Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (860)

Search Parameters:
Keywords = laccase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2723 KB  
Article
miRNA-Mediated Regulation of Meloidogyne arenaria Responses in Wild Arachis
by Patricia Messenberg Guimaraes, Andressa da Cunha Quintana Martins, Roberto Coiti Togawa, Mario Alfredo de Passos Saraiva, Ana Luiza Machado Lacerda, Ana Cristina Miranda Brasileiro and Priscila Grynberg
Int. J. Mol. Sci. 2025, 26(22), 10824; https://doi.org/10.3390/ijms262210824 - 7 Nov 2025
Viewed by 265
Abstract
MicroRNAs (miRNAs) are key post-transcriptional regulators of plant development and stress responses, with many being conserved across diverse plant lineages. In this study, we investigated the expression profiles of miRNAs and their corresponding target genes in Arachis stenosperma, a wild peanut relative [...] Read more.
MicroRNAs (miRNAs) are key post-transcriptional regulators of plant development and stress responses, with many being conserved across diverse plant lineages. In this study, we investigated the expression profiles of miRNAs and their corresponding target genes in Arachis stenosperma, a wild peanut relative that exhibits robust resistance to root-knot nematodes (RKN). Small RNA sequencing of nematode-infected roots identified 107 miRNA loci, of which 93 corresponded to conserved miRNA families and 14 represented novel candidates, designated as miRNOVO. Among these, 18 miRNAs belonging to 11 conserved families were identified as differentially expressed (DEMs). Notably, miR399 and miR319 showed the highest upregulation (logFC = 4.25 and 4.20), while miR393 and miR477 were the most downregulated (logFC = −0.83 and −0.79). Integrated analysis of miRNA and transcriptome data revealed several regulatory interactions involving key defense-related genes. These included NLR genes targeted by miR393 and miR477, hormone signaling components such as the auxin response factor ARF8 targeted by miR167, and the growth regulator GRF2 targeted by miR396. Additionally, miR408 was predicted to target laccase3, a gene involved in the oxidation of phenolic compounds, lignin biosynthesis, copper homeostasis and defense responses. Remarkably, four immune receptor genes belonging to the nucleotide-binding site leucine-rich repeat (NLR) family displayed inverse expression patterns relative to their regulatory miRNAs, suggesting miRNA-mediated post-transcriptional control during the early stages of nematode infection. These findings reveal both conserved and species-specific miRNA–mRNA modules associated with nematode resistance in A. stenosperma, highlighting promising targets for developing RKN-tolerant peanut cultivars through miRNA-based strategies. Full article
(This article belongs to the Special Issue Interactions between Plants and Nematodes)
Show Figures

Figure 1

16 pages, 3041 KB  
Article
Characterization of Drought-Responsive miRNAs in Peanut Through Integrated Transcriptomic Approaches
by Xin Zhang, Rui Zhang, Zhenbo Chen, Xiaoyu Zhang, Xiaoji Zhang, Yuexia Tian, Yunyun Xue, Huiqi Zhang, Na Li and Dongmei Bai
Agriculture 2025, 15(21), 2190; https://doi.org/10.3390/agriculture15212190 - 22 Oct 2025
Viewed by 218
Abstract
Drought stress severely limits peanut productivity, highlighting the urgent need to understand the molecular mechanisms that underlie drought adaptation. While microRNAs (miRNAs) are known to play essential roles in plant stress responses, their functional contributions in polyploid crops like peanut remain insufficiently explored. [...] Read more.
Drought stress severely limits peanut productivity, highlighting the urgent need to understand the molecular mechanisms that underlie drought adaptation. While microRNAs (miRNAs) are known to play essential roles in plant stress responses, their functional contributions in polyploid crops like peanut remain insufficiently explored. This study provides the first integrated transcriptomic analysis of drought-responsive miRNAs in tetraploid peanut (Arachis hypogaea). We performed high-throughput sRNA sequencing on a drought-tolerant cultivar Fenhua 8 under PEG6000-simulated drought stress, identifying 10 conserved drought-responsive miRNAs. Among these, ahy-miR398 and ahy-miR408 were significantly downregulated under drought conditions. Degradome sequencing revealed that ahy-miR398 targets copper chaperones for superoxide dismutase (CCSs), potentially reducing SOD activation and amplifying oxidative stress. In contrast, ahy-miR408 targets laccase 12 (LAC12), P-type ATPase copper transporters (COPAs), and a blue copper protein-like (PCL) gene. These targets are involved in copper homeostasis and the regulation of reactive oxygen species (ROS), suggesting that ahy-miR408 plays a role in oxidative stress management. Functional validation in transgenic Arabidopsis lines overexpressing ahy-miR398 or ahy-miR408 showed significantly reduced drought tolerance, with impaired seed germination, shorter primary roots, and exacerbated growth suppression during water deprivation. Taken together, these findings highlight a novel miRNA-mediated regulatory network in peanut drought adaptation, centered on copper-associated oxidative stress management. This study provides new insights into miRNA-based regulation in polyploid crops and offers potential molecular targets for breeding climate-resilient peanut varieties, especially in arid regions where yield stability is crucial. Full article
Show Figures

Figure 1

31 pages, 2038 KB  
Review
Himalayan Mushrooms as a Natural Source of Ergosterol and Vitamin D2: A Review of Nutraceutical and Functional Food Perspectives
by Pooja Panthari, Garima Khantwal, Manoj Kumar, Xiaomin Shang, Ji-Ho Lee, Soha Haniyyah, Kavita Sharma and Ramesh Kumar Saini
Foods 2025, 14(20), 3516; https://doi.org/10.3390/foods14203516 - 15 Oct 2025
Viewed by 992
Abstract
Mushroom diversity is essential for maintaining ecological balance and provides valuable bioactive compounds for human use. Beyond their nutritional value, mushrooms contribute to functional foods and have applications in nutraceuticals, pharmaceuticals, and biotechnology. For example, β-glucans from Lentinula edodes are commercialized as immune-enhancing [...] Read more.
Mushroom diversity is essential for maintaining ecological balance and provides valuable bioactive compounds for human use. Beyond their nutritional value, mushrooms contribute to functional foods and have applications in nutraceuticals, pharmaceuticals, and biotechnology. For example, β-glucans from Lentinula edodes are commercialized as immune-enhancing nutraceuticals, polysaccharide Krestin (PSK) from Trametes versicolor is used as an adjuvant in cancer therapy, and enzymes such as laccases from Pleurotus species are widely applied in biotechnological processes. One of the abundant compounds found in mushrooms is ergosterol, which is a sterol present in the cell membrane of the fungal body. Ergosterol has significant health benefits due to its antioxidant, immunomodulatory, and anti-inflammatory properties. Furthermore, ergosterol is a precursor to vitamin D2 (ergocalciferol), which can be synthesized through exposure to ultraviolet (UV) light and thermal radiation. This review highlights the importance of Himalayan mushroom biodiversity, particularly the wild edible mushrooms traditionally collected and used. This review thoroughly discusses the ergosterol and vitamin D2 content, their biosynthesis in mushrooms, and the role of environmental factors used to enhance biosynthesis. We also discuss the sustainable cultivation of Himalayan mushrooms and their nutraceutical properties. Several Himalayan mushrooms have been reported to possess health-promoting properties, and their incorporation into functional foods may contribute to improved public health. Furthermore, the future research directions are highlighted. Full article
(This article belongs to the Special Issue Mushrooms and Edible Fungi as Future Foods)
Show Figures

Figure 1

26 pages, 2519 KB  
Article
Specific Phenylpropanoid Oligomerization in a Neutral Environment by the Recombinant Alkaline Laccase from Paramyrothecium roridum VKM F-3565
by Zhanna V. Renfeld, Alexey M. Chernykh, Sofia Yu. Gorina, Boris P. Baskunov, Olga V. Moiseeva, Natalia V. Trachtmann, Shamil Z. Validov and Marina P. Kolomytseva
Biomolecules 2025, 15(10), 1437; https://doi.org/10.3390/biom15101437 - 11 Oct 2025
Viewed by 305
Abstract
Fungal laccases oxidize a wide range of substrates with a diverse spectrum of subsequent non-specific free radical reactions, leading to the production of unwanted byproducts. This work describes a unique recombinant alkaliphilic laccase from Paramyrothecium roridum VKM F-3565 capable of performing specific oligomerization [...] Read more.
Fungal laccases oxidize a wide range of substrates with a diverse spectrum of subsequent non-specific free radical reactions, leading to the production of unwanted byproducts. This work describes a unique recombinant alkaliphilic laccase from Paramyrothecium roridum VKM F-3565 capable of performing specific oligomerization of phenylpropanoids (precursors of natural lignin and lignans) in a neutral environment, thus preventing the reverse reaction of depolymerization which occurs in an acidic environment. The recombinant alkaliphilic laccase from P. roridum VKM F-3565 with a specific enzyme activity of about 154.0 U/mg (in the reaction with 1 mM ABTS) was obtained using a Komagataella phaffii transformant with a yield of 20 ± 1.5 mg/L. The recombinant laccase had an increased degree of N-glycosylation (MW = 97 kDa), higher pH optimum in reaction with phenylpropanoids and a decreased temperature optimum, compared to the wild-type laccase. The enzyme exhibited great resistance to surfactants and the EDTA in the neutral conditions rather than the acidic ones, whereas its tolerance to mono- and divalent-metal ions was high at acidic conditions. This work demonstrates the important role of N-glycosylation of the alkaliphilic laccase of P. roridum VKM F-3565 in its functional activity. The presence of pH-dependent reactions makes the studied laccase attractive for the phenylpropanoid oligomerization with the production of novel oligomeric phenylpropanoid derivatives for industrial and pharmacological purposes. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Graphical abstract

27 pages, 1789 KB  
Review
Production of β-Glucans by Pleurotus ostreatus: Cultivation and Genetic Background
by Jakub Drężek and Justyna Możejko-Ciesielska
Int. J. Mol. Sci. 2025, 26(19), 9703; https://doi.org/10.3390/ijms26199703 - 5 Oct 2025
Viewed by 927
Abstract
Pleurotus ostreatus is one of the most frequently cultivated mushroom species. It has attracted considerable attention not only because of its short cultivation time, but also because of the wide range of substrates on which it can be cultivated, such as lignocellulosic materials, [...] Read more.
Pleurotus ostreatus is one of the most frequently cultivated mushroom species. It has attracted considerable attention not only because of its short cultivation time, but also because of the wide range of substrates on which it can be cultivated, such as lignocellulosic materials, synthetic polymers and wastewater. The popularity of the oyster mushroom stems not only from its rapid growth and high adaptability, but also from its functional ingredients, which include laccase, proteoglycan and β-glucan. As understanding the molecular biology of Pleurotus ostreatus is crucial for evaluating its commercial and scientific applications, modern molecular tools have been used to search for the genes and proteins involved in the development of this mushroom and production of valuable metabolites. The rapid development of artificial intelligence may make it possible to automate and optimize the entire cultivation process of Pleurotus ostreatus. This report summarizes the cultivation of Pleurotus ostreatus using waste raw materials, the nutritional and medicinal value for applications, transcriptomic and proteomic analyses and the use of artificial intelligence systems. In addition, future perspectives are discussed to make the cultivation of Pleurotus ostreatus environmentally friendly and to ensure an increase in its productivity and quality. Full article
(This article belongs to the Special Issue New Research on Bioactive Natural Products: 2nd Edition)
Show Figures

Graphical abstract

17 pages, 2550 KB  
Article
Degradation of Tetracycline by Laccase–Mediator System Using Tea Polyphenols as Mediator
by Ling Xu, Shuang Zhang, Hui Xu, Anzhou Ma, Guoqiang Zhuang, Shuhao Huo, Bin Zou, Jingya Qian, Guoqiang Guan and Feng Wang
Catalysts 2025, 15(10), 952; https://doi.org/10.3390/catal15100952 - 4 Oct 2025
Viewed by 534
Abstract
Tetracycline antibiotics are widely used, but their resistance to degradation and persistence in the environment pose a potential risk of inducing antibiotic resistance, creating significant threats to both the environment and human health. This study established a laccase–mediator system (LMS) using natural green [...] Read more.
Tetracycline antibiotics are widely used, but their resistance to degradation and persistence in the environment pose a potential risk of inducing antibiotic resistance, creating significant threats to both the environment and human health. This study established a laccase–mediator system (LMS) using natural green tea polyphenols (GTPs) as mediators for efficient tetracycline degradation. Through analyzing the main GTP components and optimizing the reaction conditions, the degradation efficiency of the system was evaluated. The experimental results indicated that, among the various tea polyphenol components, epicatechin gallate (ECG) contributed the most significantly to the degradation efficiency. Under optimized conditions, the Lac-ECG system degraded over 98% of tetracycline within 3–4 min. Further optimization of the Lac-GTP system allowed us to identify the following optimal conditions: a GTP concentration of 1.0 mmol/L, laccase concentration of 1.0 mg/mL, pH of 6.0, and temperature of 25 °C. Under these conditions, a degradation rate of 95.07% was attained within 5 min, outperforming a system using the synthetic mediator ABTS. Additionally, metal ions such as Ca2+, Mg2+, Cu2+, Fe3+, Fe2+, and Ni2+ were found to enhance the degradation process, while Mn2+ and Hg2+ exhibited inhibitory effects. Antibacterial activity tests revealed that the degradation products completely lost their antimicrobial activity, demonstrating effective detoxification of tetracycline. In conclusion, the tea polyphenol-based laccase–mediator system developed in this study exhibits high efficiency, cost-effectiveness, and environmental friendliness, offering a promising strategy for the remediation of tetracycline-contaminated environments. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Figure 1

16 pages, 1415 KB  
Article
Decolorization and Detoxification of Synthetic Dyes by Trametes versicolor Laccase Under Salt Stress Conditions
by Thaís Marques Uber, Danielly Maria Paixão Novi, Luana Yumi Murase, Vinícius Mateus Salvatori Cheute, Samanta Shiraishi Kagueyama, Alex Graça Contato, Rosely Aparecida Peralta, Adelar Bracht and Rosane Marina Peralta
Reactions 2025, 6(4), 53; https://doi.org/10.3390/reactions6040053 - 3 Oct 2025
Viewed by 846
Abstract
Fungal laccases are promising oxidative enzymes for bioremediation applications, particularly in the degradation of synthetic dyes present in industrial effluents. Here, we evaluated the inhibitory effects of sodium chloride (NaCl) and sodium sulfate (Na2SO4) on the activity of Trametes [...] Read more.
Fungal laccases are promising oxidative enzymes for bioremediation applications, particularly in the degradation of synthetic dyes present in industrial effluents. Here, we evaluated the inhibitory effects of sodium chloride (NaCl) and sodium sulfate (Na2SO4) on the activity of Trametes versicolor laccase and its ability to decolorize Congo Red (CR), Malachite Green (MG), and Remazol Brilliant Blue R (RBBR). Enzyme assays revealed concentration-dependent inhibition, with IC50 values of 0.22 ± 0.04 M for NaCl and 1.00 ± 0.09 M for Na2SO4, indicating stronger inhibition by chloride. Kinetic modeling showed mixed-type inhibition for both salts. Despite this effect, the enzyme maintained significant activity: after 12 h, decolorization efficiencies reached 95 ± 4.0% for MG, 88 ± 3.0% for RBBR, and 75 ± 3.0% for CR, even in the presence of 0.5 M salts. When applied to a mixture of the three dyes, decolorization decreased only slightly in saline medium (94.04 ± 4.0% to 83.43 ± 5.1%). FTIR spectra revealed minor structural changes, but toxicity assays confirmed marked detoxification, with radicle length in lettuce seeds increasing from 20–38 mm (untreated dyes) to 41–48 mm after enzymatic treatment. Fungal growth assays corroborated reduced toxicity of treated dyes. These findings demonstrate that T. versicolor laccase retains functional robustness under ionic stress, supporting its potential application in saline textile wastewater remediation. Full article
(This article belongs to the Topic Green and Sustainable Catalytic Process)
Show Figures

Graphical abstract

25 pages, 5249 KB  
Review
Exploring the Anticancer Potential of Coriolus versicolor in Breast Cancer: A Review
by Marta Ziaja-Sołtys and Magdalena Jaszek
Curr. Issues Mol. Biol. 2025, 47(10), 808; https://doi.org/10.3390/cimb47100808 - 1 Oct 2025
Viewed by 1645
Abstract
Breast cancer remains a leading cause of morbidity and mortality among women globally, with increasing incidence projected in the coming years. Despite advances in standard oncologic therapies, there is a growing interest in supportive interventions that enhance treatment efficacy and reduce adverse effects. [...] Read more.
Breast cancer remains a leading cause of morbidity and mortality among women globally, with increasing incidence projected in the coming years. Despite advances in standard oncologic therapies, there is a growing interest in supportive interventions that enhance treatment efficacy and reduce adverse effects. This review critically evaluates preclinical and clinical data on the medicinal mushroom Coriolus versicolor and its bioactive compounds—primarily polysaccharide-K, polysaccharopeptide, and laccase—as potential adjuvants in breast cancer therapy. A systematic PubMed search identified 11 original studies from 2010 to 2025 examining the impact of C. versicolor on breast cancer cell lines, animal models, and human subjects. Findings consistently demonstrate antiproliferative, pro-apoptotic, necroptotic, anti-invasive, and immunomodulatory effects across various breast cancer subtypes, including triple-negative breast cancer. One phase I clinical trial also reported good tolerability and immunological benefits in patients post-chemotherapy. The review highlights molecular mechanisms involving apoptosis, necroptosis, and modulation of the tumor microenvironment. While promising, these results underscore the need for standardized preparations, pharmacokinetic data, and larger placebo-controlled trials. Overall, C. versicolor shows potential as a safe, natural adjunct to conventional therapy, offering prospects for integrative strategies in breast cancer management. Full article
(This article belongs to the Special Issue Natural Product Drug Activity and Biomedicine Application)
Show Figures

Figure 1

19 pages, 6403 KB  
Review
Recent Advances and Challenges in Biomolecule-Based Laccase Mimics for Environmental Applications
by Zhiliang Liu, Ling Liu, Yu Liu, Yuxuan Wang and Linling Yu
Catalysts 2025, 15(10), 932; https://doi.org/10.3390/catal15100932 - 1 Oct 2025
Cited by 1 | Viewed by 648
Abstract
Natural laccase is an environmentally friendly biocatalyst in the degradation of a broad range of toxic pollutants because its catalysis reaction does not require or produce toxic reactants and byproducts. However, its inherent limitations, such as operational sensitivity, poor stability, and difficulty in [...] Read more.
Natural laccase is an environmentally friendly biocatalyst in the degradation of a broad range of toxic pollutants because its catalysis reaction does not require or produce toxic reactants and byproducts. However, its inherent limitations, such as operational sensitivity, poor stability, and difficulty in recovery/reusability, have significantly restricted its practical environmental applications. Consequently, in recent years, researchers have focused on the development of sustainable catalysts to mimic natural laccase. This review focuses on biomolecule-based laccase mimics, which are derived from nucleotides, nucleic acids, amino acids, peptides, and proteins, summarizing their environmental applications. These biomolecule-based laccase mimics not only overcome the limitations of natural laccase by offering advantages such as high stability, ease of recycling, and long-term storage but also exhibit excellent biodegradability, making them green and sustainable catalytic materials. This study aims to present recent progress in biomolecule-based laccase mimics, as well as their challenges, and to offer future directions in laccase-like catalysts for environmental applications. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Graphical abstract

15 pages, 1329 KB  
Article
Engineering the Bacterial Laccase CotA for Functional Expression and Dye Decolorization Through Site-Directed Mutagenesis
by Zhiguo Zhou, Shuyuan Yao, Sitie Ying, Mengyan Yu, Zhihua Song, Yongtao Sun, Lisheng Qian and Yue Zhang
Biology 2025, 14(10), 1335; https://doi.org/10.3390/biology14101335 - 28 Sep 2025
Viewed by 552
Abstract
The relationship between the structure and function of bacterial laccases has garnered significant research attention thanks to their straightforward molecular structure. Nevertheless, studies examining the impact of an altered molecular structure on the heterologous expression of bacterial laccases in Escherichia coli remain scarce. [...] Read more.
The relationship between the structure and function of bacterial laccases has garnered significant research attention thanks to their straightforward molecular structure. Nevertheless, studies examining the impact of an altered molecular structure on the heterologous expression of bacterial laccases in Escherichia coli remain scarce. Our research focuses on elucidating the impact of incorporating copper ions into the molecular structure of modified CotA on its exogenous expression in E. coli as well as its impact on the significance of the amino acid residues surrounding the internal electron channels and water molecule channels of the enzyme molecule. The results show that single-site mutation may affect the expression of CotA by affecting its soluble expression with different binding capacities for copper ions. In addition, the mutants exhibited different laccase activity levels. The catalytic efficiency of T466A was found to be significantly enhanced, reaching 2.29 times that of the wild type. We used structural models to illustrate the correlation between molecular structure and function after the replacement of three mutation sites with alanine. The reduction of hydrogen bonds may be an important factor influencing Cu2+’s binding ability and the water molecule production rate. The T466A mutant exhibited strong decolorization ability for Reactive Blue 19 and Eriochrome Black T with 42.2% and 58.2% decolorization rates after one hour of reaction, respectively. This study demonstrates that the molecular mutation studied influences the CotA expression level, enzyme activity, and dye decolorization. Full article
(This article belongs to the Special Issue Advances in Microbial Enzyme Engineering)
Show Figures

Graphical abstract

24 pages, 2813 KB  
Review
Eco-Friendly Biocatalysts: Laccase Applications, Innovations, and Future Directions in Environmental Remediation
by Hina Younus, Masood Alam Khan, Arif Khan and Fahad A. Alhumaydhi
Catalysts 2025, 15(10), 921; https://doi.org/10.3390/catal15100921 - 26 Sep 2025
Viewed by 725
Abstract
Laccases, a class of multicopper oxidases found in diverse biological sources, have emerged as key green biocatalysts with significant potential for eco-friendly pollutant degradation. Their ability to drive electron transfer reactions using oxygen, converting pollutants into less harmful products, positions laccases as promising [...] Read more.
Laccases, a class of multicopper oxidases found in diverse biological sources, have emerged as key green biocatalysts with significant potential for eco-friendly pollutant degradation. Their ability to drive electron transfer reactions using oxygen, converting pollutants into less harmful products, positions laccases as promising tools for scalable and sustainable treatment of wastewater, soil, and air pollution. This review explores laccase from a translational perspective, tracing its journey from laboratory discovery to real-world applications. Emphasis is placed on recent advances in production optimization, immobilization strategies, and nanotechnology-enabled enhancements that have improved enzyme stability, reusability, and catalytic efficiency under complex field conditions. Applications are critically discussed for both traditional pollutants such as synthetic dyes, phenolics, and pesticides and emerging contaminants, including endocrine-disrupting chemicals, pharmaceuticals, personal care products, microplastic additives, and PFAS. Special attention is given to hybrid systems integrating laccase with advanced oxidation processes, bioelectrochemical systems, and renewable energy-driven reactors to achieve near-complete pollutant mineralization. Challenges such as cost–benefit limitations, limited substrate range without mediators, and regulatory hurdles are evaluated alongside solutions including protein engineering, mediator-free laccase variants, and continuous-flow bioreactors. By consolidating recent mechanistic insights, this study underscores the translational pathways of laccase, highlighting its potential as a cornerstone of next-generation, scalable, and eco-friendly remediation technologies aligned with circular bioeconomy and low-carbon initiatives. Full article
(This article belongs to the Special Issue Advanced Catalysis for Energy and a Sustainable Environment)
Show Figures

Graphical abstract

16 pages, 3987 KB  
Article
Functional Evaluation of Bacillus subtilis DCP04 from Korean Fermented Soybean Paste: A Potential Probiotic Strain for Polyethylene Degradation and Adsorption
by Gyeong-Hwan Kim, Haemin Jeong, Injun Jung, Myounghyun Choi and Jong-Hoon Kim
Foods 2025, 14(19), 3328; https://doi.org/10.3390/foods14193328 - 25 Sep 2025
Viewed by 2467
Abstract
Micro- and nanoplastics (MPs and NPs) are recognized as emerging contaminants posing potential risks to human health. Recent evidence highlights the potential of food-grade microbial strains to bind these particles and facilitate their removal, suggesting a promising probiotic-based strategy for mitigating their adverse [...] Read more.
Micro- and nanoplastics (MPs and NPs) are recognized as emerging contaminants posing potential risks to human health. Recent evidence highlights the potential of food-grade microbial strains to bind these particles and facilitate their removal, suggesting a promising probiotic-based strategy for mitigating their adverse health effects. This study investigated the adsorption and biodegradation capabilities of Bacillus subtilis DCP04, a strain isolated from Korean fermented soybean paste, cheonggukjang, on low-density polyethylene (LDPE) particles. Biofilm formation assays and morphological observations confirmed the strain’s ability to adhere to the surface of LDPE. Subsequent experiments demonstrated that DCP04 effectively adsorbed LDPE particles in a size-, time-, and concentration-dependent manner. This interaction induced significant morphological changes and increased hydrophilicity on the polymer surface. Furthermore, a positive correlation was observed between the activities of laccase and manganese peroxidase and a measurable weight loss in LDPE films, suggesting direct enzymatic involvement in polymer degradation. Crucially, the DCP04 strain also met key safety and functional criteria for use as a probiotic. These findings highlight the potential of DCP04 strain as a functional probiotic agent for mitigating the accumulation of MPs and NPs within the human body. Full article
(This article belongs to the Special Issue Application of Probiotics in Foods and Human Health)
Show Figures

Figure 1

16 pages, 7056 KB  
Article
Molecular Dynamics Simulation Reveals the Mechanism of Substrate Recognition by Lignin-Degrading Enzymes
by Xue Ma, Xueting Cao, Zhenyu Ma, Jingyi Zhu, Letian Yang, Min Xiao and Xukai Jiang
Int. J. Mol. Sci. 2025, 26(19), 9378; https://doi.org/10.3390/ijms26199378 - 25 Sep 2025
Viewed by 587
Abstract
Lignin, the most abundant aromatic biopolymer, represents a key renewable feedstock for sustainable biorefineries, yet its structural complexity poses a formidable challenge for enzymatic degradation. While ligninolytic enzymes such as laccases (LACs), lignin peroxidases (LiPs), and manganese peroxidases (MnPs) exhibit remarkable catalytic versatility, [...] Read more.
Lignin, the most abundant aromatic biopolymer, represents a key renewable feedstock for sustainable biorefineries, yet its structural complexity poses a formidable challenge for enzymatic degradation. While ligninolytic enzymes such as laccases (LACs), lignin peroxidases (LiPs), and manganese peroxidases (MnPs) exhibit remarkable catalytic versatility, the molecular mechanisms underlying their ability to balance substrate specificity and structural flexibility remain unresolved. Here, we employed all-atom molecular dynamics (MD) simulations and virtual mutagenesis to dissect the dynamic interactions between these enzymes and lignin model compound (β-O-4-linked H-type dimers). Our simulations revealed a dual recognition mechanism in which polar residues (such as Asp, Glu, Arg and His) formed hydrogen bonds with hydroxyl and keto groups near catalytic cleavage sites, ensuring precise alignment for bond scission, while aromatic residues stabilized diverse lignin conformations via hydrophobic interactions with conserved aromatic rings. Conformational dynamics of active-site residues enabled adaptive adjustments to substrate heterogeneity, reconciling enzymatic specificity with structural promiscuity. Virtual mutation experiments further demonstrated that aromatic residues were indispensable for binding stability, whereas polar residues dictated cleavage-site selectivity. These findings provide atomic-scale insights into the catalytic mechanism of ligninolytic enzymes, with implications in the rational design of superior biocatalyst for lignin biorefineries. Full article
(This article belongs to the Special Issue Molecular Dynamics Simulations of Protein Structures)
Show Figures

Figure 1

17 pages, 3898 KB  
Review
The Versatility of NADES Across Applications
by David S. Freitas, Artur Ribeiro, Artur Cavaco-Paulo and Carla Silva
Molecules 2025, 30(19), 3862; https://doi.org/10.3390/molecules30193862 - 24 Sep 2025
Viewed by 1005
Abstract
Natural deep eutectic solvents (NADES) are produced by combining natural compounds, such as sugars, amino acids, or organic acids, to form a liquid at room temperature. Compared to other solvents, NADES own several strengths, including cost-effectiveness, ease of preparation, tunable properties, biorenewability, and [...] Read more.
Natural deep eutectic solvents (NADES) are produced by combining natural compounds, such as sugars, amino acids, or organic acids, to form a liquid at room temperature. Compared to other solvents, NADES own several strengths, including cost-effectiveness, ease of preparation, tunable properties, biorenewability, and biodegradability, making them suitable for a wide range of industrial sectors. Research on NADES requires careful consideration of their composition and physicochemical properties, as these can significantly influence their range of applications. In this context, the main objective of this review is to provide insights into the application of NADES in different areas that go from enzymatic processes and extraction of bioactives to the formulation of pharmaceutical and cosmetic products. This review includes several case studies on the use of enzyme–NADES systems (lipase and laccase) to synthesize new materials and on the extraction of bioactives with NADES, highlighting their direct application in cosmetics and pharmaceutical formulations. Full article
Show Figures

Figure 1

20 pages, 7280 KB  
Article
Optimisation of Enzyme Lignin Degradation Using Response Surface Methodology for Sustainable Lignocellulosic By-Products Management
by Alexandra Burlacu (Grigoraș), Aglaia Popa and Florentina Israel-Roming
AgriEngineering 2025, 7(10), 314; https://doi.org/10.3390/agriengineering7100314 - 23 Sep 2025
Viewed by 617
Abstract
The efficient degradation of lignin from agricultural by-products is a critical step in the development of sustainable bioprocessing technologies for waste valorisation. Enzymatic degradation of kraft lignin performed with lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase (Lac) was investigated. A response surface [...] Read more.
The efficient degradation of lignin from agricultural by-products is a critical step in the development of sustainable bioprocessing technologies for waste valorisation. Enzymatic degradation of kraft lignin performed with lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase (Lac) was investigated. A response surface methodology (RSM) based on a Box–Behnken Design (BBD) was employed in order to optimise key process parameters including enzyme concentration, lignin concentration, pH, incubation temperature, and activator concentration. The surface plots were used to determine the best conditions for each enzyme in order to better degrade kraft lignin. Therefore, LiP needed a stronger acidic environment and moderate temperature, MnP needed an almost neutral pH and moderate temperature, and Lac needed a neutral pH and higher temperature. This work contributes to the development of smart agricultural waste management practices by combining enzymatic treatments with statistical modelling for process optimisation. This study provides a framework for lignin degradation that can be used as a starting point for diverse lignocellulosic by-product fragmentation, thus supporting a circular bioeconomy initiative in accordance with today’s trends. The optimised enzymatic parameters could help enhance efficiency, enable process standardisation across feedstocks, and support economically and environmentally sustainable industrial-scale lignin valorisation in integrated biorefineries. Full article
(This article belongs to the Section Sustainable Bioresource and Bioprocess Engineering)
Show Figures

Figure 1

Back to TopTop