Prediction of Metabolizable Energy Concentrations of Herbage in the Qinghai–Tibetan Plateau Using Tibetan Sheep Digestibility Data
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. The Experimental Farm
2.2. Animal Handling and Housing
2.3. Experimental Design
2.4. Sampling
2.5. Chemical Analysis
2.6. Calculations
2.7. Statistical Analysis
3. Results
3.1. Herbage Chemical Composition and Digestibility Parameters
3.2. Development of Prediction Equation for DE and ME Concentrations
3.3. Internal Validation to Assess the Prediction Equations
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dijkstra, J.; Kebreab, E.; Bannink, A.; Crompton, L.A.; López, S.; Abrahamse, P.A.; Chilibroste, P.; Mills, J.A.N.; France, J. Comparison of energy evaluation systems and a mechanistic model for milk production by dairy cattle offered fresh grass-based diets. Anim. Feed Sci. Tech. 2008, 143, 203–219. [Google Scholar] [CrossRef]
- Givens, D.I.; Everington, J.M.; Adamson, A.H. The digestibility and metabolisable energy content of grass silage and their prediction from laboratory measurements. Anim. Feed Sci. Tech. 1989, 24, 27–43. [Google Scholar] [CrossRef]
- Stergiadis, S.; Allen, M.; Chen, X.J.; Wills, D.; Yan, T. Prediction of nutrient digestibility and energy concentrations in fresh grass using nutrient composition. J. Dairy Sci. 2015, 98, 3257–3273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, W.C.; Yan, T.; Chang, S.H.; Wang, Z.F.; Hou, F.J. Seasonal hogget grazing as a potential alternative grazing system for the Qinghai-Tibetan plateau: Weight gain and animal behaviour under continuous or rotational grazing at high or low stocking rates. Rangeland J. 2017, 39, 329–339. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, C.; Matthew, C.; Wood, B.; Hou, F. Key sources and seasonal dynamics of greenhouse gas fluxes from yak grazing systems on the Qinghai-Tibetan Plateau. Sci. Rep. 2017, 7, 40857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Angerer, J.P.; Hou, F.J. Effects of grazing systems on herbage mass and liveweight gain of Tibetan sheep in Eastern Qinghai-Tibetan Plateau, China. Rangeland J. 2015, 37, 181–190. [Google Scholar] [CrossRef] [Green Version]
- Ren, G.; Shang, Z.; Long, R.; Hou, Y.; Deng, B. The relationship of vegetation and soil differentiation during the formation of black-soil-type degraded meadows in the headwater of the Qinghai-Tibetan Plateau, China. Environ. Earth Sci. 2013, 69, 235–245. [Google Scholar] [CrossRef]
- Cai, Y.; Wang, X.; Tian, L.; Zhao, H.; Lu, X.; Yan, Y. The impact of excretal returns from yak and Tibetan sheep dung on nitrous oxide emissions in an alpine steppe on the Qinghai-Tibetan Plateau. Soil Biol Biochem. 2014, 76, 90–99. [Google Scholar] [CrossRef]
- Dong, Q.M.; Zhao, X.Q.; Wu, G.L.; Chang, X.F. Optimization yak grazing stocking rate in an alpine grassland of Qinghai-Tibetan Plateau, China. Environ. Earth Sci. 2015, 73, 2497–2503. [Google Scholar] [CrossRef]
- Hou, F.J.; Nan, Z.B.; Xie, Y.Z.; Li, X.L.; Lin, H.L.; Ren, J.Z. Integrated crop-livestock production systems in China. Rangeland J. 2008, 30, 221–231. [Google Scholar] [CrossRef]
- Wang, Y.; Hodgkinson, K.C.; Hou, F.; Wang, Z.; Chang, S. An evaluation of government-recommended stocking systems for sustaining pastoral businesses and ecosystems of the Alpine Meadows of the Qinghai-Tibetan Plateau. Ecol. Evol. 2018, 8, 4252–4264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Zhou, X.; Wan, C.; Fu, H.; Zhang, F.; Ren, J. Eco-environmental degradation in the northeastern margin of the Qinghai–Tibetan Plateau and comprehensive ecological protection planning. Environ. Geol. 2008, 55, 1135–1147. [Google Scholar] [CrossRef]
- Yuan, H.; Hou, F. Grazing intensity and soil depth effects on soil properties in alpine meadow pastures of Qilian Mountain in northwest China. Acta Agric. Scand. A-AN. 2015, 65, 222–232. [Google Scholar] [CrossRef] [Green Version]
- Yan, T.; Agnew, R.E. Prediction of nutritive values in grass silages: I. Nutrient digestibility and energy concentrations using nutrient compositions and fermentation characteristics. J. Anim. Sci. 2004, 82, 1367–1379. [Google Scholar] [CrossRef] [PubMed]
- Terry, R.A.; Osbourn, D.F.; Cammell, S.B.; Fenlon, J.S. In vitro digestibility and the estimation of energy in herbage. Vaxtodling 1974, 28, 19–25. [Google Scholar]
- Givens, D.I.; Everington, J.M.; Adamson, A.H. The nutritive value of spring-grown herbage produced on farms throughout England and wales over 4 years. III. The prediction of energy values from various laboratory measurements. Anim. Feed Sci. Tech. 1990, 27, 185–196. [Google Scholar] [CrossRef]
- Yan, T.; Agnew, R.E. Prediction of metabolisable energy concentrations from nutrient digestibility and chemical composition in grass silages offered to sheep at maintenance. Anim. Feed Sci. Tech. 2005, 117, 197–213. [Google Scholar] [CrossRef]
- Sun, X.; Henderson, G.; Cox, F.; Molano, G.; Harrison, S.J.; Luo, D.; Janssen, P.H.; Pacheco, D. Lambs Fed Fresh Winter Forage Rape (Brassica napus L.) Emit Less Methane than Those Fed Perennial Ryegrass (Lolium perenne L.), and Possible Mechanisms behind the Difference. PLoS ONE 2015, 10, e0119697. [Google Scholar] [CrossRef]
- Agricultural and Food Research Council (AFRC). Energy and Protein Requirements of Ruminants: An Advisory Manual Prepared by the AFRC Technical Committee on Responses to Nutrients; CAB International: Wallingford, Oxon, UK, 1993; p. 175. [Google Scholar]
- Association of official agricultural chemists. Official Methods of Analysis; Association of official analytical chemists: Arlington, VA, USA, 1990; pp. 152–169. [Google Scholar]
- Goering, H.K.; Van Soest, P.J. Forage Fiber Analyses (Apparatus, Reagents, Procedures and Some Applications); Agricultural Handbook No. 379; Agricultural Research Service, USDA: Washington, DC, USA, 1970; p. 20.
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Deng, K.D.; Diao, Q.Y.; Jiang, C.G.; Tu, Y.; Zhang, N.F.; Liu, J.; Ma, T.; Zhao, Y.G.; Xu, G.S. Energy requirements for maintenance and growth of Dorper crossbred ram lambs. Livest. Sci. 2012, 150, 102–110. [Google Scholar] [CrossRef]
- Johnson, K.; Huyler, M.; Westberg, H.; Lamb, B.; Zimmerman, P. Measurement of methane emissions from ruminant livestock using a sulfur hexafluoride tracer technique. Environ. Sci. Tech. 1994, 28, 359. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Frost, J.P.; Agnew, R.E.; Binnie, R.C.; Mayne, C.S. Relationships Among Manure Nitrogen Output and Dietary and Animal Factors in Lactating Dairy Cows. J. Dairy Sci. 2006, 89, 3981–3991. [Google Scholar] [CrossRef]
- Zhang, J.K.; Lu, D.X.; Hu, M.; Xie, P.C.; Li, L.R.; Bao, S.N.; Hu, H.L.; QH, Z. Comparing research on the energy prediction models of various feed. Anim. Husb. Feed Sci. 2004, 25, 7–10. [Google Scholar]
- Zhao, M.M.; Ma, T.; Ma, J.N.; Mao, J.H.; Zhao, J.B.; Deng, K.D.; Yang, K.L.; Diao, Q.Y. Prediction and Equation of Effective Energy Values of Common Roughages for Mutton Sheep. Chin. J. Anim. Nutr. 2016, 28, 2385–2395. [Google Scholar]
- National Research Council (NRC). Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Robinson, D.L. Estimation and use of variance components. J. R. Stat. Soc. 1987, 36, 3–14. [Google Scholar] [CrossRef]
- Danieli, P.P.; Ronchi, B. Developing a predictive model for the energy content of goat milk as the basis for a functional unit formulation to be used in the life cycle assessment of dairy goat production systems. Animal 2018, 12, 408–416. [Google Scholar] [CrossRef]
- Gallo, A.; Moschini, M.; Cerioli, C.; Masoero, F. Use of principal component analysis to classify forages and predict their calculated energy content. Animal 2013, 7, 930–939. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.W.; Mi, J.D.; Degen, A.A.; Guo, X.S.; Wang, H.C.; Ding, L.M.; Qiu, Q.; Long, R.J. Apparent digestibility, rumen fermentation and nitrogen balance in Tibetan and fine-wool sheep offered forage-concentrate diets differing in nitrogen concentration. J. Agric. Sci. 2015, 153, 1135–1145. [Google Scholar] [CrossRef]
- Yang, C.; Gao, P.; Hou, F.; Yan, T.; Chang, S.; Chen, X.; Wang, Z. Relationship between chemical composition of native forage and nutrient digestibility by Tibetan sheep on the Qinghai-Tibetan Plateau. J. Anim. Sci. 2018, 96, 1140–1149. [Google Scholar] [CrossRef]
- Kneebone, D.G.; Dryden, G.M. Prediction of diet quality for sheep from faecal characteristics: Comparison of near-infrared spectroscopy and conventional chemistry predictive models. Anim. Prod. Sci. 2014, 55, 1–10. [Google Scholar] [CrossRef]
- Aboagye, I.A.; Lynch, J.P.; Church, J.S.; Baah, J.; Beauchemin, K.A. Digestibility and growth performance of sheep fed alfalfa hay treated with fibrolytic enzymes and a ferulic acid esterase producing bacterial additive. Anim. Feed Sci. Tech. 2015, 203, 53–66. [Google Scholar] [CrossRef]
- Stergiadis, S.; Allen, M.; Chen, X.J.; Wills, D.; Yan, T. Equations to predict grass metabolisable energy in pasture-based systems. In Proceedings of the 66th Annual Meeting of the European Association of Animal Production, Warsaw, Poland, 31 August–4 September 2015; p. 336. [Google Scholar]
- Zhao, Y.G.; O’Connell, N.E.; Yan, T. Prediction of enteric methane emissions from sheep offered fresh perennial ryegrass (Lolium perenne) using data measured in indirect open-circuit respiration chambers. J. Anim. Sci. 2016, 94, 2425–2435. [Google Scholar] [CrossRef] [PubMed]
Parameter Assessed | Mean | SD | Min 1 | Max 2 |
---|---|---|---|---|
Herbage Nutrient Concentration (g/kg DM) | ||||
DM (g/kg fresh) | 566 | 272.3 | 323 | 809 |
N | 64 | 36.4 | 35 | 124 |
Neutral detergent fiber | 643 | 105.4 | 499 | 867 |
Acid detergent fiber | 329 | 46.7 | 281 | 401 |
Diethyl ether extract | 33 | 8.9 | 17 | 50 |
Ash | 62 | 8.2 | 51 | 75 |
Gross energy (MJ/kg DM) | 17.55 | 0.45 | 17.03 | 18.25 |
Nutrient digestibility (g/g) | ||||
Dry matter | 0.655 | 0.088 | 0.476 | 0.831 |
GE (MJ/MJ) | 0.652 | 0.104 | 0.461 | 0.829 |
Organic matter | 0.681 | 0.071 | 0.550 | 0.773 |
N | 0.557 | 0.202 | 0.327 | 0.793 |
Neutral detergent fiber | 0.702 | 0.064 | 0.542 | 0.811 |
Acid detergent fiber | 0.648 | 0.056 | 0.519 | 0.773 |
DOMD | 0.622 | 0.076 | 0.499 | 0.731 |
Energy Concentration and Utilization | ||||
DE (MJ/kg DM) | 11.53 | 2.15 | 8.03 | 15.21 |
ME (MJ/kg DM) | 9.89 | 1.84 | 6.33 | 13.36 |
DE/GE (MJ/MJ) | 0.648 | 0.092 | 0.461 | 0.839 |
ME/GE (MJ/MJ) | 0.556 | 0.093 | 0.363 | 0.737 |
Parameters | Equations | R2 | MPE 1 | Eq. No |
---|---|---|---|---|
DE = | −0.527(0.827) + 18.552(1.255)DMD | 0.806 | 0.031 | 1a |
DE = | −0.614(1.209) + 18.839(1.918)DOMD | 0.850 | 0.024 | 1b |
DE = | −2.535(1.331) + 20.689(1.941)OMD | 0.886 | 0.021 | 1c |
ME= | −2.538(1.12) + 19.92(1.778)DOMD | 0.871 | 0.044 | 2a |
ME= | −2.279(0.84) + 18.692(1.275)DMD | 0.805 | 0.042 | 2b |
ME= | −4.803(1.256) + 21.6(1.832)OMD | 0.878 | 0.038 | 2c |
ME= | −2.07(0.339) + 18.146(0.507)GED | 0.961 | 0.033 | 2d |
ME/GE = | 0.055(0.053) + 0.881(0.08)DMD | 0.699 | 0.041 | 3a |
ME/GE = | −0.16(0.052) + 1.16(0.075)OMD | 0.823 | 0.037 | 3b |
ME/GE = | 0.068(0.038) + 1.116(0.06)DOMD | 0.868 | 0.046 | 3c |
ME/GE = | 0.061(0.034) + 0.862(0.051)GED | 0.847 | 0.032 | 3d |
DE/GE = | −0.004(0.044) + 1.019(0.066)DMD | 0.819 | 0.034 | 4a |
DE/GE = | −0.19(0.053) + 1.248(0.078)OMD | 0.832 | 0.023 | 4b |
DE/GE = | 0.063(0.048) + 1.158(0.076)DOMD | 0.819 | 0.035 | 4c |
DE/GE = | 0.097(0.047) + 1.186(0.073)GED | 0.828 | 0.023 | 4d |
Parameters | Equations | R2 | MPE 1 | Eq. No |
---|---|---|---|---|
DE= | −17.236(5.379)+15.057(2.477)DMD+20.716(7.674)N+3.194(4.904)ADF+0.909(0.26)GE | 0.853 | 0.018 | 1d |
DE= | −15.244(4.292)+9.74(3.005)OMD+28.34(8.941)N+3.789(1.512)NDF+0.862(0.256)GE | 0.875 | 0.022 | 1e |
DE= | −4.546(2.243)+13.431(2.906)DOMD+34.783(6.328)N+7.521(1.597)NDF | 0.869 | 0.032 | 1f |
ME= | −15.57(1.435)+18.111(0.549)GED+2.864(2.351)N+4.138(1.31)ADF+1.951(0.368)NDF+0.598(0.069)GE | 0.991 | 0.042 | 2e |
ME= | −15.999(3.909)+13.743(2.509)DMD+5.472(5.952)N+0.926(0.242)GE | 0.853 | 0.039 | 2f |
ME= | −12.64(4.048)+14.334(2.834)OMD+15.983(6.676)N+3.156(1.426)NDF+1.092(0.241)GE | 0.848 | 0.038 | 2g |
ME= | −13.15(4.073)+8.289(2.519)DOMD+13.034(5.375)N+63.697(15.664)EE+0.822(0.243)GE | 0.861 | 0.040 | 2h |
ME/GE= | −0.267(0.163)+0.786(0.105)DOMD+0.701(0.231)N+0.02(0.01)GE | 0.871 | 0.042 | 3e |
ME/GE= | 0.156(0.044)+0.623(0.091)GED+0.805(0.261)N | 0.794 | 0.034 | 3f |
ME/GE= | −0.172(0.232)+0.244(0.149)DMD+1.598(0.353)N+0.028(0.014)GE | 0.866 | 0.038 | 3g |
ME/GE= | −0.464(0.216)+0.772(0.152)OMD+0.789(0.285)N−0.446(0.856)EE+0.029(0.012)GE | 0.897 | 0.043 | 3h |
DE/GE= | 0.351(0.078)+0.562(0.111)DMD−0.306(0.061)NDF+4.123(1.054)EE | 0.842 | 0.037 | 4e |
DE/GE= | −0.873(0.184)+1.027(0.087)OMD+1.719(0.688)N+0.041(0.011)GE | 0.876 | 0.022 | 4f |
DE/GE= | 0.079(0.054)+0.651(0.116)DOMD+0.814(0.25)N+3.238(0.675)EE | 0.894 | 0.024 | 4g |
DE/GE= | 0.079(0.054)+0.651(0.116)GED+0.814(0.25)N+3.238(0.675)EE | 0.878 | 0.021 | 4h |
Parameters | Equations for the Prediction of ME | R2 | MPE 1 | Eq. No |
---|---|---|---|---|
ME= | −1.38(0.502) +0.964(0.043)DE | 0.905 | 0.043 | 2i |
ME= | −0.957(0.659)+0.937(0.078)DE+1.757(4.095)N | 0.906 | 0.029 | 2j |
ME= | −0.67(0.653)+0.814(0.096)DE+3.555(4.064)N+28.425(13.741)EE | 0.913 | 0.022 | 2k |
ME= | 0.568(1.047)+0.785(0.081)DE−1.624(0.936)ADF+40.838(15.718)EE−12.531(10.124)Ash | 0.913 | 0.031 | 2l |
ME= | −1.403(1.821)+0.893(0.062)DE−14.506(12.345)Ash−5.685(2.829)ADF | 0.917 | 0.028 | 2m |
Parameters | Equations for the Prediction of DE and ME | R2 | MPE 1 | Eq. No |
---|---|---|---|---|
DE = | 5.706(0.906) +0.053(0.004) tdCP+0.007(0.002) tdNDF | 0.797 | 0.056 | 1g |
DE = | 6.397(0.932)+0.043(0.006) tdCP+0.002(0.003) tdNDF+55.374(25.673) EE | 0.815 | 0.045 | 1h |
ME = | 3.581(0.916)+0.054(0.004) tdCP+0.008(0.002) tdNDF | 0.798 | 0.077 | 2n |
ME = | 4.314(0.938)+0.042(0.006)tdCP+0.003(0.003) tdNDF+58.789(25.837) Ash | 0.817 | 0.062 | 2o |
Original Eq. 1 | New Eq. 2 | Parameters | Equations | R2 | MPE 3 |
---|---|---|---|---|---|
1a | A | DE = | −0.81(1.596)C+18.928(1.596)DMD | 0.825 | 0.031 |
1b | B | DE = | −2.877(1.649)+21.073(2.41)OMD | 0.872 | 0.024 |
1c | C | DE = | −0.844(1.49)+19.673(2.363)DOMD | 0.891 | 0.021 |
1d | D | DE = | −24.014(8.749)+15.133(3.095)DMD+27.356(9.718)N+3.107(6.006)ADF+1.3(0.337)GE | 0.875 | 0.018 |
1e | E | DE = | −20.382(5.405)+8.572(3.757)OMD+28.302(8.959)N+2.749(1.9)NDF+1.235(0.331)GE | 0.878 | 0.022 |
1f | F | DE = | −4.71(2.912)+13.898(3.819)DOMD+35.073(8.597)N+7.281(2.099)NDF | 0.859 | 0.032 |
1g | G | DE = | 5.282(1.19)+0.056(0.005)tdCP+0.007(0.002)tdNDF | 0.858 | 0.056 |
1h | H | DE = | 6.342(1.206)+0.042(0.008)tdCP+0.001(0.004)tdNDF+75.792(32.468)EE | 0.836 | 0.045 |
2a | I | ME = | −2.219(1.035)+18.685(1.581)DMD | 0.854 | 0.044 |
2b | J | ME = | −4.742(1.5)+21.511(2.191)OMD | 0.899 | 0.042 |
2c | K | ME = | −2.918(1.295)+20.484(2.053)DOMD | 0.897 | 0.038 |
2d | L | ME = | −2.14(0.41)+18.212(0.614)GED | 0.963 | 0.033 |
2e | M | ME = | −15.32(5.095)+10.427(3.205)DMD+15.679(7.663)N+1.055(0.322)GE | 0.862 | 0.042 |
2f | N | ME = | −20.38(5.405)+8.572(3.757)OMD+28.302(8.959)N+2.749(1.9)NDF+1.235(0.311)GE | 0.894 | 0.039 |
2g | O | ME = | −11.54(5.288)+2.979(3.16)DOMD+26.118(6.836)N+67.1(19.978)EE+0.942(0.317)GE | 0.897 | 0.038 |
2h | P | ME= | −15.56(5.381)+14.95(2.31)GED+23.02(8.669)N+9.328(4.557)ADF+3.805(1.284)NDF+0.552(0.286)GE | 0.935 | 0.040 |
2i | Q | ME = | −0.986(0.544)+0.949(0.047)DE | 0.924 | 0.043 |
2j | R | ME = | −0.557(0.703)+0.881(0.085)DE+4.557(4.714)N | 0.926 | 0.029 |
2k | S | ME = | −0.356(0.722)+0.795(0.114)DE+6.143(4.903)N+19.075(16.972)EE | 0.929 | 0.022 |
2l 2m | T U | ME = | 4.491(1.955)+0.867(0.063)DE−30.28(13.157)Ash−8.315(3.076)ADF | 0.942 | 0.031 |
ME = | 1.324(1.248)+0.766(0.098)DE−2.316(1.152)NDF+37.532(19.898)EE | 0.933 | 0.028 | ||
2n | V | ME = | 3.717(1.128)+0.056(0.005)tdCP+0.008(0.002)tdNDF | 0.823 | 0.077 |
2o | W | ME = | 5.556(1.457)+0.062(0.005)tdCP+0.008(0.002)tdNDF−38.612(20.369)Ash | 0.841 | 0.062 |
3a | X | ME/GE = | −0.01(0.051)+0.945(0.078)DMD | 0.813 | 0.041 |
3b | Y | ME/GE = | −0.199(0.077)+1.21(0.112)OMD | 0.877 | 0.037 |
3c | Z | ME/GE = | −0.079(0.042)+1.128(0.067)DOMD | 0.862 | 0.046 |
3d | AA | ME/GE = | 0.028(0.019)+0.918(0.029)GED | 0.917 | 0.032 |
3e | AB | ME/GE = | −0.368(0.228)+0.31(0.137)DMD+1.566(0.328)N+0.037(0.328)GE | 0.897 | 0.042 |
3f | AC | ME/GE = | −0.656(0.198)+0.66(0.136)OMD+1.022(0.262)N−0.325(0.782)EE+0.042(0.011)GE | 0.938 | 0.034 |
3g | AD | ME/GE = | −0.486(0.144)+0.646(0.091)DOMD+1.014(0.203)N+0.035(0.009)GE | 0.924 | 0.038 |
3h | AE | ME/GE = | 0.093(0.025)+0.757(0.053)GED+0.542(0.157)N | 0.946 | 0.043 |
4a | AF | DE/GE = | 0.023(0.054)+1.015(0.082)DMD | 0.817 | 0.034 |
4b | AG | DE/GE = | −0.181(0.063)+1.238(0.092)OMD | 0.823 | 0.023 |
4c | AH | DE/GE = | −0.077(0.053)+1.18(0.084)DOMD | 0.812 | 0.035 |
4d | AI | DE/GE = | 0.095(0.047)+1.076(0.073)GED | 0.821 | 0.024 |
4e | AJ | DE/GE = | 0.454(0.089)+0.444(0.125)DMD−0.398(0.072)NDF+5.165(1.198)EE | 0.879 | 0.037 |
4f | AK | DE/GE = | −0.838(0.21)+0.731(0.145)OMD+0.871(0.312)N+0.052(0.012)GE | 0.907 | 0.022 |
4g | AL | DE/GE = | 0.082(0.06)+0.644(0.132)DOMD+0.955(0.288)N+2.955(0.765)EE | 0.912 | 0.024 |
4h | AM | DE/GE = | 0.089(0.044)+0.587(0.176)GED+0.902(0.235)N+2.978(0.565)EE | 0.915 | 0.021 |
Equation | Parameters Predicted | Predicted Data | Actual Data | MPE 1 | SE 2 | R2 | Rc 3 | P4–A5 | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD 6 | Min 7 | Max 8 | ||||||||
A | DE | 11.71 | 11.53 | 0.010 | 0.003 | 0.91 | 0.89 | 0.179 | 0.645 | −1.142 | 1.546 |
B | DE | 11.54 | 11.53 | 0.015 | 0.002 | 0.83 | 0.91 | 0.008 | 0.876 | −1.948 | 1.553 |
C | DE | 11.46 | 11.53 | 0.014 | 0.003 | 0.79 | 0.87 | −0.074 | 0.976 | −2.638 | 1.446 |
D | DE | 11.53 | 11.53 | 0.011 | 0.003 | 0.91 | 0.92 | 0.180 | 0.741 | −1.045 | 2.063 |
E | DE | 11.67 | 11.53 | 0.012 | 0.003 | 0.90 | 0.78 | 0.136 | 0.772 | −0.812 | 2.128 |
F | DE | 11.46 | 11.53 | 0.011 | 0.002 | 0.92 | 0.83 | −0.073 | 0.643 | −1.032 | 1.194 |
G | DE | 11.53 | 11.53 | 0.015 | 0.002 | 0.90 | 0.88 | −0.299 | 0.737 | −1.429 | 1.108 |
H | DE | 11.49 | 11.53 | 0.013 | 0.002 | 0.89 | 0.84 | −0.045 | 0.782 | −1.747 | 1.571 |
I | ME | 10.14 | 9.89 | 0.022 | 0.008 | 0.90 | 0.79 | 0.251 | 0.745 | −0.823 | 1.930 |
J | ME | 9.97 | 9.89 | 0.027 | 0.008 | 0.84 | 0.91 | 0.085 | 0.998 | −1.810 | 1.851 |
K | ME | 10.06 | 9.89 | 0.025 | 0.009 | 0.79 | 0.87 | 0.168 | 0.862 | −1.467 | 2.161 |
L | ME | 9.59 | 9.89 | 0.012 | 0.002 | 0.84 | 0.71 | −0.301 | 0.681 | −2.123 | 0.657 |
M | ME | 9.91 | 9.89 | 0.053 | 0.012 | 0.86 | 0.75 | 0.023 | 0.854 | −0.661 | 2.371 |
N | ME | 10.70 | 9.89 | 0.036 | 0.012 | 0.84 | 0.69 | 0.807 | 0.559 | −0.075 | 2.048 |
O | ME | 9.02 | 9.89 | 0.053 | 0.005 | 0.83 | 0.65 | −0.872 | 0.694 | −1.935 | 0.490 |
P | ME | 9.98 | 9.89 | 0.040 | 0.005 | 0.90 | 0.86 | 0.095 | 0.425 | 0.149 | 1.646 |
Q | ME | 9.96 | 9.89 | 0.020 | 0.009 | 0.95 | 0.77 | 0.068 | 0.716 | −0.870 | 2.081 |
R | ME | 8.96 | 9.89 | 0.019 | 0.009 | 0.95 | 0.68 | 0.067 | 0.730 | −0.831 | 2.048 |
S | ME | 9.95 | 9.89 | 0.018 | 0.009 | 0.95 | 0.74 | 0.060 | 0.680 | −0.682 | 1.777 |
T U | ME ME | 9.95 | 9.89 | 0.019 | 0.010 | 0.93 | 0.81 | 0.060 | 0.803 | −1.121 | 2.228 |
9.94 | 9.89 | 0.018 | 0.009 | 0.95 | 0.74 | 0.055 | 0.674 | −0.843 | 1.754 | ||
V | ME | 10.12 | 9.89 | 0.067 | 0.008 | 0.87 | 0.71 | 0.124 | 0.662 | −0.826 | 1.504 |
W | ME | 9.81 | 9.89 | 0.071 | 0.008 | 0.85 | 0.69 | −0.080 | 0.676 | −0.906 | 1.151 |
X | ME/GE | 0.62 | 0.62 | 0.018 | 0.006 | 0.71 | 0.90 | −0.006 | 0.063 | −0.072 | 0.195 |
Y | ME/GE | 0.62 | 0.62 | 0.012 | 0.005 | 0.86 | 0.91 | 0.008 | 0.044 | −0.047 | 0.148 |
Z | ME/GE | 0.62 | 0.62 | 0.061 | 0.004 | 0.91 | 0.89 | 0.006 | 0.036 | −0.083 | 0.110 |
AA | ME/GE | 0.62 | 0.62 | 0.014 | 0.005 | 0.74 | 0.78 | −0.001 | 0.062 | −0.159 | 0.172 |
AB | ME/GE | 0.62 | 0.62 | 0.016 | 0.006 | 0.79 | 0.92 | 0.001 | 0.057 | −0.096 | 0.187 |
AC | ME/GE | 0.62 | 0.62 | 0.012 | 0.004 | 0.86 | 0.93 | −0.005 | 0.047 | −0.065 | 0.153 |
AD | ME/GE | 0.62 | 0.62 | 0.012 | 0.004 | 0.88 | 0.94 | 0.003 | 0.043 | −0.045 | 0.145 |
AE | ME/GE | 0.62 | 0.62 | 0.013 | 0.004 | 0.78 | 0.91 | 0.002 | 0.056 | −0.126 | 0.178 |
AF | DE/GE | 0.64 | 0.64 | 0.024 | 0.005 | 0.92 | 0.73 | −0.010 | 0.032 | −0.061 | 0.040 |
AG | DE/GE | 0.64 | 0.64 | 0.015 | 0.003 | 0.94 | 0.69 | 0.001 | 0.027 | −0.030 | 0.088 |
AH | DE/GE | 0.64 | 0.64 | 0.014 | 0.005 | 0.88 | 0.89 | −0.004 | 0.040 | −0.068 | 0.097 |
AI | DE/GE | 0.64 | 0.64 | 0.013 | 0.004 | 0.93 | 0.88 | −0.003 | 0.041 | −0.064 | 0.087 |
AJ | DE/GE | 0.64 | 0.64 | 0.013 | 0.004 | 0.95 | 0.75 | 0.002 | 0.031 | −0.063 | 0.060 |
AK | DE/GE | 0.64 | 0.64 | 0.016 | 0.005 | 0.91 | 0.69 | −0.004 | 0.040 | −0.049 | 0.115 |
AL | DE/GE | 0.64 | 0.64 | 0.011 | 0.004 | 0.95 | 0.79 | −0.004 | 0.032 | −0.078 | 0.058 |
AM | DE/GE | 0.64 | 0.64 | 0.012 | 0.003 | 0.95 | 0.87 | −0.005 | 0.040 | −0.062 | 0.091 |
Equation | Reference | Equations Validated | Predicted Data | Actual Data | MPE 1 | SE 2 | R2 | Rc 3 | P 4–A 5 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD 6 | Min 7 | Max 8 | |||||||||
AN | [27] | ME = 4.2014+0.0236ADF+0.1794CP | 10.14 | 9.89 | 0.043 | 0.367 | 0.22 | 0.29 | 0.168 | 1.559 | −2.80 | 2.48 |
AO | [28] | ME = 0.132+0.796DE | 9.31 | 9.89 | 0.042 | 0.156 | 0.90 | 0.31 | −0.661 | 0.661 | −1.90 | 0.69 |
AP | [29] | ME = 4.184×1.01×(DE/4.184−0.45) | 9.74 | 9.89 | 0.054 | 0.128 | 0.90 | 0.43 | −0.227 | 0.545 | −0.93 | 1.10 |
AQ | [19] | ME = 16×DOMD | 10.00 | 9.89 | 0.062 | 0.259 | 0.62 | 0.27 | 0.032 | 1.098 | −2.54 | 2.10 |
AR | [16] | ME = 0.37+14.2DOMD + 7.7CP | 9.85 | 9.89 | 0.083 | 0.242 | 0.64 | 0.37 | −0.125 | 1.028 | −2.42 | 2.15 |
AS | [16] | ME = 9.1+15.3 CP | 10.29 | 9.89 | 0.053 | 0.322 | 0.55 | 0.59 | 0.317 | 1.364 | −2.27 | 2.31 |
AT | [16] | ME = 18.9+13.3 NDF | 10.22 | 9.89 | 0.051 | 0.428 | 0.11 | 0.48 | 0.247 | 1.814 | −3.55 | 3.14 |
AU | [15] | ME = 0.815×DE | 9.40 | 9.89 | 0.052 | 0.148 | 0.90 | 0.39 | −0.574 | 0.626 | −1.77 | 0.78 |
AV | [15] | ME = −0.232+13.9DOMD+10.05CP | 9.24 | 9.89 | 0.072 | 0.241 | 0.64 | 0.57 | −0.732 | 1.021 | −2.93 | 1.61 |
AW | [3] | ME = 15.0−38.9N+34.7EE−10.1ADF−8.07Ash | 9.37 | 9.89 | 0.054 | 0.556 | 0.30 | 0.62 | −0.606 | 2.357 | −4.83 | 3.16 |
AX | [3] | ME = −2.238+18.52 DOMD | 9.34 | 9.89 | 0.082 | 0.248 | 0.62 | 0.42 | −0.630 | 1.050 | −3.10 | 1.54 |
AY | [3] | ME = 0.432+15.44DMD | 9.78 | 9.89 | 0.062 | 0.186 | 0.81 | 0.67 | −0.192 | 0.789 | −1.24 | 1.52 |
AZ | [3] | ME = 1.464+0.723DE | 9.80 | 9.89 | 0.051 | 0.168 | 0.90 | 0.64 | −0.171 | 0.714 | −1.60 | 1.19 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, P.; Gao, P.; Li, F.; Chang, S.; Wang, Z.; Yan, T.; Hou, F. Prediction of Metabolizable Energy Concentrations of Herbage in the Qinghai–Tibetan Plateau Using Tibetan Sheep Digestibility Data. Animals 2020, 10, 376. https://doi.org/10.3390/ani10030376
Guo P, Gao P, Li F, Chang S, Wang Z, Yan T, Hou F. Prediction of Metabolizable Energy Concentrations of Herbage in the Qinghai–Tibetan Plateau Using Tibetan Sheep Digestibility Data. Animals. 2020; 10(3):376. https://doi.org/10.3390/ani10030376
Chicago/Turabian StyleGuo, Penghui, Peng Gao, Fuhou Li, Shenghua Chang, Zhaofeng Wang, T Yan, and Fujiang Hou. 2020. "Prediction of Metabolizable Energy Concentrations of Herbage in the Qinghai–Tibetan Plateau Using Tibetan Sheep Digestibility Data" Animals 10, no. 3: 376. https://doi.org/10.3390/ani10030376
APA StyleGuo, P., Gao, P., Li, F., Chang, S., Wang, Z., Yan, T., & Hou, F. (2020). Prediction of Metabolizable Energy Concentrations of Herbage in the Qinghai–Tibetan Plateau Using Tibetan Sheep Digestibility Data. Animals, 10(3), 376. https://doi.org/10.3390/ani10030376