Impact of Vegetation Type on Taxonomic and Functional Composition of Soil Microbial Communities in the Northeastern Qinghai–Tibet Plateau
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Sample Treatment
2.3. Analysis of Plant Characteristics and Soil Physicochemical Properties
2.4. Soil DNA Extraction, PCR Amplification, and Illumina Sequencing
2.5. Statistical Analyses
3. Results
3.1. Plant and Soil Characteristics Under Different Vegetation Types
3.2. Soil Microbial Diversity and Community Composition Under Different Vegetation Types
3.3. Prediction of Functional Groups in Soil Bacterial and Fungal Communities
3.4. Environmental Drivers of Soil Microbial Community Differences Across Vegetation Types
4. Discussion
4.1. Effect of Vegetation Type on Taxonomic Composition of Microbial Communities
4.2. Effect of Vegetation Type on Functional Composition of Microbial Communities
4.3. Environmental Conditions Jointly Regulate Soil Microbial Community Differences Across Vegetation Types
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Veresoglou, S.D.; Halley, J.M.; Rillig, M.C. Extinction risk of soil biota. Nat. Commun. 2015, 6, 8862. Available online: https://www.nature.com/articles/ncomms9862 (accessed on 3 April 2025). [CrossRef] [PubMed]
- Hug, L.A.; Thomas, B.C.; Sharon, I.; Brown, C.T.; Sharma, R.; Hettich, R.L.; Wilkins, M.J.; Williams, K.H.; Singh, A.; Banfield, J.F. Critical biogeochemical functions in the subsurface are associated with bacteria from new phyla and little studied lineages. Environ. Microbiol. 2016, 18, 159–173. [Google Scholar] [CrossRef] [PubMed]
- Bell, T.; Newman, J.A.; Silverman, B.W.; Turner, S.L.; Lilley, A.K. The contribution of species richness and composition to bacterial services. Nature 2005, 436, 1157–1160. Available online: https://www.nature.com/articles/nature03891 (accessed on 3 April 2025). [CrossRef] [PubMed]
- WU, L.-K.; LIN, X.-M.; LIN, W.-X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates. Chin. J. Plant Ecol. 2014, 38, 298–310. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Bowman, W.D.; Kaufmann, R.; Schmidt, S.K. A temporal approach to linking aboveground and belowground ecology. Trends Ecol. Evol. 2005, 20, 634–641. Available online: https://www.cell.com/trends/ecology-evolution/abstract/S0169-5347(05)00261-2?large_figure=true (accessed on 3 April 2025). [CrossRef]
- Ren, C.; Wang, T.; Xu, Y.; Deng, J.; Zhao, F.; Yang, G.; Han, X.; Feng, Y.; Ren, G. Differential soil microbial community responses to the linkage of soil organic carbon fractions with respiration across land-use changes. For. Ecol. Manag. 2018, 409, 170–178. [Google Scholar] [CrossRef]
- Ren, C.; Zhou, Z.; Guo, Y.; Yang, G.; Zhao, F.; Wei, G.; Han, X.; Feng, L.; Feng, Y.; Ren, G. Contrasting patterns of microbial community and enzyme activity between rhizosphere and bulk soil along an elevation gradient. Catena 2021, 196, 104921. [Google Scholar] [CrossRef]
- Knelman, J.E.; Legg, T.M.; O’Neill, S.P.; Washenberger, C.L.; González, A.; Cleveland, C.C.; Nemergut, D.R. Bacterial community structure and function change in association with colonizer plants during early primary succession in a glacier forefield. Soil Biol. Biochem. 2012, 46, 172–180. [Google Scholar] [CrossRef]
- Crow, S.E.; Lajtha, K.; Bowden, R.D.; Yano, Y.; Brant, J.B.; Caldwell, B.A.; Sulzman, E.W. Increased coniferous needle inputs accelerate decomposition of soil carbon in an old-growth forest. For. Ecol. Manag. 2009, 258, 2224–2232. [Google Scholar] [CrossRef]
- Bayranvand, M.; Akbarinia, M.; Salehi Jouzani, G.; Gharechahi, J.; Kooch, Y.; Baldrian, P. Composition of soil bacterial and fungal communities in relation to vegetation composition and soil characteristics along an altitudinal gradient. FEMS Microbiol. Ecol. 2021, 97, fiaa201. [Google Scholar] [CrossRef]
- Fan, Z.Z.; Wang, X.; Wang, C.; Bai, E. Meta-Analysis of the Effects of Nitrogen and Phosphorus Additions on Soil Enzyme Activities. Chin. J. Appl. Ecol. 2018, 29, 1266–1272. [Google Scholar] [CrossRef]
- Song, F.; Han, X.; Zhu, X.; Herbert, S.J. Response to water stress of soil enzymes and root exudates from drought and non-drought tolerant corn hybrids at different growth stages. Can. J. Soil Sci. 2012, 92, 501–507. [Google Scholar] [CrossRef]
- Schimel, J.; Balser, T.C.; Wallenstein, M. Microbial stress-response physiology and its implications for ecosystem function. Ecology 2007, 88, 1386–1394. [Google Scholar] [CrossRef]
- Chowdhury, N.; Marschner, P.; Burns, R.G. Soil microbial activity and community composition: Impact of changes in matric and osmotic potential. Soil Biol. Biochem. 2011, 43, 1229–1236. [Google Scholar] [CrossRef]
- Van Der Heijden, M.G.; Bardgett, R.D.; Van Straalen, N.M. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 2008, 11, 296–310. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Wu, Y.; Zhou, J.; Bing, H.; Zhu, H. Climate influences the alpine soil bacterial communities by regulating the vegetation and the soil properties along an altitudinal gradient in SW China. Catena 2020, 195, 104727. [Google Scholar] [CrossRef]
- Hernández-Cáceres, D.; Stokes, A.; Angeles-Alvarez, G.; Abadie, J.; Anthelme, F.; Bounous, M.; Freschet, G.T.; Roumet, C.; Weemstra, M.; Merino-Martín, L. Vegetation creates microenvironments that influence soil microbial activity and functional diversity along an elevation gradient. Soil Biol. Biochem. 2022, 165, 108485. [Google Scholar] [CrossRef]
- Bastida, F.; Eldridge, D.J.; García, C.; Kenny Png, G.; Bardgett, R.D.; Delgado-Baquerizo, M. Soil microbial diversity–biomass relationships are driven by soil carbon content across global biomes. ISME J. 2021, 15, 2081–2091. [Google Scholar] [CrossRef]
- Jiao, S.; Peng, Z.; Qi, J.; Gao, J.; Wei, G. Linking bacterial-fungal relationships to microbial diversity and soil nutrient cycling. Msystems 2021, 6, e01052-20. [Google Scholar] [CrossRef]
- Huang, R.; Ding, J.; Guo, Y.; Sun, B.; Liang, Y. Habitat determines the relationships among bacteria, resistance genes and mobile genetic elements in the soil–plant system. Eur. J. Soil Sci. 2022, 73, e13132. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y. Impacts of climate, phenology, elevation and their interactions on the net primary productivity of vegetation in Yunnan, China under global warming. Ecol. Indic. 2023, 154, 110533. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Wang, F.; Wang, Y.C. Bacterial Community Diversity, Functions, and Seasonal Dynamics in Soils of Different Vegetation Types in the Upper Reaches of the Heihe River. Environ. Sci. 2023, 44, 6339–6353. [Google Scholar] [CrossRef]
- Liu, Y.X.; Cao, P.X.; Ma, H.M.; Liu, X. Research Progress on Soil Microbial Diversity and Its Influencing Factors on the Qinghai-Tibet Plateau. Environ. Ecol. 2019, 1, 1–7. [Google Scholar]
- Sun, H.L.; Zheng, D.; Yao, T.D.; Zhang, Y.L. Protection and Construction of the National Ecological Security Barrier in the Qinghai-Tibet Plateau. Acta Geogr. Sin. 2012, 67, 3–12. [Google Scholar]
- Qiu, X.X.; Cao, G.C.; Zhao, Q.L.; Cao, S.K.; Zhao, M.L.; He, Q.X.; Bai, J.Q.; Xian, Q.L. Assessment of Soil Quality under Different Land Use Practices on the Southern Slope of Qilian Mountains Based on Minimum Data Set. Acta Agrestia Sin. 2024, 32, 2952. Available online: https://link.cnki.net/urlid/11.3362.S.20240627.0944.002 (accessed on 3 April 2025).
- Tong, S.; Cao, G.C.; Yan, X.; Diao, E.L. Spatiotemporal Evolution of Vegetation Coverage and Its Driving Factors on the Southern Slope of Qilian Mountains from 2000 to 2020. J. Mt. Sci. 2022, 40, 491–503. [Google Scholar] [CrossRef]
- Diao, E.L.; Cao, G.C.; Cao, S.K.; Yuan, J.; Yu, M.; Chen, Z.; Zhang, Z.; Tong, S.; Zhao, M.L. Soil Carbon and Nitrogen Contents and Path Analysis Under Different Land Use Types on the Southern Slope of Qilian Mountains. Arid Zone Res. 2021, 38, 1346–1354. [Google Scholar] [CrossRef]
- Diao, E.L.; Cao, G.C.; Cao, S.K.; Yuan, J.; Tong, S.; Qiu, X.X. Different Scales of Soil Particle Size and Fractal Characteristics. Res. Soil Water Conserv. 2024, 31, 212–220. [Google Scholar] [CrossRef]
- Muñoz-Rojas, M.; Erickson, T.E.; Martini, D.; Dixon, K.W.; Merritt, D.J. Soil Quality Indicators to Assess Ecosystem Restoration Success in Degraded Mine Sites. Ecol. Indic. 2021, 124, 107419. [Google Scholar] [CrossRef]
- Bao, S.D. (Ed.) Soil Agrochemical Analysis, 3rd ed.; China Agricultural Press: Beijing, China, 2000; p. 450. [Google Scholar]
- Su, Y.Z.; Zhao, H.L.; Zhao, W.Z.; Zhang, T.H. Fractal features of soil particle size distribution and the implication for indicating desertification. Geoderma 2004, 122, 43–49. [Google Scholar] [CrossRef]
- Liu, C.S.; Zhao, D.F.; Ma, W.J.; Guo, Y.D.; Wang, A.J.; Wang, Q.L.; Lee, D.J. Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp. Appl. Microbiol. Biotechnol. 2016, 100, 1421–1426. Available online: https://link.springer.com/article/10.1007/s00253-015-7039-6 (accessed on 3 April 2025). [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. Available online: http://huttenhower.sph.harvard.edu/lefse/ (accessed on 3 April 2025). [CrossRef] [PubMed]
- Pabst, H.; Gerschlauer, F.; Kiese, R.; Kuzyakov, Y. Land use and precipitation affect organic and microbial carbon stocks and the specific metabolic quotient in soils of eleven ecosystems of Mt. Kilimanjaro, Tanzania. Land Degrad. Dev. 2016, 27, 592–602. [Google Scholar] [CrossRef]
- Xu, H.; Ding, M.-J.; Zhang, H.; Zhang, Y.-J.; Huang, P.; Wu, Y.-P.; Zou, T.-E.; Wang, N.-Y.; Zeng, H. Interaction Effects of Vegetation and Soil Factors on Microbial Communities in Alpine Steppe Under Degradation. Huan Jing Ke Xue 2024, 45, 4251–4265. [Google Scholar] [CrossRef] [PubMed]
- Mayor, J.R.; Sanders, N.J.; Classen, A.T.; Bardgett, R.D.; Clement, J.-C.; Fajardo, A.; Lavorel, S.; Sundqvist, M.K.; Bahn, M.; Chisholm, C. Elevation alters ecosystem properties across temperate treelines globally. Nature 2017, 542, 91–95. Available online: https://www.nature.com/articles/nature21027 (accessed on 3 April 2025). [CrossRef]
- Coroi, M.; Skeffington, M.S.; Giller, P.; Smith, C.; Gormally, M.; O’Donovan, G. Vegetation diversity and stand structure in streamside forests in the south of Ireland. For. Ecol. Manag. 2004, 202, 39–57. [Google Scholar] [CrossRef]
- Qiu, X.X.; Cao, G.C.; Zhang, J.H.; Zhang, Z.; Liu, M.L. Carbon Density Distribution of Picea crassifolia Forests on the Southern Slope of Qilian Mountains with Elevation. Arid Zone Res. 2023, 40, 615–622. [Google Scholar] [CrossRef]
- Zak, D.R.; Holmes, W.E.; White, D.C.; Peacock, A.D.; Tilman, D. Plant diversity, soil microbial communities, and ecosystem function: Are there any links? Ecology 2003, 84, 2042–2050. [Google Scholar] [CrossRef]
- Yang, H.; Wang, P.Y.; Li, X.W.; Wang, J.F.; Yang, J.L. Soil Fungal Diversity and Community Structure of Different Vegetation Types on the Eastern Slope of Helan Mountain. Ecol. Environ. Sci. 2022, 31, 239–247. [Google Scholar] [CrossRef]
- Ding, J.; Eldridge, D.J. The fertile island effect varies with aridity and plant patch type across an extensive continental gradient. Plant Soil 2021, 459, 173–183. Available online: https://link.springer.com/article/10.1007/s11104-020-04731-w (accessed on 3 April 2025). [CrossRef]
- Yang, T.; Adams, J.M.; Shi, Y.; He, J.S.; Jing, X.; Chen, L.; Tedersoo, L.; Chu, H. Soil fungal diversity in natural grasslands of the Tibetan Plateau: Associations with plant diversity and productivity. New Phytol. 2017, 215, 756–765. [Google Scholar] [CrossRef]
- Cleveland, C.C.; Reed, S.C.; Keller, A.B.; Nemergut, D.R.; O’Neill, S.P.; Ostertag, R.; Vitousek, P.M. Litter quality versus soil microbial community controls over decomposition: A quantitative analysis. Oecologia 2014, 174, 283–294. Available online: https://link.springer.com/article/10.1007/s00442-013-2758-9 (accessed on 3 April 2025). [CrossRef]
- Zhou, J.; Liu, X.; Xie, J.; Lyu, M.; Zheng, Y.; You, Z.; Fan, Y.; Lin, C.; Chen, G.; Chen, Y. Nitrogen addition affects soil respiration primarily through changes in microbial community structure and biomass in a subtropical natural forest. Forests 2019, 10, 435. [Google Scholar] [CrossRef]
- Philippot, L.; Andersson, S.G.; Battin, T.J.; Prosser, J.I.; Schimel, J.P.; Whitman, W.B.; Hallin, S. The ecological coherence of high bacterial taxonomic ranks. Nat. Rev. Microbiol. 2010, 8, 523–529. Available online: https://www.nature.com/articles/nrmicro2367 (accessed on 3 April 2025). [CrossRef] [PubMed]
- Janssen, P.H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 2006, 72, 1719–1728. [Google Scholar] [CrossRef] [PubMed]
- Urbanová, M.; Šnajdr, J.; Baldrian, P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol. Biochem. 2015, 84, 53–64. [Google Scholar] [CrossRef]
- Li, Q.; He, G.; Wen, T.; Zhang, D.; Liu, X. Distribution pattern of soil fungi community diversity in alpine meadow in Qilian Mountains of eastern Qinghai-Tibetan Plateau. Ecol. Indic. 2022, 141, 109054. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, Y.; Chen, H.; Wang, Y.; Cao, F.; Sun, W.; Qi, X.; Zhao, Y.; Xu, F. Soil properties and microbial diversity at the frontier of Laohugou glacier retreat in Qilian Mountains. Curr. Microbiol. 2020, 77, 425–433. Available online: https://link.springer.com/article/10.1007/s00284-019-01846-x (accessed on 3 April 2025). [CrossRef]
- Ni, Y.; Yang, T.; Ma, Y.; Zhang, K.; Soltis, P.S.; Soltis, D.E.; Gilbert, J.A.; Zhao, Y.; Fu, C.; Chu, H. Soil pH determines bacterial distribution and assembly processes in natural mountain forests of eastern China. Glob. Ecol. Biogeogr. 2021, 30, 2164–2177. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, L.; Wang, J.; Liu, Y.; Ren, C.; Guo, Y.; Wang, J.; Wang, N.; Zhao, F.; Wang, W. Different Response of Plant-and Microbial-Derived Carbon Decomposition Potential between Alpine Steppes and Meadows on the Tibetan Plateau. Forests 2023, 14, 1580. [Google Scholar] [CrossRef]
- Chukwuneme, C.F.; Ayangbenro, A.S.; Babalola, O.O. Metagenomic analyses of plant growth-promoting and carbon-cycling genes in maize rhizosphere soils with distinct land-use and management histories. Genes 2021, 12, 1431. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.; Bao, W. Review of the temporal and spatial patterns of soil C: N: P stoichiometry and its driving factors. Chin. J. Appl. Environ. Biol. 2017, 23, 400–408. [Google Scholar] [CrossRef]
- Ziliotto, M.; Ellwanger, J.H.; Chies, J.A.B. Soil-transmitted helminths detected from environmental samples in a campus of southern Brazil. Sci. One Health 2022, 1, 100016. [Google Scholar] [CrossRef]
- Diuk-Wasser, M.A.; VanAcker, M.C.; Fernandez, M.P. Impact of land use changes and habitat fragmentation on the eco-epidemiology of tick-borne diseases. J. Med. Entomol. 2021, 58, 1546–1564. [Google Scholar] [CrossRef]
- Tack, W.; Madder, M.; Baeten, L.; Vanhellemont, M.; Gruwez, R.; Verheyen, K. Local habitat and landscape affect Ixodes ricinus tick abundances in forests on poor, sandy soils. For. Ecol. Manag. 2012, 265, 30–36. [Google Scholar] [CrossRef]
- Elmieh, N. The Impacts of Climate and Land Use Change on Tick-Related Risks; National Collaborating Centre for Environmental Health (NCCEH): Vancouver, BC, Canada, 2022; Available online: https://ncceh.ca/resources/evidence-reviews/impacts-climate-and-land-use-change-tick-related-risks (accessed on 3 April 2025).
- Estrada-Peña, A.; de la Fuente, J. The ecology of ticks and epidemiology of tick-borne viral diseases. Antivir. Res. 2014, 108, 104–128. [Google Scholar] [CrossRef]
- Barroso, P.; Gortázar, C. The Coexistence of Wildlife and Livestock. Anim. Front. 2024, 14, 5–13. [Google Scholar] [CrossRef]
- van der Linde, S.; Suz, L.M.; Orme, C.D.L.; Cox, F.; Andreae, H.; Asi, E.; Atkinson, B.; Benham, S.; Carroll, C.; Cools, N. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 2018, 558, 243–248. Available online: https://www.nature.com/articles/s41586-018-0189-9 (accessed on 3 April 2025). [CrossRef]
- Hou, M.; Leng, C.; Zhu, J.; Yang, M.; Yin, Y.; Xing, Y.; Chen, J. Alpine and subalpine plant microbiome mediated plants adapt to the cold environment: A systematic review. Environ. Microbiome 2024, 19, 82. Available online: https://link.springer.com/article/10.1186/s40793-024-00614-0 (accessed on 3 April 2025). [CrossRef]
- Bai, L.; Wang, W.; Chen, Z.; Chen, X.; Xiong, Y. The Variations in Soil Microbial Communities and Their Mechanisms Along an Elevation Gradient in the Qilian Mountains, China. Sustainability 2025, 17, 1797. [Google Scholar] [CrossRef]
- Hardoim, P.R.; Van Overbeek, L.S.; Berg, G.; Pirttilä, A.M.; Compant, S.; Campisano, A.; Döring, M.; Sessitsch, A. The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 2015, 79, 293–320. [Google Scholar] [CrossRef] [PubMed]
- Outerbridge, R.A.M. Macrofungus Ecology and Diversity Under Different Conifer Monocultures on Southern Vancouver Island. 2002. Available online: https://dspace.library.uvic.ca/server/api/core/bitstreams/14333be9-b0cf-4805-9935-23ca302d83da/content (accessed on 3 April 2025).
- Dequiedt, S.; Thioulouse, J.; Jolivet, C.; Saby, N.P.; Lelievre, M.; Maron, P.A.; Martin, M.P.; Prévost-Bouré, N.C.; Toutain, B.; Arrouays, D. Biogeographical patterns of soil bacterial communities. Environ. Microbiol. Rep. 2009, 1, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, G.; Xue, S.; Wang, G. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau. Soil Biol. Biochem. 2016, 97, 40–49. [Google Scholar] [CrossRef]
- Hu, H.W.; Zhang, L.M.; Dai, Y.; Di, H.J.; He, J.Z. pH-dependent distribution of soil ammonia oxidizers across a large geographical scale as revealed by high-throughput pyrosequencing. J. Soils Sediments 2013, 13, 1439–1449. Available online: https://link.springer.com/article/10.1007/s11368-013-0726-y (accessed on 3 April 2025). [CrossRef]
- Wei, Y.L.; Cao, W.X.; Li, J.H.; Zhang, A.M.; Li, X.L. PLFA Analysis of Soil Microbial Community Structure in Alpine Shrub Grasslands Under Different Grazing and Enclosure Conditions. Acta Ecol. Sin. 2018, 38, 4897–4908. [Google Scholar]
- Sun, J.; Xia, J.B.; Su, L.; Zhao, X.M.; Chen, Y.P.; Yue, X.Y.; Li, C.R. Soil Improvement Effects of Different Vegetation Patterns in Saline-Alkali Land of the Yellow River Delta. Chin. J. Appl. Ecol. 2020, 31, 1323–1332. [Google Scholar] [CrossRef]
- Cao, H.Y.; Gao, G.L.; Ding, G.D.; Zhang, Y.; Zhao, Y.Y.; Ren, Y.; Chen, Y.X.; Guo, M.S. Fungal Community Structure and Diversity in Four Habitats of Hulunbuir Sandy Area. Sci. Silvae Sin. 2019, 55, 118–127. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20203166839 (accessed on 3 April 2025).
- Tscherko, D.; Hammesfahr, U.; Zeltner, G.; Kandeler, E.; Böcker, R. Plant succession and rhizosphere microbial communities in a recently deglaciated alpine terrain. Basic Appl. Ecol. 2005, 6, 367–383. [Google Scholar] [CrossRef]
- Cong, L.; Jinghua, L.; Mei, L.; Zhidong, Y.; Pan, L.; Yulian, R.; Fan, D. Responses of soil bacterial communities to vertical vegetarian zone changes in the subtropical forests, southeastern Yunnan. Ecol. Environ. 2022, 31, 1971. [Google Scholar] [CrossRef]
Indexes | Grassland | Shrubland | Forest |
---|---|---|---|
R-C (g/kg) | 353.93 ± 12.58 b | 366.71 ± 19.48 b | 410.35 ± 6.09 a |
R-N (g/kg) | 5.55 ± 0.57 b | 8.11 ± 0.72 a | 6.68 ± 0.74 ab |
L-C (g/kg) | 364.55 ± 18.55 c | 435.28 ± 2.87 b | 494.27 ± 4.65 a |
L-N (g/kg) | 21.22 ± 1.84 a | 19.41 ± 1.14 a | 12.75 ± 0.72 b |
BD (g/cm3) | 1.33 ± 0.04 a | 1.37 ± 0.1 a | 1.23 ± 0.16 a |
EC (μs/cm) | 163.04 ± 32.92 a | 170.99 ± 20.62 a | 141.4 ± 28.35 a |
SWC (%) | 4.24 ± 0.49 a | 5.51 ± 1.8 a | 5.99 ± 1.39 a |
Clay (%) | 4.21 ± 0.31 a | 4.53 ± 0.15 a | 3.94 ± 0.59 a |
Silt (%) | 43.99 ± 2.81 a | 45.09 ± 2.29 a | 37.68 ± 5.4 a |
Sand (%) | 51.79 ± 3.11 a | 50.38 ± 2.25 a | 58.37 ± 5.92 a |
SOC (g/kg) | 52.13 ± 4.65 b | 67.49 ± 9.21 ab | 82.59 ± 12.84 a |
TN (g/kg) | 4.99 ± 0.43 a | 6.12 ± 0.76 a | 5.98 ± 0.93 a |
TP (g/kg) | 0.71 ± 0.06 a | 0.78 ± 0.04 a | 0.63 ± 0.08 a |
TK (g/kg) | 21.53 ± 0.61 a | 20.79 ± 0.98 a | 20.14 ± 0.93 a |
AN (mg/kg) | 336.42 ± 29.9 a | 360.12 ± 31.17 a | 315.68 ± 32.08 a |
AP (mg/kg) | 6.09 ± 0.83 a | 5.7 ± 0.69 a | 7.28 ± 2.7 a |
AK (mg/kg) | 265.13 ± 38.8 a | 261.88 ± 43.46 a | 205.75 ± 43.38 a |
pH | 7.44 ± 0.2 a | 7.5 ± 0.15 a | 6.78 ± 0.24 b |
MBC (mg/kg) | 495.51 ± 35.65 a | 609.77 ± 73.54 a | 715.59 ± 119.16 a |
MBN (mg/kg) | 37.16 ± 3.14 b | 48.05 ± 5.56 ab | 59.65 ± 10.16 a |
MBP (mg/kg) | 14.68 ± 0.72 a | 13.7 ± 0.63 a | 14.88 ± 0.75 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, X.; Cao, G.; Han, G.; Zhao, Q.; Cao, S.; Ji, S. Impact of Vegetation Type on Taxonomic and Functional Composition of Soil Microbial Communities in the Northeastern Qinghai–Tibet Plateau. Microorganisms 2025, 13, 2075. https://doi.org/10.3390/microorganisms13092075
Qiu X, Cao G, Han G, Zhao Q, Cao S, Ji S. Impact of Vegetation Type on Taxonomic and Functional Composition of Soil Microbial Communities in the Northeastern Qinghai–Tibet Plateau. Microorganisms. 2025; 13(9):2075. https://doi.org/10.3390/microorganisms13092075
Chicago/Turabian StyleQiu, Xunxun, Guangchao Cao, Guangzhao Han, Qinglin Zhao, Shengkui Cao, and Shuang Ji. 2025. "Impact of Vegetation Type on Taxonomic and Functional Composition of Soil Microbial Communities in the Northeastern Qinghai–Tibet Plateau" Microorganisms 13, no. 9: 2075. https://doi.org/10.3390/microorganisms13092075
APA StyleQiu, X., Cao, G., Han, G., Zhao, Q., Cao, S., & Ji, S. (2025). Impact of Vegetation Type on Taxonomic and Functional Composition of Soil Microbial Communities in the Northeastern Qinghai–Tibet Plateau. Microorganisms, 13(9), 2075. https://doi.org/10.3390/microorganisms13092075