Inhibition of Pro-Inflammatory Cytokines by Metabolites of Streptomycetes—A Potential Alternative to Current Anti-Inflammatory Drugs?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Active Compounds
2.2. Cell Culture Conditions
2.3. RNA Extraction
2.4. Quantitative RT-PCR
2.5. Cytokine Detection by ELISA
2.6. Statistics
3. Results
3.1. The Effect of Manumycin-Type Metabolites on THP-1 Viability
3.2. The Capacity of Metabolites to Change the Gene Expression of Pro-Inflammatory Markers in THP-1
3.3. Effect of Manumycin-Type Metabolites on Cytokine Production
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pahwa, R.; Jialal, I. Chronic inflammation. In Statpearls; StatPearls Publishing: Treasure Island, FL, USA, 2019. [Google Scholar]
- Greten, F.R.; Grivennikov, S.I. Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity 2019, 51, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell 2010, 140, 883–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, M.T.; Fernando, S.; Schwarz, N.; Tan, J.T.M.; Bursill, C.A.; Psaltis, P.J. Inflammation as a therapeutic target in atherosclerosis. J. Clin. Med. 2019, 8, 1109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, R. Atherosclerosis--an inflammatory disease. N. Engl. J. Med. 1999, 340, 115–126. [Google Scholar] [CrossRef]
- Szollosi, D.E.; Manzoor, M.K.; Aquilato, A.; Jackson, P.; Ghoneim, O.M.; Edafiogho, I.O. Current and novel anti-inflammatory drug targets for inhibition of cytokines and leucocyte recruitment in rheumatic diseases. J. Pharm. Pharmacol. 2018, 70, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Khajah, M.A.; Ananthalakshmi, K.V.; Edafiogho, I. Anti-inflammatory properties of the enaminone E121 in the dextran sulfate sodium (DSS) colitis model. PLoS ONE 2016, 11, e0168567. [Google Scholar] [CrossRef]
- Wang, D.; Tao, K.; Xion, J.; Xu, S.; Jiang, Y.; Chen, Q.; He, S. TAK-242 attenuates acute cigarette smoke-induced pulmonary inflammation in mouse via the TLR4/NF-jB signaling pathway. Biochem. Biophys. Res. Commun. 2016, 472, 508–515. [Google Scholar] [CrossRef]
- Pham, J.V.; Yilma, M.A.; Feliz, A.; Majid, M.T.; Maffetone, N.; Walker, J.R.; Kim, E.; Cho, H.J.; Reynolds, J.M.; Song, M.C.; et al. A review of the microbial production of bioactive natural products and biologics. Front. Microbiol. 2019, 10, 1404. [Google Scholar] [CrossRef] [Green Version]
- Zotchev, S.B. Marine actinomycetes as an emerging resource for the drug development pipelines. J. Biotechnol. 2012, 158, 168–175. [Google Scholar] [CrossRef]
- Jerala, R. Synthetic lipopeptides: A novel class of anti-infectives. Expert Opin. Investig. Drug 2007, 16, 1159–1169. [Google Scholar] [CrossRef]
- Corrales-Medina, V.F.; Musher, D.M. Immunomodulatory agents in the treatment of community-acquired pneumonia: A systematic review. J. Infect. 2011, 63, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Murphy, B.S.; Sundareshan, V.; Cory, T.J.; Hayes, D.; Anstead, M.I.; Feola, D.J. Azithromycin alters macrophage phenotype. J. Antimicrob. Chemother. 2008, 61, 554–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamaoki, J.; Kadota, J.; Takizawa, H. Clinical implications of the immunomodulatory effects of macrolides. Am. J. Med. 2004, 117, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Herbrík, A.; Corretto, E.; Chroňáková, A.; Langhansová, H.; Petrásková, P.; Hrdý, J.; Čihák, M.; Krištůfek, V.; Bobek, J.; Petříček, M.; et al. A Human Lung-Associated Streptomyces sp. TR1341 Produces Various Secondary Metabolites Responsible for Virulence, Cytotoxicity and Modulation of Immune Response. Front. Microbiol. 2020, 10, 3028. [Google Scholar] [CrossRef] [Green Version]
- Mahmoudi, F.; Baradaran, B.; Dehnad, A.; Shanehbandi, D.; Khosroshahi, L.M.; Aghapour, M. The immunomodulatory activity of secondary metabolites isolated from streptomyces calvus on human peripheral blood mononuclear cells. Br. J. Biomed. Sci. 2016, 73, 97–103. [Google Scholar] [CrossRef]
- Hasani, A.; Kariminik, A.; Issazadeh, K. Streptomycetes: Characteristics and Their Antimicrobial Activities. Int. J. Adv. Biol. Biomed. Res. 2014, 2, 63–75. [Google Scholar]
- Lalitha, C.; Raman, T.; Rathore, S.S.; Ramar, M.; Munusamy, A.; Ramakrishnan, J. ASK2 Bioactive Compound Inhibits MDR Klebsiella pneumoniae by Antibiofilm Activity, Modulating Macrophage Cytokines and Opsonophagocytosis. Front. Cell Infect. Microbiol. 2017, 7, 346. [Google Scholar] [CrossRef] [Green Version]
- Laatsch, H.; Kellner, M.; Wolfá, G.; Leeá, Y.S.; Hansske1, F.; Konetschny-Rappá, S.; Pessara1á, U.; Scheuer, W.; Stockinger, H. Oligomycin F, a new immunosuppressive homologue of oligomycin A. J. Antibot. 1993, 46, 1334–1341. [Google Scholar] [CrossRef] [Green Version]
- Hara, M.; Akasaka, K.; Akinaga, S.; Okabe, M.; Nakano, H.; Gomez, R.; Wood, D.; Uh, M.; Tamanoi, F. Identification of ras farnesyltransferase inhibitors by microbial screening. Proc. Natl. Acad. Sci. USA 1993, 90, 2281–2285. [Google Scholar] [CrossRef] [Green Version]
- Tuladhar, A.; Rein, K.S. Manumycin a is a potent inhibitor of mammalian thioredoxin reductase-1 (trxr-1). ACS Med. Chem. Lett. 2018, 9, 318–322. [Google Scholar] [CrossRef]
- Tanaka, T.; Tsukuda, E.; Uosaki, Y.; Matsuda, Y. Ei-1511-3, -5 and ei-1625-2, novel interleukin-1 beta converting enzyme inhibitors produced by Streptomyces sp. e-1511 and e-1625.3. Biochemical properties of ei-1511-3, -5 and ei-1625-2. J. Antibiot. 1996, 49, 1085–1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Striz, I.; Krasna, E.; Petrickova, K.; Brabcova, E.; Kolesar, L.; Slavcev, A.; Jaresova, M.; Petricek, M. Manumycin and asukamycin inhibition of il-1beta and il-18 release from human macrophages by caspase-1 blocking. Allergy 2008, 63, 142–143. [Google Scholar]
- Cecrdlova, E.; Petrickova, K.; Kolesar, L.; Petricek, M.; Sekerkova, A.; Svachova, V.; Striz, I. Manumycin a downregulates release of proinflammatory cytokines from tnf alpha stimulated human monocytes. Immunol. Lett. 2016, 169, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Bernier, M.; Kwon, Y.K.; Pandey, S.K.; Zhu, T.N.; Zhao, R.J.; Maciuk, A.; He, H.J.; DeCabo, R.; Kole, S. Binding of manumycin a inhibits i kappa b kinase beta activity. J. Biol. Chem. 2006, 281, 2551–2561. [Google Scholar] [CrossRef] [Green Version]
- Arenz, C.; Thutewohl, M.; Block, O.; Waldmann, H.; Altenbach, H.J.; Giannis, A. Manumycin a and its analogues are irreversible inhibitors of neutral sphingomyelinase. Chembiochem 2001, 2, 141–143. [Google Scholar] [CrossRef]
- Melvin, W.S.; Brandes, J.S.; Boros, L.G.; Johnson, J.A.; Ellison, E.C. Manumycin inhibits pancreatic cancer cell growth. Gastroenterology 1996, 110, A557. [Google Scholar]
- Di Paolo, A.; Danesi, R.; Nardini, D.; Bocci, G.; Innocenti, F.; Fogli, S.; Barachini, S.; Marchetti, A.; Bevilacqua, G.; Del Tacca, M. Manumycin inhibits ras signal transduction pathway and induces apoptosis in colo320-dm human colon tumour cells. Br. J. Cancer 2000, 82, 905–912. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.P.; Pan, J.X.; Martin, C.; Yeung, S.C.J. Angiogenesis inhibition in the in vivo antineoplastic effect of manumycin and paclitaxel against anaplastic thyroid carcinoma. J. Clin. Endocrinol. Metab. 2001, 86, 1769–1777. [Google Scholar] [CrossRef]
- Schroder, K.; Zeeck, A. Manumycin. Tetrahedron Lett. 1973, 14, 4995–4998. [Google Scholar] [CrossRef]
- Zeeck, A.; Frobel, K.; Heusel, C.; Schroder, K.; Thiericke, R. The structure of manumycin.2. Derivatives. J. Antibiot. 1987, 40, 1541–1548. [Google Scholar] [CrossRef] [Green Version]
- Omura, S.; Kitao, C.; Tanaka, H.; Oiwa, R.; Takahashi, Y. A new antibiotic, asukamycin, produced by streptomyces. J. Antibiot. 1976, 29, 876–881. [Google Scholar] [CrossRef] [PubMed]
- Petricek, M.; Petrickova, K.; Havlicek, L.; Felsberg, J. Occurrence of two 5-aminolevulinate biosynthetic pathways in streptomyces nodosus subsp asukaensis is linked with the production of asukamycin. J. Bacteriol. 2006, 188, 5113–5123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrickova, K.; Pospisil, S.; Kuzma, M.; Tylova, T.; Jagr, M.; Tomek, P.; Chronakova, A.; Brabcova, E.; Andera, L.; Kristufek, V.; et al. Biosynthesis of colabomycin e, a new manumycin-family metabolite, involves an unusual chain-length factor. Chembiochem 2014, 15, 1334–1345. [Google Scholar] [CrossRef] [PubMed]
- Hrdy, J.; Zanvit, P.; Novotna, O.; Kocourkova, I.; Zizka, J.; Prokesova, L. Cytokine expression in cord blood cells of children of healthy and allergic mothers. Folia Microbiol. 2010, 55, 515–519. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.H.; Dong, Y.S.; Zhang, H.; Lu, X.H.; Ren, X.; Zhao, G.; He, J.G.; Si, S.Y. Isolation and characterization of N98-1272 A, B and C, selective acetylcholinesterase inhibitors from metabolites of an actinomycete strain. J Enzyme Inhib. Med. Chem. 2007, 22, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Yeung, S.C.J.; Xu, G.P.; Pan, J.X.; Christgen, M.; Bamiagis, A. Manumycin enhances the cytotoxic effect of paclitaxel on anaplastic thyroid carcinoma cells. Cancer Res. 2000, 60, 650–656. [Google Scholar]
- Costa, C.B.; Casalta-Lopes, J.; Andrade, C.; Moreira, D.; Oliveira, A.; Goncalves, A.C.; Alves, V.; Silva, T.; Dourado, M.; Nascimento-Costa, J.M.; et al. Farnesyltransferase inhibitors: Molecular evidence of therapeutic efficacy in acute lymphoblastic leukemia through cyclin d1 inhibition. Anticancer Res. 2012, 32, 831–838. [Google Scholar]
- Tuladhar, A.; Hondal, R.J.; Colon, R.; Hernandez, E.L.; Rein, K.S. Effectors of thioredoxin reductase: Brevetoxins and manumycin-a. Comp. Biochem. Phys. C 2019, 217, 76–86. [Google Scholar] [CrossRef]
- Costantini, C.; Weindruch, R.; Della, V.G.; Puglielli, L. A trka-to-p75ntr molecular switch activates amyloid beta-peptide generation during aging. Biochem. J. 2005, 391, 59–67. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hrdý, J.; Súkeníková, L.; Petrásková, P.; Novotná, O.; Kahoun, D.; Petříček, M.; Chroňáková, A.; Petříčková, K. Inhibition of Pro-Inflammatory Cytokines by Metabolites of Streptomycetes—A Potential Alternative to Current Anti-Inflammatory Drugs? Microorganisms 2020, 8, 621. https://doi.org/10.3390/microorganisms8050621
Hrdý J, Súkeníková L, Petrásková P, Novotná O, Kahoun D, Petříček M, Chroňáková A, Petříčková K. Inhibition of Pro-Inflammatory Cytokines by Metabolites of Streptomycetes—A Potential Alternative to Current Anti-Inflammatory Drugs? Microorganisms. 2020; 8(5):621. https://doi.org/10.3390/microorganisms8050621
Chicago/Turabian StyleHrdý, Jiří, Lenka Súkeníková, Petra Petrásková, Olga Novotná, David Kahoun, Miroslav Petříček, Alica Chroňáková, and Kateřina Petříčková. 2020. "Inhibition of Pro-Inflammatory Cytokines by Metabolites of Streptomycetes—A Potential Alternative to Current Anti-Inflammatory Drugs?" Microorganisms 8, no. 5: 621. https://doi.org/10.3390/microorganisms8050621