Prescribed Burning Enhances the Stability of Soil Bacterial Co-Occurrence Networks in Pinus yunnanensis Forests in Central Yunnan Province, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Design
2.2. Soil Sampling and Analyses
2.3. Soil Microbial DNA Collection and Illumina MiSeq Sequencing
2.4. Bioinformatic Analysis
2.5. Statistical Analysis
3. Results
3.1. Soil Physicochemical Properties and Enzyme Activities
3.2. Soil Microbial Community Composition
3.3. Soil Microbial α-Diversity
3.4. Soil Microbial β-Diversity
3.5. Co-Occurrence Networks of Soil Fungal and Bacterial Communities
3.6. Correlation Between Microbial Community Composition and Soil Environmental Factors
4. Discussion
4.1. The Effects of Prescribed Burning on Soil Physicochemical Properties and Enzyme Activities
4.2. The Impact of Prescribed Burning on Soil Microbial Communities
4.3. Correlations Between Soil Microbial Community Composition and Environmental Factors
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glasspool, I.J.; Edwards, D.; Axe, L. Charcoal in the Silurian as evidence for the earliest wildfire. Geology 2004, 32, 381. [Google Scholar] [CrossRef]
- He, T.; Belcher, C.M.; Lamont, B.B.; Lim, S.L. A 350-million-year legacy of fire adaptation among conifers. J. Ecol. 2016, 104, 352–363. [Google Scholar] [CrossRef]
- Pausas, J.G. Evolutionary fire ecology: Lessons learned from pines. Trends Plant Sci. 2015, 20, 318–324. [Google Scholar] [CrossRef]
- Franke, J.; Sena Barradas, A.C.; Borges, K.M.R.; Hoffmann, A.A.; Filho, J.C.O.; Ramos, R.M.; Steil, L.; Roman-Cuesta, R.M. Prescribed burning and integrated fire management in the Brazilian Cerrado: Demonstrated impacts and scale-up potential for emission abatement. Environ. Res. Lett. 2024, 19, 034020. [Google Scholar] [CrossRef]
- Hong, R.; Zhu, X.; Ma, C.; Xu, S.; Wang, J.; Wang, H.; Qin, L.; Yan, X.; Fang, X.; Bai, W.; et al. The effect of prescribed burning on the growth and regeneration of Pinus yunnanensis. For. Ecol. Manag. 2025, 578, 122460. [Google Scholar] [CrossRef]
- Bradstock, R.A.; Williams, R.J. Can Australian fire regimes be managed for carbon benefits? New Phytol. 2009, 183, 931–934. [Google Scholar] [CrossRef]
- Ryan, K.C.; Knapp, E.E.; Varner, J.M. Prescribed fire in North American forests and woodlands: History, current practice, and challenges. Front. Ecol. Environ. 2013, 11, e15–e24. [Google Scholar] [CrossRef]
- Hu, T.; Han, Y.; Köster, K.; Wang, J.; Hu, H.; Dou, X.; Sun, L.; Ding, Y. Prescribed burning alters soil microbial community structure by changing soil physicochemical properties in temperate forests of northern China. J. For. Res. 2024, 35, 141. [Google Scholar] [CrossRef]
- Jumpponen, A.; Jones, K.L.; Blair, J. Vertical distribution of fungal communities in tallgrass prairie soil. Mycologia 2010, 102, 1027–1041. [Google Scholar] [CrossRef]
- Fierer, N.; Ladau, J.; Clemente, J.C.; Leff, J.W.; Owens, S.M.; Pollard, K.S.; Knight, R.; Gilbert, J.A.; McCulley, R.L. Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science 2013, 342, 621–624. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, W.; Wang, Q.; Cao, H.; Zhang, X.; Bai, W.; Li, X.; Gao, G. Characteristics of fire behavior in prescribed burning under Pinus yunnanensis forest. J. Zhejiang A F Univ. 2023, 40, 828–835. [Google Scholar] [CrossRef]
- Badía, D.; López-García, S.; Martí, C.; Ortíz-Perpiñá, O.; Girona-García, A.; Casanova-Gascón, J. Burn effects on soil properties associated to heat transfer under contrasting moisture content. Sci. Total Environ. 2017, 601–602, 1119–1128. [Google Scholar] [CrossRef]
- Qin, Q.; Liu, Y. Changes in microbial communities at different soil depths through the first rainy season following severe wildfire in North China artificial Pinus Tabulaeformis forest. J. Environ. Manag. 2021, 280, 111865. [Google Scholar] [CrossRef] [PubMed]
- Gassibe, P.V.; Fabero, R.F.; Hernández-Rodríguez, M.; Oria-de-Rueda, J.A.; Martín-Pinto, P. Fungal Community succession following wildfire in a mediterranean vegetation type dominated by Pinus pinaster in northwest Spain. For. Ecol. Manag. 2011, 262, 655–662. [Google Scholar] [CrossRef]
- Villadas, P.J.; Díaz-Díaz, S.; Rodríguez-Rodríguez, A.; Del Arco-Aguilar, M.; Fernández-González, A.J.; Pérez-Yépez, J.; Arbelo, C.; González-Mancebo, J.M.; Fernández-López, M.; León-Barrios, M. The soil microbiome of the Laurel forest in Garajonay National Park (La Gomera, Canary Islands): Comparing unburned and burned habitats after a wildfire. Forests 2019, 10, 1051. [Google Scholar] [CrossRef]
- Prendergast-Miller, M.T.; De Menezes, A.B.; Macdonald, L.M.; Toscas, P.; Bissett, A.; Baker, G.; Farrell, M.; Richardson, A.E.; Wark, T.; Thrall, P.H. Wildfire impact: Natural experiment reveals differential short-term changes in soil microbial communities. Soil Biol. Biochem. 2017, 109, 1–13. [Google Scholar] [CrossRef]
- Tian, R.; Chen, Q.; Li, J.; Zhao, Y.; Yang, J.; Yang, G. Effects of prescribed burning on soil physicochemical properties and erodibility in Pinus yunnanensis forests. J. Northwest For. Univ. 2021, 36, 11–16. [Google Scholar] [CrossRef]
- Yang, M.; Luo, X.; Cai, Y.; Mwangi, B.N.; Khan, M.S.; Haider, F.U.; Huang, W.; Cheng, X.; Yang, Z.; Zhou, H.; et al. Effect of fire and post-fire management on soil microbial communities in a lower subtropical forest ecosystem after a mountain fire. J. Environ. Manag. 2024, 351, 119885. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.M.; Guo, X.; Wu, L.; Zhang, Y.; Xiao, N.; Ning, D.; Shi, Z.; Zhou, X.; Wu, L.; Yang, Y.; et al. Climate warming enhances microbial network complexity and stability. Nat. Clim. Change 2021, 11, 343–348. [Google Scholar] [CrossRef]
- Du, Y.; Yang, Y.; Wu, S.; Gao, X.; He, X.; Dong, S. Core microbes regulate plant-soil resilience by maintaining network resilience during long-term restoration of alpine grasslands. Nat. Commun. 2025, 16, 3116. [Google Scholar] [CrossRef]
- Su, W.; Tang, C.; Lin, J.; Yu, M.; Dai, Z.; Luo, Y.; Li, Y.; Xu, J. Recovery patterns of soil bacterial and fungal communities in Chinese boreal forests along a fire chronosequence. Sci. Total Environ. 2022, 805, 150372. [Google Scholar] [CrossRef]
- Su, Y.; Hu, Y.; Zi, H.; Chen, Y.; Deng, X.; Hu, B.; Jiang, Y. Contrasting assembly mechanisms and drivers of soil rare and abundant bacterial communities in 22-year continuous and non-continuous cropping systems. Sci. Rep. 2022, 12, 3264. [Google Scholar] [CrossRef]
- Qiao, Y.; Wang, T.; Huang, Q.; Guo, H.; Zhang, H.; Xu, Q.; Shen, Q.; Ling, N. Core species impact plant health by enhancing soil microbial cooperation and network complexity during community coalescence. Soil Biol. Biochem. 2024, 188, 109231. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, J.; Li, H.; Xu, M.; Zhao, Y.; Shi, X.; Shi, Y.; Wan, S. Key microbes in wheat maize rotation present better promoting wheat yield effect in a variety of crop rotation systems. Agric. Ecosyst. Environ. 2025, 379, 109370. [Google Scholar] [CrossRef]
- Antonio Plaza-Alvarez, P.; Moya, D.; Esteban Lucas-Borja, M.; Garcia-Orenes, F.; Gonzalez-Romero, J.; Rossa, C.; Pena, E.; De las Heras, J. Early spring prescribed burning in mixed Pinus halepensis Mill. and Pinus pinaster Ait. stands reduced biological soil functionality in the short term. Land Degrad. Dev. 2021, 32, 1312–1324. [Google Scholar] [CrossRef]
- Poswa, S.B.; Manyevere, A.; Mashamaite, C.V. Responses of fungal diversity and community composition after 42 years of prescribed fire frequencies in semi-arid savanna rangelands. Front. Environ. Sci. 2024, 12, 1355278. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, J.; Shao, Y.; Zhou, L.; Mai, B.; Lin, Y.; Fu, S. Responses of soil microbial communities to prescribed burning in two paired vegetation sites in southern China. Ecol. Res. 2011, 26, 669–677. [Google Scholar] [CrossRef]
- Fox, S.; Taylor, M.K.; Callaham, M.; Jumpponen, A. Fire-excluded and frequently burned Longleaf Pine forests have contrasting soil microbial communities. For. Ecol. Manag. 2024, 551, 121519. [Google Scholar] [CrossRef]
- Hong, R.; Li, J.; Wang, J.; Zhu, X.; Li, X.; Ma, C.; Cao, H.; Wang, L.; Wang, Q. Effects of prescribed burning on understory Quercus species of Pinus yunnanensis forest. Front. For. Glob. Change 2023, 6, 1208682. [Google Scholar] [CrossRef]
- Yang, B.; Chen, Q.; Gong, S.; Zhao, Y.; Song, D.; Li, J. Effects of prescribed burning on soil CO2 emissions from Pinus yunnanensis forestland in central Yunnan, China. Sustainability 2022, 14, 5375. [Google Scholar] [CrossRef]
- Jiang, S. Review on soil bulk density determination method. Hubei Agric. Sci. 2019, 58, 82–86,91. [Google Scholar] [CrossRef]
- Li, W.; Chen, Y. Research progress on soil moisture and its measurement methods. Jiangsu Agric. Sci. 2014, 42, 335–339. [Google Scholar] [CrossRef]
- Bao, S.D. Soil and Agricultural Chemistry Analysis, 3rd ed.; China Agricultural Press: Beijing, China, 2000; (Source from China). [Google Scholar]
- Chen, W.; Hou, Z.; Zhang, D.; Chen, L.; Wang, K.; Song, Y. Increased soil moisture in the wet season alleviates the negative effects of nitrogen deposition on soil microbial communities in subtropical evergreen broad-leaved forest. Forests 2024, 15, 1473. [Google Scholar] [CrossRef]
- Fadaei, Z.; Kavian, A.; Solaimani, K.; Sarabsoreh, L.Z.; Kalehhouei, M.; Zuazo, V.H.D.; Rodrigo-Comino, J. The response of soil physicochemical properties in the Hyrcanian forests of Iran to forest fire events. Fire 2022, 5, 195. [Google Scholar] [CrossRef]
- Halder, M.; Ahmad, S.J.; Rahman, T.; Joardar, J.C.; Siddique, M.A.B.; Islam, M.S.; Islam, M.U.; Liu, S.; Rabbi, S.; Peng, X. Effects of straw incorporation and straw-burning on aggregate stability and soil organic carbon in a clay soil of bangladesh. Geoderma Reg. 2023, 32, e00620. [Google Scholar] [CrossRef]
- Alcañiz, M.; Outeiro, L.; Francos, M.; Farguell, J.; Úbeda, X. Long-term dynamics of soil chemical properties after a prescribed fire in a mediterranean forest (Montgrí Massif, Catalonia, Spain). Sci. Total Environ. 2016, 572, 1329–1335. [Google Scholar] [CrossRef]
- Pereira, P.; Cerdà, A.; Lopez, A.J.; Zavala, L.M.; Mataix-Solera, J.; Arcenegui, V.; Misiune, I.; Keesstra, S.; Novara, A. Short-term vegetation recovery after a grassland fire in Lithuania: The effects of fire severity, slope position and aspect. Land Degrad. Dev. 2016, 27, 1523–1534. [Google Scholar] [CrossRef]
- Scharenbroch, B.C.; Nix, B.; Jacobs, K.A.; Bowles, M.L. Two decades of low-severity prescribed fire increases soil nutrient availability in a midwestern, USA Oak (Quercus) forest. Geoderma 2012, 183–184, 80–91. [Google Scholar] [CrossRef]
- Muqaddas, B.; Zhou, X.; Lewis, T.; Wild, C.; Chen, C. Long-term frequent prescribed fire decreases surface soil carbon and nitrogen pools in a wet sclerophyll forest of southeast Queensland, Australia. Sci. Total Environ. 2015, 536, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, A.F.A.; Ahlström, A.; Hobbie, S.E.; Reich, P.B.; Nieradzik, L.P.; Staver, A.C.; Scharenbroch, B.C.; Jumpponen, A.; Anderegg, W.R.L.; Randerson, J.T.; et al. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 2018, 553, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Rai, D.; Silveira, M.L.; Strauss, S.L.; Meyer, J.L.; Castellano-Hinojosa, A.; Kohmann, M.M.; Brandani, C.B.; Gerber, S. Short-term prescribed fire-induced changes in soil microbial communities and nutrients in native rangelands of Florida. Appl. Soil Ecol. 2023, 189, 104914. [Google Scholar] [CrossRef]
- Turner, M.G.; Smithwick, E.A.H.; Metzger, K.L.; Tinker, D.B.; Romme, W.H. Inorganic nitrogen availability after severe stand-replacing fire in the greater yellowstone ecosystem. Proc. Natl. Acad. Sci. USA 2007, 104, 4782–4789. [Google Scholar] [CrossRef]
- Country, M.; Davis, J.; Simmons, J.; Snelson, S.; Channell, V.; Haynes, K.; Deutscher, N.; Brook, L.; Dosseto, A. Quantitative assessment of the effect of agency-led prescribed burns and cultural burns on soil properties in Southeastern Australia. Fire 2024, 7, 75. [Google Scholar] [CrossRef]
- Sadeghifar, M.; Agha, A.B.A.; Pourreza, M. Comparing soil microbial eco-physiological and enzymatic response to fire in the semi-arid Zagros woodlands. Appl. Soil Ecol. 2020, 147, 103366. [Google Scholar] [CrossRef]
- Lan, Y.; Wang, Y.; Wang, Y.; Cui, X.; Zheng, Y.; Shen, H.; Yao, L.; Si, H.; Li, M. Short-term effects of forest fire on the soil bacterial community-enzyme activity in typical forest stands in Jinyun Mountain, Chongqing. J. Sci. Soil Water Conserv. 2023, 21, 60–68. [Google Scholar] [CrossRef]
- Bergmann, G.T.; Bates, S.T.; Eilers, K.G.; Lauber, C.L.; Caporaso, J.G.; Walters, W.A.; Knight, R.; Fierer, N. The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol. Biochem. 2011, 43, 1450–1455. [Google Scholar] [CrossRef]
- Tan, X.-Y.; Liu, X.-J.; Lu, D.-C.; Ye, Y.-Q.; Liu, X.-Y.; Yu, F.; Yang, H.; Li, F.; Du, Z.-J.; Ye, M.-Q. Insights into the physiological and metabolic features of Thalassobacterium, a novel genus of Verrucomicrobiota with the potential to drive the carbon cycle. mBio 2025, 16, e00305-25. [Google Scholar] [CrossRef]
- Sun, Y.; Guan, Y.; Wang, H.; Wu, G. Autotrophic nitrogen removal in combined nitritation and anammox systems through intermittent aeration and possible microbial interactions by quorum sensing analysis. Bioresour. Technol. 2019, 272, 146–155. [Google Scholar] [CrossRef]
- Nelson, A.R.; Narrowe, A.B.; Rhoades, C.C.; Fegel, T.S.; Daly, R.A.; Roth, H.K.; Chu, R.K.; Amundson, K.K.; Young, R.B.; Steindorff, A.S.; et al. Wildfire-dependent changes in soil microbiome diversity and function. Nat. Microbiol. 2022, 7, 1419–1430. [Google Scholar] [CrossRef]
- Pressler, Y.; Moore, J.C.; Cotrufo, M.F. Belowground community responses to fire: Meta-analysis reveals contrasting responses of soil microorganisms and mesofauna. Oikos 2019, 128, 309–327. [Google Scholar] [CrossRef]
- Santalahti, M.; Sun, H.; Jumpponen, A.; Pennanen, T.; Heinonsalo, J. Vertical and seasonal dynamics of fungal communities in boreal Scots Pine forest soil. FEMS Microbiol. Ecol. 2016, 92, fiw170. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Wang, W. Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China. Soil Biol. Biochem. 2016, 98, 74–84. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, N.; Zeng, H.; Wang, W. Effects of soil depth and plant–soil interaction on microbial community in temperate grasslands of northern China. Sci. Total Environ. 2018, 630, 96–102. [Google Scholar] [CrossRef]
- Deng, Y.; Jiang, Y.-H.; Yang, Y.; He, Z.; Luo, F.; Zhou, J. Molecular ecological network analyses. BMC Bioinformatics 2012, 13, 113. [Google Scholar] [CrossRef]
- Karimi, B.; Maron, P.A.; Chemidlin-Prevost Boure, N.; Bernard, N.; Gilbert, D.; Ranjard, L. Microbial diversity and ecological networks as indicators of environmental quality. Environ. Chem. Lett. 2017, 15, 265–281. [Google Scholar] [CrossRef]
- Ling, L.; Fu, Y.; Jeewani, P.H.; Tang, C.; Pan, S.; Reid, B.J.; Gunina, A.; Li, Y.; Li, Y.; Cai, Y.; et al. Organic matter chemistry and bacterial community structure regulate decomposition processes in post-fire forest soils. Soil Biol. Biochem. 2021, 160, 108311. [Google Scholar] [CrossRef]
- Muqaddas, B.; Lewis, T. Temporal variations in litterfall biomass input and nutrient return under long-term prescribed burning in a wet sclerophyll forest, Queensland, Australia. Sci. Total Environ. 2020, 706, 136035. [Google Scholar] [CrossRef]
- Debray, R.; Herbert, R.A.; Jaffe, A.L.; Crits-Christoph, A.; Power, M.E.; Koskella, B. Priority effects in microbiome assembly. Nat. Rev. Microbiol. 2022, 20, 109–121. [Google Scholar] [CrossRef]
- Mi, X.; Sun, Z.; Song, Y.; Liu, X.; Yang, J.; Wu, J.; Ci, X.; Li, J.; Lin, L.; Cao, M.; et al. Rare tree species have narrow environmental but not functional niches. Funct. Ecol. 2021, 35, 511–520. [Google Scholar] [CrossRef]
- Hopkins, J.R.; Semenova-Nelsen, T.; Sikes, B.A. Fungal community structure and seasonal trajectories respond similarly to fire across pyrophilic ecosystems. FEMS Microbiol. Ecol. 2020, 97, fiaa219. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, Q.; Sun, Q.-Y.; Mao, B.; Zeng, D.-H. Understory vegetation interacts with nitrogen addition to affect soil phosphorus transformations in a nutrient-poor Pinus sylvestris var mongolica plantation. For. Ecol. Manag. 2022, 507, 120026. [Google Scholar] [CrossRef]
- Cheng, Z.; Wu, S.; Du, J.; Pan, H.; Lu, X.; Liu, Y.; Yang, L. Variations in the diversity and biomass of soil bacteria and fungi under different fire disturbances in the Taiga forests of northeastern China. Forests 2023, 14, 2063. [Google Scholar] [CrossRef]
Network Parameter | PB | UB |
---|---|---|
Bacteria | ||
Number of nodes | 151 | 146 |
Number of edges | 1170 | 650 |
Average degree | 15.497 | 8.904 |
Modularity | 0.439 | 0.502 |
Average clustering coefficient | 0.526 | 0.509 |
Co-occurrence (%) | 0.6838 | 0.9738 |
Competition (%) | 0.3162 | 0.0262 |
Fungi | ||
Number of nodes | 97 | 106 |
Number of edges | 375 | 318 |
Average degree | 7.732 | 6 |
Modularity | 0.544 | 0.661 |
Average clustering coefficient | 0.617 | 0.627 |
Co-occurrence (%) | 0.7493 | 0.7484 |
Competition (%) | 0.2507 | 0.2516 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mo, Y.; Bu, X.; Chen, W.; Xing, J.; Wang, Q.; Song, Y. Prescribed Burning Enhances the Stability of Soil Bacterial Co-Occurrence Networks in Pinus yunnanensis Forests in Central Yunnan Province, China. Microorganisms 2025, 13, 2070. https://doi.org/10.3390/microorganisms13092070
Mo Y, Bu X, Chen W, Xing J, Wang Q, Song Y. Prescribed Burning Enhances the Stability of Soil Bacterial Co-Occurrence Networks in Pinus yunnanensis Forests in Central Yunnan Province, China. Microorganisms. 2025; 13(9):2070. https://doi.org/10.3390/microorganisms13092070
Chicago/Turabian StyleMo, Yunxian, Xiangwei Bu, Wen Chen, Jinmei Xing, Qiuhua Wang, and Yali Song. 2025. "Prescribed Burning Enhances the Stability of Soil Bacterial Co-Occurrence Networks in Pinus yunnanensis Forests in Central Yunnan Province, China" Microorganisms 13, no. 9: 2070. https://doi.org/10.3390/microorganisms13092070
APA StyleMo, Y., Bu, X., Chen, W., Xing, J., Wang, Q., & Song, Y. (2025). Prescribed Burning Enhances the Stability of Soil Bacterial Co-Occurrence Networks in Pinus yunnanensis Forests in Central Yunnan Province, China. Microorganisms, 13(9), 2070. https://doi.org/10.3390/microorganisms13092070