M.A.; Türkoğlu, Ş. Total lipid content and fatty acid composition of the seeds of some Vicia L. species. Food Chem. 2001, 74, 449–453. [Google Scholar] [CrossRef]
- Kökten, K.; Koçak, A.; Bağci, E.; Akçura, M.; Çelik, S. Tannin; protein contents and fatty acid compositions of the seeds of several Vicia L. species from Turkey. Grasas Aceites 2010, 61, 404–408. [Google Scholar] [CrossRef] [Green Version]
- Desphande, S.S.; Campbell, C.G. Genotype variation in BOAA; condensed tannins; phenolics and enzyme inhibitors in grass pea (Lathyrus sativus L.). Can. J. Plant Sci. 1992, 72, 1037–1047. [Google Scholar]
- EFSA. Opinion of the Scientific Panel on Contaminants in the Food Chain on Request from the Commission Related to Cyanogenic Compounds as Undesirable Substances in Animal Feed. Eur. Food Saf. Auth. J. 2007, 434, 1–67. [Google Scholar]
- Manzano, H.; de Sousa, A.B.; Soto-Blanco, B. Effects of long-term cyanide ingestion by pigs. Vet. Res. Commun. 2007, 31, 93–104. [Google Scholar] [CrossRef]
- Newhouse, K. Toxocological Review of Hydrogen Cyanide and Cyanide Salts; U.S. Environmental Protection Agency: Washington, DC, USA, 2010.
- Jackson, L.C. Behavioral effects of chronic sublethal dietary cyanide in an animal model: Implications for humans consuming cassava (Manihot esculenta). Hum. Biol. 1988, 60, 597–614. [Google Scholar]
Accessions | Number of Accessions | Traits | |||||
---|---|---|---|---|---|---|---|
Plant Height, cm | Days to First Flowering | Number of Pods Per Plant | Pod Length, cm | Number of Seeds Per Pod | Thousand Seed Weight, g | ||
Average for the country of origin | |||||||
East and east-central Europe | |||||||
Russia | 12 | 42.84 a,b | 70.67 | 60.82 | 5.36 | 6.59 ab | 43.50 a,b |
Ukraine | 12 | 46.53 a | 70.83 | 67.72 | 5.24 | 7.12 a | 44.55 a,b |
Poland | 18 | 33.47 b | 70.56 | 65.13 | 5.03 | 7.18 a | 37.54 b |
South-central Europe | |||||||
Czechia | 9 | 40.52 a,b | 66.56 | 67.47 | 5.36 | 6.80 a,b | 46.40 a,b |
Slovakia | 57 | 48.99 a | 72.77 | 69.84 | 5.30 | 6.43 a,b | 50.97 a |
Hungary | 12 | 46.14 a | 72.83 | 64.98 | 5.06 | 6.31 a,b | 49.29 a,b |
West-central Europe | |||||||
Germany | 12 | 41.06 a,b | 69.50 | 42.90 | 4.82 | 5.86 c | 58.00 a |
Average for the region of origin | |||||||
East and east-central Europe | 42 | 39.88 b | 70.67 | 64.64 | 5.19 | 6.99 a | 41.25 b |
South-central Europe | 78 | 47.57 a | 72.06 | 68.82 | 5.27 | 6.45 b | 50.19 a |
West-central Europe | 12 | 41.06 a,b | 69.50 | 42.90 | 4.82 | 5.86 c | 58.00 a |
Overall mean for the accessions | 132 | 44.53 | 71.39 | 65.13 | 5.20 | 6.57 | 48.05 |
Standard deviation | 10.66 | 5.83 | 23.71 | 0.60 | 0.90 | 12.50 | |
Source of variation in ANOVA | |||||||
Country p value | <0.0001 | 0.053 | 0.054 | 0.081 | <0.0001 | 0.015 | |
Region p value | <0.0001 | 0.284 | 0.069 | 0.057 | <0.0001 | <0.001 |
Accessions | Proximate Nutrients, g | Detergent Fibre, g | Minerals | Anti-Nutritional Factors (ANFs), mg | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DM | Crude Ash | Crude Protein | Ether Extract (EE) | Crude Fiber | Nitrogen Free Extract (NFE) | Neutral-Detergent (NDF) | Acidic-Detergent Fibre (ADF) | Ca, g | P, g | Mg, g | K, g | Na, g | Cu, mg | Zn, mg | Fe, mg | Mn, mg | Tannins | Trypsin Inhibitors (TIU) | Hydrogen Cyanide (HCN) | |
Average for the country of origin | ||||||||||||||||||||
East and east-central Europe | ||||||||||||||||||||
Russia | 914.63 | 39.57 | 323.57 b | 6.93 a,b | 37.60 | 534.27 a | 116.27 | 69.80 | 2.16 | 4.69 | 1.65 | 12.00 | 1.53 | 4.71 b | 35.81 b | 55.33 b | 11.68 | 8.33 a | 4.33 a | 118.61 a |
Ukraine | 912.23 | 39.13 | 337.30 a,b | 6.77 a,b | 37.97 | 517.87 a,b | 121.23 | 68.63 | 2.28 | 4.74 | 1.60 | 12.15 | 1.73 | 5.48 a | 38.47 a,b | 61.54 a | 11.39 | 8.25 a,b | 4.37 a | 97.18 a,b |
Poland | 915.20 | 38.27 | 335.60 a,b | 7.43 a | 37.47 | 523.23 a | 121.73 | 69.63 | 2.03 | 4.65 | 1.49 | 11.66 | 1.46 | 5.44 a | 43.84 a | 63.59 a | 12.79 | 6.76 c | 2.67 c | 66.77 d,c |
South-central Europe | ||||||||||||||||||||
Czechia | 913.03 | 37.83 | 348.50 a,b | 6.37 b | 37.37 | 510.03 a,b | 121.13 | 71.40 | 1.89 | 4.75 | 1.54 | 11.93 | 1.45 | 5.18 a,b | 43.43 a | 63.97 a | 12.63 | 7.69 b | 3.59 b | 73.99 b–d |
Slovakia | 912.47 | 38.57 | 358.37 a | 6.53 a,b | 36.30 | 499.33 b | 124.90 | 70.23 | 1.89 | 4.80 | 1.54 | 12.37 | 1.46 | 5.20 a,b | 43.94 a | 60.74 a | 12.60 | 8.36 a | 3.33 b | 50.34 d |
Hungary | 913.37 | 38.40 | 335.83 a,b | 6.57 a,b | 35.67 | 523.43 a | 116.33 | 69.50 | 2.03 | 4.26 | 1.60 | 12.21 | 1.37 | 4.76 b | 41.87 a,b | 55.69 a,b | 11.76 | 7.93 b | 2.07 c | 110.03 a,b |
West-central Europe | ||||||||||||||||||||
Germany | 911.17 | 38.40 | 324.17 b | 6.03 b | 36.27 | 533.63 a | 117.47 | 70.13 | 2.23 | 4.32 | 1.59 | 12.65 | 1.54 | 5.21 a,b | 42.62 a | 55.27 b | 12.71 | 7.89 b | 2.10 c | 126.46 a |
Average for the region of origin | ||||||||||||||||||||
East and east-central Europe | 914.19 | 38.88 | 332.64 a,b | 7.13 a | 37.65 | 524.83 a,b | 120.01 | 69.39 | 2.14 | 4.69 | 1.57 | 11.90 | 1.56 | 5.24 | 40.01 | 60.64 a | 12.07 | 7.63 b | 3.63 a | 90.27 b |
South-central Europe | 912.79 | 38.44 | 352.65 a | 6.53 a,b | 36.37 | 505.55 b | 122.92 | 70.29 | 1.91 | 4.68 | 1.55 | 12.24 | 1.43 | 5.10 | 43.44 | 60.24 a | 12.45 | 8.16 a | 3.08 b | 66.01 c |
West-central Europe | 911.17 | 38.40 | 324.43 b | 6.03 b | 36.27 | 533.63 a | 117.47 | 70.13 | 2.23 | 4.32 | 1.59 | 12.65 | 1.54 | 5.21 | 42.62 | 55.27 b | 12.71 | 7.89 a,b | 2.09 c | 126.46 a |
Overall mean for the accessions | 913.26 | 38.60 | 342.24 | 6.70 | 36.81 | 515.71 | 121.32 | 69.84 | 2.04 | 4.65 | 1.56 | 12.14 | 1.49 | 5.16 | 41.98 | 59.90 | 12.33 | 7.93 | 3.19 | 81.14 |
Standard deviation | 8.40 | 2.60 | 29.97 | 0.65 | 9.47 | 12.30 | 14.30 | 4.76 | 0.35 | 0.36 | 0.16 | 0.79 | 0.15 | 0.49 | 3.71 | 5.65 | 2.42 | 0.84 | 0.93 | 35.63 |
Source of variation in ANOVA | ||||||||||||||||||||
Country p value | 0.431 | 0.361 | 0.021 | 0.024 | 0.590 | 0.038 | 0.189 | 0.637 | 0.474 | 0.371 | 0.446 | 0.256 | 0.156 | 0.045 | 0.035 | 0.018 | 0.327 | 0.029 | 0.036 | 0.015 |
Region p value | 0.672 | 0.745 | 0.036 | 0.017 | 0.814 | 0.044 | 0.266 | 0.792 | 0.409 | 0.594 | 0.838 | 0.423 | 0.687 | 0.592 | 0.119 | 0.024 | 0.840 | 0.042 | 0.028 | 0.017 |
Accessions | Amino Acids | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Thr | Cys | Met | Val | Ile | Leu | Tyr | Phe | His | Lys | Trp | EAAI | |
Average for the country of origin | ||||||||||||
East and east-central Europe | ||||||||||||
Russia | 3.48 | 1.14 a | 1.05 a | 3.77 | 2.55 | 7.02 | 2.47 | 3.59 | 2.49 | 5.79 | 3.70 a | 75.79 a |
Ukraine | 3.53 | 0.93 b | 0.95 a,b | 3.83 | 2.50 | 7.16 | 2.46 | 3.63 | 2.45 | 5.76 | 3.23 a,b | 73.59 a,b |
Poland | 3.61 | 0.88 b | 0.88 a,b | 3.83 | 2.49 | 7.23 | 2.58 | 3.70 | 2.47 | 5.87 | 3.19 a,b | 74.02 a,b |
South-central Europe | ||||||||||||
Czechia | 3.39 | 0.78 b | 0.84 a,b | 3.68 | 2.39 | 6.91 | 2.40 | 3.65 | 2.51 | 5.69 | 3.09 b | 70.45 b |
Slovakia | 3.42 | 1.06 a,b | 0.91 a | 3.74 | 2.41 | 6.96 | 2.46 | 3.57 | 2.49 | 5.71 | 2.82 c | 72.00 b |
Hungary | 3.53 | 0.83 b | 0.72 b | 3.90 | 2.54 | 7.19 | 2.50 | 3.64 | 2.55 | 5.86 | 2.94 b,c | 71.96 b |
West-central Europe | ||||||||||||
Germany | 3.57 | 1.04 a,b | 0.93 a | 3.84 | 2.56 | 7.27 | 2.53 | 3.61 | 2.52 | 5.91 | 3.30 a,b | 75.16 a |
Average for the region of origin | ||||||||||||
East and east-central Europe | 3.55 | 0.97 b | 0.95 | 3.81 | 2.51 | 7.15 | 2.51 | 3.65 | 2.47 | 5.81 | 3.34 a | 74.47 a,b |
South-central Europe | 3.44 | 0.97 b | 0.86 | 3.76 | 2.43 | 7.00 | 2.46 | 3.60 | 2.50 | 5.74 | 2.88 b | 71.47 b |
West-central Europe | 3.57 | 1.04 a | 0.93 | 3.84 | 2.56 | 7.27 | 2.53 | 3.61 | 2.52 | 5.91 | 3.30 a | 75.16 a |
Overall mean for the accessions | 3.50 | 0.98 | 0.90 | 3.79 | 2.47 | 7.09 | 2.49 | 3.62 | 2.49 | 5.78 | 3.10 | 73.28 |
Standard deviation | 0.18 | 0.19 | 0.20 | 0.34 | 0.27 | 0.33 | 0.18 | 0.30 | 0.22 | 0.35 | 0.27 | 1.94 |
Source of variation in ANOVA | ||||||||||||
Country p value | 0.680 | 0.018 | 0.027 | 0.433 | 0.662 | 0.481 | 0.365 | 0.423 | 0.285 | 0.362 | 0.012 | 0.042 |
Region p value | 0.724 | 0.026 | 0.184 | 0.581 | 0.712 | 0.562 | 0.786 | 0.599 | 0.631 | 0.439 | 0.031 | 0.026 |
Accessions | Fatty Acids | Fatty Acid Groups | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C 14:0 | C 16:0 | C 16:1. n-7 | C 18:0 | C 18:1 n-9 | C 18:1 n-7 | C 18:2 n-6 | C 18:3 n-3 | C 20:0 | C 20:1 n-11 | C 22:1 n-9 | C 24:0 | Other | SFA | MUFA | PUFA | n-6/n-3 PUFA Ratio | |
Average for the country of origin | |||||||||||||||||
East and east-central Europe | |||||||||||||||||
Russia | 0.44 | 11.78 | 0.16 | 4.00 | 16.05 a | 0.53 | 51.15 b | 12.43 b | 1.77 | 0.53 | 0.16 | 0.37 a | 0.64 | 18.36 | 17.42 a | 63.58 b | 4.13 a |
Ukraine | 0.41 | 11.30 | 0.22 | 3.85 | 14.28 a,b | 0.50 | 52.14 a,b | 13.81 a,b | 1.94 | 0.48 | 0.15 | 0.27 a,b | 0.63 | 17.76 | 15.66 a,b | 65.95 a,b | 3.78 a,b |
Poland | 0.50 | 11.68 | 0.27 | 3.70 | 13.08 b | 0.53 | 53.03 a,b | 14.14 a | 1.69 | 0.46 | 0.16 | 0.22 a,b | 0.54 | 17.79 | 14.49 b | 67.17 a | 3.76 b |
South-central Europe | |||||||||||||||||
Czechia | 0.52 | 11.88 | 0.16 | 3.61 | 12.40 b | 0.58 | 54.60 a | 12.99 b | 1.51 | 0.53 | 0.37 | 0.14 b | 0.71 | 17.66 | 14.03 b | 67.59 a | 4.23 a |
Slovakia | 0.54 | 11.67 | 0.17 | 3.69 | 12.59 b | 0.54 | 52.88 a,b | 14.29 a | 2.08 | 0.53 | 0.19 | 0.15 b | 0.67 | 18.14 | 14.01 b | 67.17 a | 3.70 b |
Hungary | 0.46 | 11.74 | 0.21 | 3.64 | 13.16 a,b | 0.52 | 54.02 a | 13.29 a,b | 1.58 | 0.43 | 0.12 | 0.22 a,b | 0.61 | 17.64 | 14.44 b | 67.31 a | 4.07 a |
West-central Europe | |||||||||||||||||
Germany | 0.43 | 11.11 | 0.19 | 3.96 | 13.73 a,b | 0.55 | 53.17 a,b | 13.19 a,b | 2.06 | 0.53 | 0.18 | 0.15 b | 0.75 | 17.71 | 15.18 a,b | 66.36 a,b | 4.05 a |
Average for the region of origin | |||||||||||||||||
East and east-central Europe | 0.46 | 11.60 | 0.22 | 3.82 | 14.27 a | 0.52 | 52.24 | 13.56 | 1.79 | 0.48 | 0.15 | 0.28 a | 0.60 | 17.95 | 15.66 a | 65.80 | 3.87 |
South-central Europe | 0.51 | 11.77 | 0.18 | 3.69 | 12.78 b | 0.53 | 53.61 | 13.67 | 1.76 | 0.48 | 0.21 | 0.16 b | 0.67 | 17.87 | 14.17 b | 67.28 | 3.93 |
West-central Europe | 0.43 | 11.11 | 0.19 | 3.96 | 13.73 a,b | 0.55 | 53.17 | 13.19 | 2.06 | 0.53 | 0.18 | 0.15 b | 0.75 | 17.71 | 15.18 a | 66.36 | 4.05 |
Overall mean for the accessions | 0.47 | 11.63 | 0.20 | 3.74 | 13.55 | 0.53 | 53.16 | 13.46 | 1.75 | 0.48 | 0.17 | 0.23 | 0.64 | 17.80 | 14.94 | 66.62 | 3.96 |
Standard deviation | 0.18 | 0.98 | 0.11 | 0.35 | 1.90 | 0.18 | 3.68 | 1.14 | 0.71 | 0.19 | 0.08 | 0.12 | 0.28 | 1.35 | 1.41 | 2.79 | 0.32 |
Source of variation in ANOVA | |||||||||||||||||
Country p value | 0.194 | 0.321 | 0.249 | 0.227 | 0.035 | 0.376 | 0.017 | 0.025 | 0.090 | 0.190 | 0.277 | 0.015 | 0.315 | 0.663 | 0.038 | 0.043 | 0.026 |
Region p value | 0.488 | 0.623 | 0.425 | 0.542 | 0.031 | 0.429 | 0.148 | 0.276 | 0.073 | 0.301 | 0.454 | 0.024 | 0.627 | 0.734 | 0.042 | 0.183 | 0.078 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grela, E.R.; Samolińska, W.; Rybiński, W.; Kiczorowska, B.; Kowalczuk-Vasilev, E.; Matras, J.; Wesołowska, S. Nutritional and Anti-Nutritional Factors in Vicia sativa L. Seeds and the Variability of Phenotypic and Morphological Characteristics of Some Vetch Accessions Cultivated in European Countries. Animals 2021, 11, 44. https://doi.org/10.3390/ani11010044
Grela ER, Samolińska W, Rybiński W, Kiczorowska B, Kowalczuk-Vasilev E, Matras J, Wesołowska S. Nutritional and Anti-Nutritional Factors in Vicia sativa L. Seeds and the Variability of Phenotypic and Morphological Characteristics of Some Vetch Accessions Cultivated in European Countries. Animals. 2021; 11(1):44. https://doi.org/10.3390/ani11010044
Chicago/Turabian StyleGrela, Eugeniusz R., Wioletta Samolińska, Wojciech Rybiński, Bożena Kiczorowska, Edyta Kowalczuk-Vasilev, Jan Matras, and Sylwia Wesołowska. 2021. "Nutritional and Anti-Nutritional Factors in Vicia sativa L. Seeds and the Variability of Phenotypic and Morphological Characteristics of Some Vetch Accessions Cultivated in European Countries" Animals 11, no. 1: 44. https://doi.org/10.3390/ani11010044
APA StyleGrela, E. R., Samolińska, W., Rybiński, W., Kiczorowska, B., Kowalczuk-Vasilev, E., Matras, J., & Wesołowska, S. (2021). Nutritional and Anti-Nutritional Factors in Vicia sativa L. Seeds and the Variability of Phenotypic and Morphological Characteristics of Some Vetch Accessions Cultivated in European Countries. Animals, 11(1), 44. https://doi.org/10.3390/ani11010044