Laccase-Catalyzed Derivatization of Antibiotics with Sulfonamide or Sulfone Structures
Abstract
1. Introduction
2. Materials and Methods
2.1. Enzyme
2.2. Substrates and Conditions of Biotransformation
2.3. Isolation of Biotransformation Products
2.4. Analytical High-Performance Liquid Chromatography (HPLC)
2.5. Characterization of Biotransformation Products
2.6. Determination of Antibacterial Activity
2.7. Cytotoxic Activity
3. Results
3.1. Biotransformation of Sulfanilamide and Sulfamerazine with 2,5-Dihydroxybenzoic Acid Methyl Ester, 2,5-Dihydroxy-N-(2-Hydroxyethyl)Benzamide, or 2,5-Dihydroxyacetophenone by Laccase
3.2. Biotransformation of Sulfanilamide and Sulfamerazine with 2,5-Dihydroxyphenylacetic Acid or 2,5-Dihydroxy-1,4-Benzenediacetic Acid by Laccase
3.3. Biotransformation of Dapsone with 2,5-Dihydroxybenzoic Acid Methyl Ester or 2,5-Dihydroxy-N-(2-Hydroxyethyl)Benzamide by Laccase
3.4. Biological Activity of Biotransformation Products
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef]
- Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Guo, Y.; Song, G.; Sun, M.; Wang, J.; Wang, Y. Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front. Cell Infect. Microbiol. 2020, 10, 107. [Google Scholar] [CrossRef]
- Monti, D.; Ottolina, G.; Carrea, G.; Riva, S. Redox reactions catalyzed by isolated enzymes. Chem. Rev. 2011, 111, 4111–4140. [Google Scholar] [CrossRef]
- Sheldon, R.A.; Brady, D.; Bode, M.L. The Hitchhiker’s guide to biocatalysis: Recent advances in the use of enzymes in organic synthesis. Chem. Sci. 2020, 11, 2587–2605. [Google Scholar] [CrossRef]
- Witayakran, S.; Ragauskas, A.J. Synthetic applications of laccase in green chemistry. Adv. Synth. Catal. 2009, 351, 1187–1209. [Google Scholar] [CrossRef]
- Mogharabi, M.; Faramarzi, M.A. Laccase and laccase-mediated systems in the synthesis of organic compounds. Adv. Synth. Catal. 2014, 356, 897–927. [Google Scholar] [CrossRef]
- Romero-Guido, C.; Baez, A.; Torres, E. Dioxygen activation by laccases: Green chemistry for fine chemical synthesis. Catalysts 2018, 8, 223. [Google Scholar] [CrossRef]
- Sousa, A.C.; Martins, L.O.; Robalo, M.P. Laccases: Versatile biocatalysts for the synthesis of heterocyclic cores. Molecules 2021, 26, 3719. [Google Scholar] [CrossRef]
- Leonowicz, A.; Edgehill, R.U.; Bollag, J.-M. The effect of pH on the transformation of syringic and vanillic acids by the laccases of Rhizoctonia praticola and Trametes versicolor. Arch. Microbiol. 1984, 137, 89–96. [Google Scholar] [CrossRef]
- Ciecholewski, S.; Hammer, E.; Manda, K.; Bose, G.; Nguyen, V.T.H.; Langer, P.; Schauer, F. Laccase-catalyzed carbon-carbon bond formation: Oxidative dimerization of salicylic esters by air in aqueous solution. Tetrahedron 2005, 61, 4615–4619. [Google Scholar] [CrossRef]
- Mikolasch, A.; Schauer, F. Fungal laccases as tools for the synthesis of new hybrid molecules and biomaterials. Appl. Microbiol. Biot. 2009, 82, 605–624. [Google Scholar] [CrossRef] [PubMed]
- Bollag, J.-M.; Sjoblad, R.D.; Minard, R.D. Polymerization of phenolic intermediates of pesticides by a fungal enzyme. Experientia 1977, 33, 1564–1566. [Google Scholar] [CrossRef] [PubMed]
- Jonas, U.; Hammer, E.; Haupt, E.T.K.; Schauer, F. Characterisation of coupling products formed by biotransformation of biphenyl and diphenyl ether by the white rot fungus Pycnoporus cinnabarinus. Arch. Microbiol. 2000, 174, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Tatsumi, K.; Wada, S.; Ichikawa, H.; Liu, S.Y.; Bollag, J.-M. Cross-coupling of a chloroaniline and phenolic-acids catalyzed by a fungal enzyme. Water Sci. Technol. 1992, 26, 2157–2160. [Google Scholar] [CrossRef]
- Niedermeyer, T.H.J.; Mikolasch, A.; Lalk, M. Nuclear amination catalyzed by fungal laccases: Reaction products of p-hydroquinones and primary aromatic amines. J. Org. Chem. 2005, 70, 2002–2008. [Google Scholar] [CrossRef] [PubMed]
- Bollag, J.-M.; Liu, S.-Y. Copolymerization of halogenated phenols and syringic acid. Pestic. Biochem. Phys. 1985, 23, 261–272. [Google Scholar] [CrossRef]
- Benfield, G.; Bocks, S.M.; Bromley, K.; Brown, B.R. Studies of fungal and plant laccases. Phytochemistry 1964, 3, 79–88. [Google Scholar] [CrossRef]
- Schlippert, M.; Mikolasch, A.; Hahn, V.; Schauer, F. Enzymatic thiol Michael addition using laccases: Multiple C-S bond formation between p-hydroquinones and aromatic thiols. J. Mol. Catal. B-Enzym. 2016, 126, 106–114. [Google Scholar] [CrossRef]
- Bhalerao, U.T.; Muralikrishna, C.; Rani, B.R. Laccase enzyme-catalyzed efficient synthesis of 3-substituted-1,2,4-triazolo (4,3-b) (4,1,2) benzothiadiazine-8-ones. Tetrahedron 1994, 50, 4019–4024. [Google Scholar] [CrossRef]
- Hahn, V.; Mikolasch, A.; Weitemeyer, J.; Petters, S.; Davids, T.; Lalk, M.; Lackmann, J.W.; Schauer, F. Ring-closure mechanisms mediated by laccase to synthesize phenothiazines, phenoxazines, and phenazines. ACS Omega 2020, 5, 14324–14339. [Google Scholar] [CrossRef]
- Anyanwutaku, I.O.; Petroski, R.J.; Rosazza, J.P. Oxidative coupling of mithramycin and hydroquinone catalyzed by copper oxidases and benzoquinone. Implications for the mechanism of action of aureolic acid antibiotics. Bioorg. Med. Chem. 1994, 2, 543–551. [Google Scholar] [CrossRef]
- Wellington, K.W.; Kolesnikova, N.I. A laccase-catalysed one-pot synthesis of aminonaphthoquinones and their anticancer activity. Bioorg. Med. Chem. 2012, 20, 4472–4481. [Google Scholar] [CrossRef]
- Zhang, Y.; Yao, Q.; Li, Z.; Yang, F.; Wang, F.; Liu, J. A one-pot process for synthesis of mitomycin analogs catalyzed by laccase/lipase optimized by response surface methodology. Eng. Life Sci. 2019, 19, 805–814. [Google Scholar] [CrossRef] [PubMed]
- Ünlü, A.E.; Prasad, B.; Anavekar, K.; Bubenheim, P.; Liese, A. Investigation of a green process for the polymerization of catechin. Prep. Biochem. Biotech. 2017, 47, 918–924. [Google Scholar] [CrossRef]
- Kurisawa, M.; Chung, J.E.; Uyama, H.; Kobayashi, S. Laccase-catalyzed synthesis and antioxidant property of poly (catechin). Macromol. Biosci. 2003, 3, 758–764. [Google Scholar] [CrossRef]
- Nicotra, S.; Cramarossa, M.R.; Mucci, A.; Pagnoni, U.M.; Riva, S.; Forti, L. Biotransformation of resveratrol: Synthesis of trans-dehydrodimers catalyzed by laccases from Myceliophtora thermophyla and from Trametes pubescens. Tetrahedron 2004, 60, 595–600. [Google Scholar] [CrossRef]
- Lugaro, G.; Carrea, G.; Cremonesi, P.; Casellato, M.M.; Antonini, E. Oxidation of steroid hormones by fungal laccase in emulsion of water and organic solvents. Arch. Biochem. Biophys. 1973, 159, 1–6. [Google Scholar] [CrossRef]
- Nicotra, S.; Intra, A.; Ottolina, G.; Riva, S.; Danieli, B. Laccase-mediated oxidation of the steroid hormone 17β-estradiol in organic solvents. Tetrahedron Asymmetry 2004, 15, 2927–2931. [Google Scholar] [CrossRef]
- Eggert, C.; Temp, U.; Dean, J.F.D.; Eriksson, K.E.L. Laccase-mediated formation of the phenoxazinone derivative, cinnabarinic acid. FEBS Lett. 1995, 376, 202–206. [Google Scholar] [CrossRef]
- Eggert, C. Laccase-catalyzed formation of cinnabarinic acid is responsible for antibacterial activity of Pycnoporus cinnabarinus. Microbiol. Res. 1997, 152, 315–318. [Google Scholar] [CrossRef]
- Osiadacz, J.; Al-Adhami, A.J.H.; Bajraszewska, D.; Fischer, P.; Peczynska-Czoch, W. On the use of Trametes versicolor laccase for the conversion of 4-methyl-3-hydroxyanthranilic acid to actinocin chromophore. J. Biotechnol. 1999, 72, 141–149. [Google Scholar] [CrossRef]
- Giurg, M.; Wiech, E.; Piekielska, K.; Gębala, M.; Młochowski, J.; Wolański, M.; Ditkowski, B.; Peczyńska-Czoch, W. A new approach to synthesis of questiomycin A: Oxidative cyclocondensation of ortho-aminophenol. Pol. J. Chem. 2006, 80, 297–306. [Google Scholar] [CrossRef]
- Giurg, M.; Piekielska, K.; Gębala, M.; Ditkowski, B.; Wolański, M.; Peczyńska-Czoch, W.; Młochowski, J. Catalytic oxidative cyclocondensation of o-aminophenols to 2-amino-3H-phenoxazin-3-ones. Synth. Commun. 2007, 37, 1779–1789. [Google Scholar] [CrossRef]
- Bruyneel, F.; Enaud, E.; Billottet, L.; Vanhulle, S.; Marchand-Brynaert, J. Regioselective synthesis of 3-hydroxyorthanilic acid and its biotransformation into a novel phenoxazinone dye by use of laccase. Eur. J. Org. Chem. 2008, 2008, 70–79. [Google Scholar] [CrossRef]
- Agematu, H.; Tsuchida, T.; Kominato, K.; Shibamoto, N.; Yoshioka, T.; Nishida, H.; Okamoto, R.; Shin, T.; Murao, S. Enzymatic dimerization of penicillin-X. J. Antibiot. 1993, 46, 141–148. [Google Scholar] [CrossRef]
- Agematu, H.; Kominato, K.; Shibamoto, N.; Yoshioka, T.; Nishida, H.; Okamoto, R.; Shin, T.; Murao, S. Transformation of 7-(4-hydroxyphenylacetamido) cephalosporanic acid into a new cephalosporin antibiotic, 7-[1-oxaspiro (2.5)octa-6-oxo-4,7-diene-2-carboxamido]cephalosporanic acid, by laccase. Biosci. Biotechnol. Biochem. 1993, 57, 1387–1388. [Google Scholar] [CrossRef]
- Mikolasch, A.; Niedermeyer, T.H.J.; Lalk, M.; Witt, S.; Seefeldt, S.; Hammer, E.; Schauer, F.; Gesell, M.; Hessel, S.; Jülich, W.D.; et al. Novel penicillins synthesized by biotransformation using laccase from Trametes spec. Chem. Pharm. Bull. 2006, 54, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Mikolasch, A.; Niedermeyer, T.H.J.; Lalk, M.; Witt, S.; Seefeldt, S.; Hammer, E.; Schauer, F.; Salazar, M.G.; Hessel, S.; Jülich, W.D.; et al. Novel cephalosporins synthesized by amination of 2,5-dihydroxybenzoic acid derivatives using fungal laccases II. Chem. Pharm. Bull. 2007, 55, 412–416. [Google Scholar] [CrossRef] [PubMed]
- Mikolasch, A.; Wurster, M.; Lalk, M.; Witt, S.; Seefeldt, S.; Hammer, E.; Schauer, F.; Jülich, W.D.; Lindequist, U. Novel beta-lactam antibiotics synthesized by amination of catechols using fungal laccase. Chem. Pharm. Bull. 2008, 56, 902–907. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mikolasch, A.; Manda, K.; Schlüter, R.; Lalk, M.; Witt, S.; Seefeldt, S.; Hammer, E.; Schauer, F.; Jülich, W.D.; Lindequist, U. Comparative analyses of laccase-catalyzed amination reactions for production of novel beta-lactam antibiotics. Biotechnol. Appl. Biochem. 2012, 59, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Mikolasch, A.; Hildebrandt, O.; Schlüter, R.; Hammer, E.; Witt, S.; Lindequist, U. Targeted synthesis of novel beta-lactam antibiotics by laccase-catalyzed reaction of aromatic substrates selected by pre-testing for their antimicrobial and cytotoxic activity. Appl. Microbiol. Biotechnol. 2016, 100, 4885–4899. [Google Scholar] [CrossRef] [PubMed]
- Domagk, G. Chemotherapy of bacterial infections. Angew Chem.-Ger. Edit. 1935, 48, 657–667. [Google Scholar] [CrossRef]
- Sköld, O. Sulfonamide resistance: Mechanisms and trends. Drug Resist. Update 2000, 3, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Wainwright, M.; Kristiansen, J.E. On the 75th anniversary of Prontosil. Dyes Pigments 2011, 88, 231–234. [Google Scholar] [CrossRef]
- Zhu, Y.I.; Stiller, M.J. Dapsone and sulfones in dermatology: Overview and update. J. Am. Acad. Dermatol. 2001, 45, 420–434. [Google Scholar] [CrossRef]
- Witte, W.; Braulke, C.; Cuny, C.; Heuck, D.; Kresken, M. Changing pattern of antibiotic resistance in methicillin-resistant Staphylococcus aureus from German hospitals. Infect. Cont. Hosp. Ep. 2001, 22, 683–686. [Google Scholar] [CrossRef]
- Hahn, V.; Mikolasch, A.; Wende, K.; Bartrow, H.; Lindequist, U.; Schauer, F. Synthesis of model morpholine derivatives with biological activities by laccase-catalysed reactions. Biotechnol. Appl. Biochem. 2009, 54, 187–195. [Google Scholar] [CrossRef]
- Mikolasch, A. Laccase-mediated synthesis of novel antibiotics and amino acid derivatives. In Pharmaceutical Biocatalysis: Chemoenzymatic Synthesis of Active Pharmaceutical Ingredients; Grunwald, P., Ed.; Jenny Stanford Publishing Pte. Ltd.: Singapore, 2019; pp. 219–268. [Google Scholar]
- Liberra, K.; Jansen, R.; Lindequist, U. Corollosporine, a new phthalide derivative from the marine fungus Corollospora maritima Werderm. 1069. Pharmazie 1998, 53, 578–581. [Google Scholar] [CrossRef]
- Mothana, R.A.; Jansen, R.; Jülich, W.D.; Lindequist, U. Ganomycins A and B, new antimicrobial farnesyl hydroquinones from the basidiomycete Ganoderma pfeifferi. J. Nat. Prod. 2000, 63, 416–418. [Google Scholar] [CrossRef] [PubMed]
- Mikolasch, A.; Hessel, S.; Gesell Salazar, M.; Neumann, H.; Manda, K.; Gördes, D.; Schmidt, E.; Thurow, K.; Hammer, E.; Lindequist, U.; et al. Synthesis of new N-analogous corollosporine derivatives with antibacterial activity by laccase-catalyzed amination. Chem. Pharm. Bull. 2008, 56, 781–786. [Google Scholar] [CrossRef]
- Wise, E.M.; Abou-Donia, M.M. Sulfonamide resistance mechanism in Escherichia coli-R plasmids can determine sulfonamide-resistant dihydropteroate synthases. Proc. Natl. Acad. Sci. USA 1975, 72, 2621–2625. [Google Scholar] [CrossRef]
- Vedantam, G.; Nichols, B.P. Characterization of a mutationally altered dihydropteroate synthase contributing to sulfathiazole resistance in Escherichia coli. Microb. Drug Resist. 1998, 4, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Fiebelkorn, K.R.; Crawford, S.A.; Jorgensen, J.H. Mutations in folP associated with elevated sulfonamide MICs for Neisseria meningitidis clinical isolates from five continents. Antimicrob. Agents Chemother. 2005, 49, 536–540. [Google Scholar] [CrossRef] [PubMed]
- Hahn, V.; Davids, T.; Lalk, M.; Schauer, F.; Mikolasch, A. Enzymatic cyclizations using laccases: Multiple bond formation between dihydroxybenzoic acid derivatives and aromatic amines. Green Chem. 2010, 12, 879–887. [Google Scholar] [CrossRef]
Educts | Products | ||||
---|---|---|---|---|---|
Quinoid Dimers | Hydroquinoid Dimers | Quinoid Trimers | Hydroquinoid Trimers | ||
1a 8 R1=OCH3 | 2a R2=H | 3a1 8 R1=OCH3 R2=H | nd 1 | nd | nd |
1b 8 9 10 R1=NHCH2CH2OH | 2a | 3b1 8 9 10 R1=NHCH2CH2OH R2=H | nd | nd | nd |
1c 8 R1=CH3 | 2a | nd | 3c2 8 R1=CH3 R2=H | 4c1 8 R1=CH3 R2=H | nd |
1a 8 R1=OCH3 | 2b R2= | 3d1 8 R1=OCH3 R2= | 3d2 8 R1=OCH3 R2= | nd | nd |
1b 8 9 10 R1=NHCH2CH2OH | 2b | 3e1 8 9 10 R1=NHCH2CH2OH R2= | 3e2 8 9 10 R1=NHCH2CH2OH R2= | nd | nd |
1c 8 R1=CH3 | 2b | 3f1 8 R1=CH3 R2= | 3f2 8 R1=CH3 R2= | 4f1 8 R1=CH3 R2= | 4f2 8 R1=CH3 R2= |
Educts | Products | ||
---|---|---|---|
Quinoid Dimers | Hydroquinoid Dimers | ||
1d R1=H | 2a R2=H | 5a1 R1=H R2=H | 5a2 R1=H R2=H |
1e R1=CH2COOH | 2a | 5b1 R1=CH2COOH R2=H | 5b2 R1=CH2COOH R2=H |
1d R1=H | 2b R2= | 5c1 R1=H R2= | 5c2 R1=H R2= |
1e R1=CH2COOH | 2b | 5d1 R1=CH2COOH R2= | 5d2 R1=CH2COOH R2= |
Educts | Products | |||
---|---|---|---|---|
Quinoid Trimers | Mixed Quinoid-Hydroquinoid Trimers | Hydroquinoid Trimers | ||
1a 8 R1=OCH3 | 2c | 6a1 8 R1=OCH3 | 6a2 8 R1=OCH3 | 6a3 8 R1=OCH3 |
1b 8 9 10 R1=NHCH2CH2OH | 2c | 6b1 8 9 10 R1=NHCH2CH2OH | 6b2 8 9 10 R1=NHCH2CH2OH | 6b3 8 9 10 R1=NHCH2CH2OH |
Substance | Amount n [µmol] | S. aureus ATCC6538 | S. aureus-Northern German Epidemic MRSA | S. epidermidis 99847 |
---|---|---|---|---|
1a (educt) | 0.069 | r * | r | r |
0.30 | r | r | r | |
0.74 | r | r | r | |
1.49 | r | r | r | |
1b (educt) | 0.069 | r | r | r |
0.30 | r | r | r | |
0.74 | r | r | r | |
1.49 | 10 | 10 | 10 | |
2a (educt) | 0.058 | r | r | r |
0.29 | r | r | r | |
0.73 | r | r | r | |
1.45 | r | r | r | |
3a1 (product of 1a and 2a) | 0.030 | r | r | r |
0.15 | r | r | r | |
0.37 | r | 12 | r | |
0.74 | 10 | 16 | 12 | |
3b1 (product of 1b and 2a) | 0.030 | r | r | r |
0.15 | r | 18 | r | |
0.37 | 20 | 22 | 20 | |
0.74 | 22 | 26 | 26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikolasch, A.; Hahn, V. Laccase-Catalyzed Derivatization of Antibiotics with Sulfonamide or Sulfone Structures. Microorganisms 2021, 9, 2199. https://doi.org/10.3390/microorganisms9112199
Mikolasch A, Hahn V. Laccase-Catalyzed Derivatization of Antibiotics with Sulfonamide or Sulfone Structures. Microorganisms. 2021; 9(11):2199. https://doi.org/10.3390/microorganisms9112199
Chicago/Turabian StyleMikolasch, Annett, and Veronika Hahn. 2021. "Laccase-Catalyzed Derivatization of Antibiotics with Sulfonamide or Sulfone Structures" Microorganisms 9, no. 11: 2199. https://doi.org/10.3390/microorganisms9112199
APA StyleMikolasch, A., & Hahn, V. (2021). Laccase-Catalyzed Derivatization of Antibiotics with Sulfonamide or Sulfone Structures. Microorganisms, 9(11), 2199. https://doi.org/10.3390/microorganisms9112199