The Effect of Sodium Humate on Sheep In Vitro Fermentation Characteristics and Rumen Bacterial Community
Abstract
1. Introduction
2. Materials and Methods
2.1. Substrates and Treatments
2.2. In Vitro Batch Culture
2.3. Sample Collection and Chemical Analyses
2.4. Ruminal 16S rDNA Amplification, Sequencing, and Analysis
2.5. Statistical Analysis
3. Results
3.1. Effect of SH Supplementation on NH3-N Concentration, BCP Content, and Gas Production
3.2. Effect of SH Supplementation on Volatile Fatty Acids
3.3. Effect of SH Supplementation on SFAEI and MEAEI
3.4. Effect of SH Supplementation on Rumen Bacterial Diversity
3.5. Alteration in Rumen Microbial Composition Caused by SH
3.6. Correlation Analysis
4. Discussion
4.1. Rumen Fermentation
4.2. Rumen Bacteria
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, S.; Zheng, M.; Ren, A.; Mao, H.; Long, D.; Yang, L. Effects of High-Concentrate-Induced SARA on Antioxidant Capacity, Immune Levels and Rumen Microbiota and Function in Goats. Animals 2024, 14, 263. [Google Scholar] [CrossRef] [PubMed]
- Neubauer, V.; Petri, R.; Humer, E.; Kröger, I.; Mann, E.; Reisinger, N.; Wagner, M.; Zebeli, Q. High-Grain Diets Supplemented with Phytogenic Compounds or Autolyzed Yeast Modulate Ruminal Bacterial Community and Fermentation in Dry Cows. J. Dairy Sci. 2018, 101, 2335–2349. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Nan, X.; Zhao, Y.; Wang, Y.; Jiang, L.; Xiong, B. Ruminal Degradation of Rumen-Protected Glucose Influences the Ruminal Microbiota and Metabolites in Early-Lactation Dairy Cows. Appl. Environ. Microbiol. 2021, 87, e01908-20. [Google Scholar] [CrossRef] [PubMed]
- Ghabbour, E.A.; Davies, G. (Eds.) Humic Substances: Structures, Models and Functions; The Royal Society of Chemistry: London, UK, 2001; ISBN 978-0-85404-811-3. [Google Scholar]
- Sheng, P.; Ribeiro, G.O.; Wang, Y.; McAllister, T.A. Humic Substances Reduce Ruminal Methane Production and Increase the Efficiency of Microbial Protein Synthesis in Vitro. J. Sci. Food Agric. 2019, 99, 2152–2157. [Google Scholar] [CrossRef]
- Hudák, M.; Semjon, B.; Marcinčáková, D.; Bujňák, L.; Naď, P.; Koréneková, B.; Nagy, J.; Bartkovský, M.; Marcinčák, S. Effect of Broilers Chicken Diet Supplementation with Natural and Acidified Humic Substances on Quality of Produced Breast Meat. Animals 2021, 11, 1087. [Google Scholar] [CrossRef]
- Schuhmacher, A. Humic Acid Substances in Animal Agriculture. Pak. J. Nutr. 2005, 4, 126–134. [Google Scholar] [CrossRef]
- Murbach, T.S.; Glávits, R.; Endres, J.R.; Clewell, A.E.; Hirka, G.; Vértesi, A.; Béres, E.; Pasics Szakonyiné, I. A Toxicological Evaluation of a Fulvic and Humic Acids Preparation. Toxicol. Rep. 2020, 7, 1242–1254. [Google Scholar] [CrossRef]
- Bai, H.X.; Chang, Q.F.; Shi, B.M.; Shan, A.S. Effects of Fulvic Acid on Growth Performance and Meat Quality in Growing-Finishing Pigs. Livest. Sci. 2013, 158, 118–123. [Google Scholar] [CrossRef]
- Brandts, I.; Balasch, J.C.; Gonçalves, A.P.; Martins, M.A.; Pereira, M.L.; Tvarijonaviciute, A.; Teles, M.; Oliveira, M. Immuno-Modulatory Effects of Nanoplastics and Humic Acids in the European Seabass (Dicentrarchus Labrax). J. Hazard. Mater. 2021, 414, 125562. [Google Scholar] [CrossRef]
- Klöcking, R.; Helbig, B.; Schötz, G.; Schacke, M.; Wutzler, P. Anti-HSV-1 Activity of Synthetic Humic Acid-like Polymers Derived from p-Diphenolic Starting Compounds. Antivir. Chem. Chemother. 2002, 13, 241–249. [Google Scholar] [CrossRef]
- van Rensburg, C.E.J.; Dekker, J.; Weis, R.; Smith, T.-L.; Janse van Rensburg, E.; Schneider, J. Investigation of the Anti-HIV Properties of Oxihumate. Chemotherapy 2002, 48, 138–143. [Google Scholar] [CrossRef] [PubMed]
- El-Zaiat, H.; Morsy, A.; El-Wakeel, E.A.; Anower, M.; Sallam, S. Impact of Humic Acid as an Organic Additive on Ruminal Fermentation Constituents, Blood Parameters and Milk Production in Goats and Their Kids Growth Rate. J. Anim. Feed Sci. 2018, 27, 105–113. [Google Scholar] [CrossRef]
- Kholif, A.E.; Matloup, O.H.; EL-Bltagy, E.A.; Olafadehan, O.A.; Sallam, S.M.A.; El-Zaiat, H.M. Humic Substances in the Diet of Lactating Cows Enhanced Feed Utilization, Altered Ruminal Fermentation, and Improved Milk Yield and Fatty Acid Profile. Livest. Sci. 2021, 253, 104699. [Google Scholar] [CrossRef]
- Menke, K.H.; Steingass, H. Estimation of the Energetic Feed Value Obtained from Chemical Analysis and in Vitro Gas Production Using Rumen Fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Yuan, J.; Wan, X. Multiple-Factor Associative Effects of Peanut Shell Combined with Alfalfa and Concentrate Determined by in Vitro Gas Production Method. Czech J. Anim. Sci. 2019, 64, 352–360. [Google Scholar] [CrossRef]
- Calsamiglia, S.; Ferret, A.; Devant, M. Effects of pH and pH Fluctuations on Microbial Fermentation and Nutrient Flow from a Dual-Flow Continuous Culture System. J. Dairy Sci. 2002, 85, 574–579. [Google Scholar] [CrossRef]
- Sung, H.G.; Kobayashi, Y.; Chang, J.; Ha, A.; Hwang, I.H.; Ha, J.K. Low Ruminal pH Reduces Dietary Fiber Digestion via Reduced Microbial Attachment. Asian Australas. J. Anim. Sci. 2006, 20, 200–207. [Google Scholar] [CrossRef]
- Galip, N.; Polat, U.; Biricik, H. Effects of Supplemental Humic Acid on Ruminal Fermentation and Blood Variables in Rams. Ital. J. Anim. Sci. 2010, 9, e74. [Google Scholar] [CrossRef]
- McMurphy, C.P.; Duff, G.C.; Sanders, S.R.; Cuneo, S.P.; Chirase, N.K. Effects of Supplementing Humates on Rumen Fermentation in Holstein Steers. S. Afr. J. Anim. Sci. 2011, 41, 134–140. [Google Scholar] [CrossRef]
- McMurphy, C.P.; Duff, G.C.; Harris, M.A.; Sanders, S.R.; Chirase, N.K.; Bailey, C.R.; Ibrahim, R.M. Effect of Humic/Fulvic Acid in Beef Cattle Finishing Diets on Animal Performance, Ruminal Ammonia and Serum Urea Nitrogen Concentration. J. Appl. Anim. Res. 2009, 35, 97–100. [Google Scholar] [CrossRef]
- Bach, A.; Calsamiglia, S.; Stern, M.D. Nitrogen Metabolism in the Rumen. J. Dairy Sci. 2005, 88 (Suppl. S1), E9–E21. [Google Scholar] [CrossRef] [PubMed]
- Owens, F.N.; Lusby, K.S.; Mizwicki, K.; Forero, O. Slow Ammonia Release from Urea: Rumen and Metabolism Studies. J. Anim. Sci. 1980, 50, 527–531. [Google Scholar] [CrossRef] [PubMed]
- Milton, C.T.; Brandt, R.T.; Titgemeyer, E.C. Urea in Dry-Rolled Corn Diets: Finishing Steer Performance, Nutrient Digestion, and Microbial Protein Production. J. Anim. Sci. 1997, 75, 1415–1424. [Google Scholar] [CrossRef]
- Fujihara, T.; Shem, M.N. Metabolism of Microbial Nitrogen in Ruminants with Special Reference to Nucleic Acids. Anim. Sci. J. 2011, 82, 198–208. [Google Scholar] [CrossRef]
- Reynal, S.M.; Ipharraguerre, I.R.; Liñeiro, M.; Brito, A.F.; Broderick, G.A.; Clark, J.H. Omasal Flow of Soluble Proteins, Peptides, and Free Amino Acids in Dairy Cows Fed Diets Supplemented with Proteins of Varying Ruminal Degradabilities1. J. Dairy Sci. 2007, 90, 1887–1903. [Google Scholar] [CrossRef]
- Repetto, J.L.; Cajarville, C.; D’Alessandro, J.; Curbelo, A.; Soto, C.; Garín, D. Effect of Wilting and Ensiling on Ruminal Degradability of Temperate Grass and Legume Mixtures. Anim. Res. 2005, 54, 73–80. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Zhang, Z.-H.; Wang, W.-K.; Wu, Q.-C.; Zhang, F.; Li, W.-J.; Li, S.-L.; Wang, W.; Cao, Z.-J.; Yang, H.-J. The Effect of γ-Aminobutyric Acid Addition on In Vitro Ruminal Fermentation Characteristics and Methane Production of Diets Differing in Forage-to-Concentrate Ratio. Fermentation 2023, 9, 105. [Google Scholar] [CrossRef]
- Xie, H.; Xie, F.; Guo, Y.; Liang, X.; Peng, L.; Li, M.; Tang, Z.; Peng, K.; Yang, C. Fermentation Quality, Nutritive Value and in Vitro Ruminal Digestion of Napier Grass, Sugarcane Top and Their Mixed Silages Prepared Using Lactic Acid Bacteria and Formic Acid. Grassl. Sci. 2023, 69, 23–32. [Google Scholar] [CrossRef]
- Getachew, G.; Robinson, P.H.; DePeters, E.J.; Taylor, S.J. Relationships between Chemical Composition, Dry Matter Degradation and in Vitro Gas Production of Several Ruminant Feeds. Anim. Feed Sci. Technol. 2004, 111, 57–71. [Google Scholar] [CrossRef]
- Melesse, A.; Steingass, H.; Boguhn, J.; Rodehutscord, M. In Vitro Fermentation Characteristics and Effective Utilisable Crude Protein in Leaves and Green Pods of Moringa Stenopetala and Moringa Oleifera Cultivated at Low and Mid-Altitudes. J. Anim. Physiol. Anim. Nutr. 2013, 97, 537–546. [Google Scholar] [CrossRef]
- Sizmaz, Ö.; Köksal, B.H.; Yildiz, G. Rumen Fermentation Characteristics of Rams Fed Supplemental Boric Acid and Humic Acid Diets. Ank. Univ. Vet. Fak. Derg. 2022, 69, 337–340. [Google Scholar] [CrossRef]
- Terry, S.A.; Ribeiro, G.d.O.; Gruninger, R.J.; Hunerberg, M.; Ping, S.; Chaves, A.V.; Burlet, J.; Beauchemin, K.A.; McAllister, T.A. Effect of Humic Substances on Rumen Fermentation, Nutrient Digestibility, Methane Emissions, and Rumen Microbiota in Beef Heifers1. J. Anim. Sci. 2018, 96, 3863–3877. [Google Scholar] [CrossRef] [PubMed]
- Jami, E.; White, B.A.; Mizrahi, I. Potential Role of the Bovine Rumen Microbiome in Modulating Milk Composition and Feed Efficiency. PLoS ONE 2014, 9, e85423. [Google Scholar] [CrossRef]
- Wang, B.; Ma, M.P.; Diao, Q.Y.; Tu, Y. Saponin-Induced Shifts in the Rumen Microbiome and Metabolome of Young Cattle. Front. Microbiol. 2019, 10, 356. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Morrison, M.; Yu, Z. Status of the Phylogenetic Diversity Census of Ruminal Microbiomes. FEMS Microbiol. Ecol. 2011, 76, 49–63. [Google Scholar] [CrossRef]
- Zened, A.; Combes, S.; Cauquil, L.; Mariette, J.; Klopp, C.; Bouchez, O.; Troegeler-Meynadier, A.; Enjalbert, F. Microbial Ecology of the Rumen Evaluated by 454 GS FLX Pyrosequencing Is Affected by Starch and Oil Supplementation of Diets. FEMS Microbiol. Ecol. 2013, 83, 504–514. [Google Scholar] [CrossRef]
- Keum, G.B.; Pandey, S.; Kim, E.S.; Doo, H.; Kwak, J.; Ryu, S.; Choi, Y.; Kang, J.; Kim, S.; Kim, H.B. Understanding the Diversity and Roles of the Ruminal Microbiome. J. Microbiol. 2024, 62, 217–230. [Google Scholar] [CrossRef]
- Stevenson, D.M.; Weimer, P.J. Dominance of Prevotella and Low Abundance of Classical Ruminal Bacterial Species in the Bovine Rumen Revealed by Relative Quantification Real-Time PCR. Appl. Microbiol. Biotechnol. 2007, 75, 165–174. [Google Scholar] [CrossRef]
- Krause, D.O.; Denman, S.E.; Mackie, R.I.; Morrison, M.; Rae, A.L.; Attwood, G.T.; McSweeney, C.S. Opportunities to Improve Fiber Degradation in the Rumen: Microbiology, Ecology, and Genomics. FEMS Microbiol. Rev. 2003, 27, 663–693. [Google Scholar] [CrossRef]
- Vercoe, P.E.; Gregg, K. DNA Sequence and Transcription of an Endoglucanase Gene fromPrevotella (Bacteroides) Ruminicola AR20. Molec. Gen. Genet. 1992, 233, 284–292. [Google Scholar] [CrossRef]
- Prins, R.A.; Lankhorst, A.; van der Meer, P.; Van Nevel, C.J. Some Characteristics of Anaerovibrio Lipolytica a Rumen Lipolytic Organism. Antonie Leeuwenhoek 1975, 41, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Henderson, C. The Lipases Produced by Anaerovibrio Lipolytica in Continuous Culture. Biochem. J. 1970, 119, 5P–6P. [Google Scholar] [CrossRef] [PubMed]
- Du, D.; Wang, Y.; Gao, Y.; Feng, L.; Zhang, Z.; Hu, Z. Analysis of Differences in the Rumen Microbiome and Metabolic Function in Prepartum Dairy Cows with Different Body Condition Scores. Anim. Microbiome 2024, 6, 35. [Google Scholar] [CrossRef]
- Baniel, A.; Amato, K.R.; Beehner, J.C.; Bergman, T.J.; Mercer, A.; Perlman, R.F.; Petrullo, L.; Reitsema, L.; Sams, S.; Lu, A.; et al. Seasonal Shifts in the Gut Microbiome Indicate Plastic Responses to Diet in Wild Geladas. Microbiome 2021, 9, 26. [Google Scholar] [CrossRef]
- Wang, D.; Chen, L.; Tang, G.; Yu, J.; Chen, J.; Li, Z.; Cao, Y.; Lei, X.; Deng, L.; Wu, S.; et al. Multi-Omics Revealed the Long-Term Effect of Ruminal Keystone Bacteria and the Microbial Metabolome on Lactation Performance in Adult Dairy Goats. Microbiome 2023, 11, 215. [Google Scholar] [CrossRef] [PubMed]
Items | Content |
---|---|
Ingredients (%) | |
Corn grain | 51.00 |
Soybean meal | 12.00 |
Wheat bran | 3.50 |
Sunflower shell | 17.00 |
Cottonseed meal | 3.50 |
Corn husk | 2.00 |
DDGS | 6.00 |
CaHCO3 | 0.30 |
Limestone | 2.50 |
NaHCO3 | 0.30 |
NaCl | 1.00 |
Premix 1 | 0.90 |
Total | 100.00 |
Nutrient level 2 | |
Crude protein | 14.11 |
Calcium, % | 1.58 |
Phosphorous, % | 0.86 |
Ash, % | 7.51 |
Ether extract, % | 2.63 |
Dry matter, % | 90.11 |
Neutral detergent fiber, % | 26.14 |
Acid detergent fiber, % | 12.37 |
Items | CON | SH0.5 | SH1 | SH2 | SEM | p-Value | ||
---|---|---|---|---|---|---|---|---|
ANOVA | Linear | Quadratic | ||||||
12 h | ||||||||
pH | 5.72 | 5.77 | 5.70 | 5.76 | 0.01 | 0.324 | 0.546 | 0.698 |
NH3-N (mg/100 mL) | 12.71 | 14.29 | 14.25 | 12.98 | 0.47 | 0.390 | 0.932 | 0.093 |
BCP (mg/100 mL) | 31.30 | 33.37 | 31.52 | 30.74 | 0.81 | 0.342 | 0.373 | 0.333 |
GP (mL) | 66.45 b | 58.70 c | 69.98 a | 67.53 ab | 0.80 | <0.01 | 0.052 | 0.412 |
24 h | ||||||||
pH | 5.70 | 5.66 | 5.66 | 5.68 | 0.02 | 0.263 | 0.679 | 0.062 |
NH3-N (mg/100 mL) | 18.35 b | 19.08 ab | 15.36 c | 20.81 a | 0.51 | <0.01 | 0.178 | 0.027 |
BCP (mg/100 mL) | 33.02 b | 34.19 b | 38.25 a | 33.66 b | 0.71 | 0.032 | 0.629 | 0.011 |
GP (mL) | 98.99 b | 89.13 c | 106.08 a | 104.37 a | 1.21 | <0.01 | 0.002 | 0.455 |
Items | CON | SH0.5 | SH1 | SH2 | SEM | p-Value | ||
---|---|---|---|---|---|---|---|---|
ANOVA | Linear | Quadratic | ||||||
12 h | ||||||||
Total VFAs (mmol/L) | 3.61 | 3.72 | 3.56 | 3.65 | 0.04 | 0.518 | 0.991 | 0.819 |
Acetate (%) | 35.89 | 36.19 | 37.53 | 36.08 | 0.18 | 0.517 | 0.923 | 0.138 |
Propionate (%) | 34.07 | 34.14 | 34.31 | 34.09 | 0.12 | 0.087 | 0.228 | 0.783 |
Butyrate (%) | 17.14 | 16.98 | 16.32 | 16.88 | 0.09 | 0.231 | 0.638 | 0.092 |
A/P | 1.06 | 1.08 | 1.05 | 1.06 | 0.01 | 0.604 | 0.475 | 0.884 |
24 h | ||||||||
Total VFAs (mmol/L) | 3.95 | 3.98 | 3.98 | 4.00 | 0.02 | 0.839 | 0.413 | 0.796 |
Acetate (%) | 33.82 | 33.55 | 33.68 | 32.95 | 0.17 | 0.136 | 0.028 | 0.481 |
Propionate (%) | 31.18 | 31.58 | 31.77 | 31.39 | 0.16 | 0.600 | 0.736 | 0.183 |
Butyrate (%) | 17.68 | 17.91 | 17.7 | 18.04 | 0.12 | 0.626 | 0.324 | 0.791 |
A/P | 1.08 | 1.06 | 1.06 | 1.05 | 0.01 | 0.340 | 0.087 | 0.481 |
Items | CON | SH0.5 | SH1 | SH2 |
---|---|---|---|---|
SFAEI | ||||
PH | 0 | −0.00094 | −0.00558 | 0.001135 |
NH3-N | 0 | 0.074266 | −0.04362 | 0.029925 |
BCP | 0 | 0.048186 | 0.071887 | 0.000404 |
GP | 0 | −0.09207 | 0.142658 | 0.102575 |
MFAEI | 0 | 0.029443 | 0.165337 | 0.134039 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, N.; Hu, Y.; Cai, X.; Gao, L.; Wang, W.; Wang, Y.; Qi, J. The Effect of Sodium Humate on Sheep In Vitro Fermentation Characteristics and Rumen Bacterial Community. Microorganisms 2025, 13, 1266. https://doi.org/10.3390/microorganisms13061266
Yin N, Hu Y, Cai X, Gao L, Wang W, Wang Y, Qi J. The Effect of Sodium Humate on Sheep In Vitro Fermentation Characteristics and Rumen Bacterial Community. Microorganisms. 2025; 13(6):1266. https://doi.org/10.3390/microorganisms13061266
Chicago/Turabian StyleYin, Na, Yuchao Hu, Xiangting Cai, Long Gao, Wenwen Wang, Yuan Wang, and Jingwei Qi. 2025. "The Effect of Sodium Humate on Sheep In Vitro Fermentation Characteristics and Rumen Bacterial Community" Microorganisms 13, no. 6: 1266. https://doi.org/10.3390/microorganisms13061266
APA StyleYin, N., Hu, Y., Cai, X., Gao, L., Wang, W., Wang, Y., & Qi, J. (2025). The Effect of Sodium Humate on Sheep In Vitro Fermentation Characteristics and Rumen Bacterial Community. Microorganisms, 13(6), 1266. https://doi.org/10.3390/microorganisms13061266